1
|
Mouren A, Pollet E, Avérous L. Synthesis and Assessment of Novel Sustainable Antioxidants with Different Polymer Systems. Polymers (Basel) 2024; 16:413. [PMID: 38337302 DOI: 10.3390/polym16030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Antioxidants are essential to the polymer industry. The addition of antioxidants delays oxidation and material degradation during their processing and usage. Sustainable phenolic acids such as 4-hydroxybenzoic acid or 3,4-dihydroxybenzoic acid were selected. They were chemically modified by esterification to obtain various durable molecules, which were tested and then compared to resveratrol, a biobased antioxidant, and Irganox 1076, a well-known and very efficient fossil-based antioxidant. Different sensitive matrices were used, such as a thermoplastic polyolefin (a blend of PP and PE) and a purposely synthesized thermoplastic polyurethane. Several formulations were then produced, with the different antioxidants in varying amounts. The potential of these different systems was analyzed using various techniques and processes. In addition to antioxidant efficiency, other parameters were also evaluated, such as the evolution of the sample color. Finally, an accelerated aging protocol was set up to evaluate variations in polymer properties and estimate the evolution of the potential of different antioxidants tested over time and with aging. In conclusion, these environmentally friendly antioxidants make it possible to obtain high-performance materials with an efficiency comparable to that of the conventional ones, with variations according to the type of matrix considered.
Collapse
Affiliation(s)
- Agathe Mouren
- BioTeam/ICPEES ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France
| | - Eric Pollet
- BioTeam/ICPEES ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France
| | - Luc Avérous
- BioTeam/ICPEES ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France
| |
Collapse
|
2
|
Marković Z, Komolkin AV, Egorov AV, Milenković D, Jeremić S. Alizarin as a potential protector of proteins against damage caused by hydroperoxyl radical. Chem Biol Interact 2023; 373:110395. [PMID: 36758887 DOI: 10.1016/j.cbi.2023.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Alizarin is a natural anthraquinone molecule with moderate antioxidative capacity. Some earlier investigations indicated that it can inhibit osteosarcoma and breast carcinoma cell proliferation by inhibiting of phosphorylation process of ERK protein (extracellular signal-regulated kinases). Several mechanisms of deactivation of one of the most reactive oxygen species, hydroperoxyl radical, by alizarin are estimated: hydrogen atom abstraction (HAA), radical adduct formation (RAF), and single electron transfer (SET). The plausibility of those mechanisms is estimated using density functional theory. The obtained results indicated HAA as the only thermodynamically plausible mechanism. For that purpose, two possible mechanistic pathways for hydrogen atom abstraction are studied in detail: hydrogen atom transfer (HAT) and proton-coupled electron transfer (PCET). Water and benzene are used as models of solvents with opposite polarity. To examine the difference between HAT and PCET is used kinetical approach based on the Transition state theory (TST) and determined rate constants (k). Important data used for a distinction between HAT and PCET mechanisms are obtained by applying the Quantum Theory of Atoms in Molecules (QTAIM), and by the analysis of single occupied molecular orbitals (SOMOs) in transition states for two examined mechanisms. The molecular docking analysis and molecular dynamic are used to predict the most probable positions of binding of alizarin to the sequence of ApoB-100 protein, a protein component of plasma low-density lipoproteins (LDL). It is found that alizarin links the nitrated polypeptide forming the π-π interactions with the amino acids Phenylalanine and Nitrotyrosine. The ability of alizarin to scavenge hydroperoxyl radical when it is in a sandwich structure between the polypeptide and radical species, as the operative reaction mechanism, is not significantly changed concerning its antioxidant capacity in the absence of polypeptide. Therefore, alizarin can protect the polypeptide from harmful hydroperoxyl radical attack, positioning itself between the polypeptide chain and the reactive oxygen species.
Collapse
Affiliation(s)
- Zoran Marković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia; Department of Natural Science and Mathematics, State University of Novi Pazar, Serbia.
| | - Andrei V Komolkin
- Faculty of Physics, Department of Nuclear-Physics Research Methods, St. Petersburg State University, Saint Petersburg, Russia
| | - Andrei V Egorov
- Faculty of Physics, Department of Nuclear-Physics Research Methods, St. Petersburg State University, Saint Petersburg, Russia
| | - Dejan Milenković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Svetlana Jeremić
- Department of Natural Science and Mathematics, State University of Novi Pazar, Serbia.
| |
Collapse
|
3
|
Amić A, Dimitrić Marković JM, Marković Z, Milenković D, Milanović Ž, Antonijević M, Mastiľák Cagardová D, Rodríguez-Guerra Pedregal J. Theoretical Study of Radical Inactivation, LOX Inhibition, and Iron Chelation: The Role of Ferulic Acid in Skin Protection against UVA Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081303. [PMID: 34439551 PMCID: PMC8389219 DOI: 10.3390/antiox10081303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/18/2022] Open
Abstract
Ferulic acid (FA) is used in skin formulations for protection against the damaging actions of the reactive oxygen species (ROS) produced by UVA radiation. Possible underlying protective mechanisms are not fully elucidated. By considering the kinetics of proton-coupled electron transfer (PCET) and radical-radical coupling (RRC) mechanisms, it appears that direct scavenging could be operative, providing that a high local concentration of FA is present at the place of •OH generation. The resulting FA phenoxyl radical, after the scavenging of a second •OH and keto-enol tautomerization of the intermediate, produces 5-hydroxyferulic acid (5OHFA). Inhibition of the lipoxygenase (LOX) enzyme, one of the enzymes that catalyse free radical production, by FA and 5OHFA were analysed. Results of molecular docking calculations indicate favourable binding interactions of FA and 5OHFA with the LOX active site. The exergonicity of chelation reactions of the catalytic Fe2+ ion with FA and 5OHFA indicate the potency of these chelators to prevent the formation of •OH radicals via Fenton-like reactions. The inhibition of the prooxidant LOX enzyme could be more relevant mechanism of skin protection against UVA induced oxidative stress than iron chelation and assumed direct scavenging of ROS.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +381-31-399-980
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Marko Antonijević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia;
| | | |
Collapse
|
4
|
Amić A, Milenković D, Marković Z, Cagardová D, Rodríguez-Guerra Pedregal J, Dimitrić Marković JM. Impact of the phenolic O–H vs. C-ring C–H bond cleavage on the antioxidant potency of dihydrokaempferol. NEW J CHEM 2021. [DOI: 10.1039/d1nj00690h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to correctly estimate hydrogen atom abstraction from polyphenols, kinetic analysis including suitable tunneling effects should be mandatory.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry
- Josip Juraj Strossmayer University of Osijek
- 31000 Osijek
- Croatia
| | - Dejan Milenković
- Institute for Information Technologies
- Department of Science
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| | - Zoran Marković
- Institute for Information Technologies
- Department of Science
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| | - Denisa Cagardová
- Institute of Physical Chemistry and Chemical Physics
- Department of Chemical Physics
- Slovak University of Technology in Bratislava
- SK-812 37 Bratislava
- Slovak Republic
| | | | | |
Collapse
|
5
|
Petković M, Nakarada Đ, Etinski M. When hydroquinone meets methoxy radical: Hydrogen abstraction reaction from the viewpoint of interacting quantum atoms. J Comput Chem 2018; 39:1868-1877. [PMID: 29799128 DOI: 10.1002/jcc.25359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/16/2018] [Accepted: 04/27/2018] [Indexed: 01/01/2023]
Abstract
Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11 158, Serbia
| | - Đura Nakarada
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11 158, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11 158, Serbia
| |
Collapse
|
6
|
Amorati R, Baschieri A, Morroni G, Gambino R, Valgimigli L. Peroxyl Radical Reactions in Water Solution: A Gym for Proton-Coupled Electron-Transfer Theories. Chemistry 2016; 22:7924-34. [DOI: 10.1002/chem.201504492] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Riccardo Amorati
- Department of Chemistry “G. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| | - Andrea Baschieri
- Department of Chemistry “G. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| | - Gloria Morroni
- Department of Chemistry “G. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| | - Rossana Gambino
- Department of Chemistry “G. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”; University of Bologna; Via S. Giacomo 11 40126 Bologna Italy
| |
Collapse
|
7
|
Abstract
For more than half a century free radical-induced alterations at cellular and organ levels have
been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently,
significant research efforts have been spent for discovering more effective and potent antioxidants /
free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants
among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental
and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided
a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a
number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum
chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship
(QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful
natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies
of phenolic antioxidants and at analysing the trends observed in the field in the last decade.
Collapse
Affiliation(s)
- Petko Alov
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences. 105 Acad. G. Bonchev St., 1113 Sofia, Bulgaria.
| | | | | |
Collapse
|
8
|
Bloom S, McCann M, Lectka T. Photocatalyzed benzylic fluorination: shedding "light" on the involvement of electron transfer. Org Lett 2014; 16:6338-41. [PMID: 25493423 DOI: 10.1021/ol503094m] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The photocatalyzed oxidation of benzylic compounds by 1,2,4,5-tetracyanobenzene (TCB) in the presence of Selectfluor provides a synthetically efficient route to electron deficient, less substituted, and otherwise inaccessible benzylic fluorides. The virtue of this system is multifold: it is metal-free and mild, and the reagents are inexpensive. Mechanistically, the data suggest the intimate formation of intermediate radical cations in the key radical forming step, as opposed to a concerted hydrogen atom transfer process.
Collapse
Affiliation(s)
- Steven Bloom
- Contribution from the Department of Chemistry, New Chemistry Building, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | | |
Collapse
|
9
|
Lokhmatikov AV, Voskoboynikova NE, Cherepanov DA, Sumbatyan NV, Korshunova GA, Skulachev MV, Steinhoff HJ, Skulachev VP, Mulkidjanian AY. Prevention of peroxidation of cardiolipin liposomes by quinol-based antioxidants. BIOCHEMISTRY (MOSCOW) 2014; 79:1081-100. [DOI: 10.1134/s0006297914100101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
11
|
|
12
|
Zhong Y, Ma CM, Shahidi F. Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. J Funct Foods 2011; 4:87-93. [PMID: 32288792 PMCID: PMC7105014 DOI: 10.1016/j.jff.2011.08.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/11/2011] [Accepted: 08/10/2011] [Indexed: 01/24/2023] Open
Abstract
The water soluble green tea polyphenol epigallocatechin gallate (EGCG) was lipophilised by esterification with different fatty acids for expanded applications. Four lipophilic ester derivatives of EGCG, namely EGCG-O-tetrastearate, EGCG-O-tetraeicosapentaenoate, EGCG-O-tetradocosahexaenoate, and EGCG-O-octabutyrate, were prepared and evaluated for their antioxidant and antiviral activities in vitro. Incorporation of fatty acids, especially the long chain polyunsaturated fatty acids (PUFA), into EGCG resulted in increased peroxyl radical scavenging activity, as measured by ORAC (oxygen radical absorbance capacity) assay, and metal chelation capacity. However, the esters exhibited decreased reducing power. Antiviral activities of EGCG derivatives were remarkably higher than the parent EGCG molecule, which showed relatively weak effects. The EGCG–PUFA esters were 1700-fold more effective in inhibiting hepatitis C virus (HCV) protease than the positive control embelin. The derivatives also acted as α-glucosidase inhibitors, suggesting their potential in anti-HIV (human immunodeficiency virus) treatment. The results suggest that ester derivatives of EGCG with improved bioactivities may serve as excellent functional food ingredients and natural health products. Moreover, the omega-3 PUFA in the derivatives may also render additional or synergistic health benefits.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Chao-Mei Ma
- College of Life Sciences, Inner Mongolia University, Huhhot, China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
13
|
Chung YM, Wang HC, El-Shazly M, Leu YL, Cheng MC, Lee CL, Chang FR, Wu YC. Antioxidant and tyrosinase inhibitory constituents from a desugared sugar cane extract, a byproduct of sugar production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9219-9225. [PMID: 21770441 DOI: 10.1021/jf202119m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recycling agricultural resources has become an important issue worldwide promoting the economical value of agricultural production processes. Desugared sugar cane extract (DSE) from Saccharum officinarum is a byproduct obtained during sugar production. Two new neolignan glucosides, saccharnan A (1) and saccharnan B (2), together with 10 known phenolics (3-12) were isolated from DSE, and their structures were elucidated on the basis of NMR spectral analysis. Compounds 3, 4, 8, and 9 showed good activity against DPPH radical (IC(50) ≤ 51.20 μM) and compounds 3-8 and 12 exhibited strong ABTS(+) free radical scavenging activity (IC(50) ≤ 51.57 μM) compared to those of the positive controls, ascorbic acid and Trolox. Moreover, compounds 7 and 12 acted as potent tyrosinase inhibitors (IC(50) ≤ 42.59 μM) compared to the positive control arbutin. Our results highlighted the economical value of recycling DSE for the future development of natural antioxidants and/or tyrosinase inhibitors.
Collapse
Affiliation(s)
- Yu-Ming Chung
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Murakami H, Esaka Y, Nakayama T, Uno B. Oxidation of Guanosine to the Imidazolone Derivative via Proton-coupled Electron Transfer to Hydroperoxy Radical Derived from Superoxide. CHEM LETT 2011. [DOI: 10.1246/cl.2011.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Hsouna AB, Trigui M, Culioli G, Blache Y, Jaoua S. Antioxidant constituents from Lawsonia inermis leaves: Isolation, structure elucidation and antioxidative capacity. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.08.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Marković ZS, Dimitrić Marković JM, Milenković D, Filipović N. Mechanistic study of the structure-activity relationship for the free radical scavenging activity of baicalein. J Mol Model 2011; 17:2575-84. [PMID: 21229369 DOI: 10.1007/s00894-010-0942-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Density functional theory calculations were performed to evaluate the antioxidant activity of baicalein. The conformational behaviors of both the isolated and the aqueous-solvated species (simulated with the conductor-like polarizable continuum solvation model) were analyzed at the M052X/6-311 + G(d,p) level. The most stable tautomers of various forms of baicalein displayed three IHBs between O4 and OH5, O5 and OH6, and O6 and OH7. The most stable tautomer of the baicalein radical was obtained by dehydrogenating the hydroxyl at C6, while the most stable anion tautomer was obtained by deprotonating the C7 hydroxyl in gaseous and aqueous phases. The expected antioxidant activity of baicalein was explained by its ionization potentials (IPs) and homolytic O-H bond dissociation enthalpies (BDEs), which were obtained via the UM052X optimization level of the corresponding radical species. Heterolytic O-H bond cleavages (proton dissociation enthalpies, PDEs) were also computed. The calculated IP, BDE, and PDE values suggested that one-step H-atom transfer, rather than sequential proton loss-electron transfer or electron transfer-proton transfer, would be the most favorable mechanism for explaining the antioxidant activity of baicalein in the gas phase and in nonpolar solvents. In aqueous solution, the SPLET mechanism was more important.
Collapse
Affiliation(s)
- Zoran S Marković
- Department of Biochemical and Medical Sciences, State University of Novi Pazar, Vuka Karadžića bb, Novi Pazar 36300, Republic of Serbia
| | | | | | | |
Collapse
|
17
|
Foti MC, Amorati R, Pedulli GF, Daquino C, Pratt DA, Ingold KU. Influence of “Remote” Intramolecular Hydrogen Bonds on the Stabilities of Phenoxyl Radicals and Benzyl Cations. J Org Chem 2010; 75:4434-40. [DOI: 10.1021/jo100491a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mario C. Foti
- Istituto di Chimica Biomolecolare del CNR, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Riccardo Amorati
- Dipartimento di Chimica Organica “A. Mangini”, Via San Giacomo 11, Università di Bologna, Bologna, Italy
| | - Gian Franco Pedulli
- Dipartimento di Chimica Organica “A. Mangini”, Via San Giacomo 11, Università di Bologna, Bologna, Italy
| | - Carmelo Daquino
- Istituto di Chimica Biomolecolare del CNR, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Derek A. Pratt
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON, Canada K7L 3N6
| | - K. U. Ingold
- National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
| |
Collapse
|
18
|
de Lucas NC, Fraga HS, Cardoso CP, Corrêa RJ, Garden SJ, Netto-Ferreira JC. A laser flash photolysis and theoretical study of hydrogen abstraction from phenols by triplet α-naphthoflavone. Phys Chem Chem Phys 2010; 12:10746-53. [DOI: 10.1039/c002738c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
de Lucas NC, Elias MM, Firme CL, Corrêa RJ, Garden SJ, Netto-Ferreira JC, Nicodem DE. A combined laser flash photolysis, density functional theory and atoms in molecules study of the photochemical hydrogen abstraction by pyrene-4,5-dione. J Photochem Photobiol A Chem 2009. [DOI: 10.1016/j.jphotochem.2008.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Estévez L, Mosquera RA. Molecular structure and antioxidant properties of delphinidin. J Phys Chem A 2008; 112:10614-23. [PMID: 18821739 DOI: 10.1021/jp8043237] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory calculations were performed to evaluate the antioxidant activity of delphinidin, taking into account its acid/base equilibrium. The conformational behavior of both the isolated and the aqueous solvation species (simulated with the polarizable continuum model) were analyzed at the B3LYP/6-31++G(d,p) level, considering the cationic, neutral, and anionic forms, the latter two forms consisting of diverse tautomers. The analysis of their electron density distributions, using the quantum theory of atoms in molecules, reveals several facts that are not in line with their usual Lewis structures. The prototropic preferences observed in the gas phase and in solution are similar. Thus, in both phases, most stable tautomer of neutral delphinidin is obtained by deprotonating the hydroxyl at C4', and the most stable tautomer of the anion is obtained by deprotonating the hydroxyls at C4' and C5. All the planar conformers obtained display an intramolecular hydrogen bond (IHB) between O3 and H6'. Furthermore, the most stable tautomers of the neutral and anionic forms display two IHBs between O4' and H3' and H5'. To obtain ionization potentials (IPs) and homolytic O-H bond dissociation enthalpies (BDEs), the corresponding radical species were optimized at the UB3LYP level. Heterolytic O-H bond dissociation enthalpies (proton dissociation enthalpies, PDEs) were also computed. The expected important antioxidant activity can be justified from these results. IP, O-H BDE, and O-H PDE values suggest that one-step H atom transfer rather than sequential proton loss-electron transfer or electron transfer-proton transfer would be the most favored mechanisms for explaining the antioxidant activity of delphinidin in nonpolar solvents as well as in aqueous solution.
Collapse
Affiliation(s)
- Laura Estévez
- Departamento de Química Física, Facultade de Química, Universidade de Vigo, Lagoas-Marcosende s/n 36310-Vigo, Galicia, Spain
| | | |
Collapse
|
21
|
Affiliation(s)
- My Hang V Huynh
- DE-1: High Explosive Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|
22
|
Singh N, Loader RJ, O'Malley PJ, Popelier PLA. Computation of relative bond dissociation enthalpies (DeltaBDE) of phenolic antioxidants from quantum topological molecular similarity (QTMS). J Phys Chem A 2007; 110:6498-503. [PMID: 16706407 DOI: 10.1021/jp0553885] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recently proposed method called quantitative topological molecular similarity (QTMS) generated a model for the computation of the relative substituent effects on the bond dissociation enthalpies (DeltaBDEs) for a set of 39 phenols. The data set includes a diverse set of substituents with monosubstituted and poly-substituted derivatives that exhibit different electronic and steric effects. Many share common structural features with already well-established antioxidants. QTMS reveals the active region of the substituted phenols and identifies the electronic descriptors that best explain the range of DeltaBDEs observed. For substituents in the 4-X position (para) we find that our model requires a correction for radical stabilization enthalpy (RSE). Application of the QTMS methodology yields an unrivalled QSAR with r(2) = 0.98 and q(2) = 0.85 for the bond dissociation enthalpies of this phenolic antioxidant data set.
Collapse
Affiliation(s)
- Nakul Singh
- School of Chemistry, The University of Manchester, Manchester M60 1QD, UK
| | | | | | | |
Collapse
|
23
|
Electronic structure calculations of vitamin E analogues: A model for calculated geometries, hyperfine coupling constants, reaction enthalpies (ΔHr) and relative bond dissociation enthalpies (ΔBDE). ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.theochem.2007.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Vuina D, Pilepić V, Ljubas D, Sanković K, Sajenko I, Uršić S. PCET in the oxidation of ascorbate. Dramatic change of the kinetic isotope effect on the change in solvent polarity. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.03.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Galli C, Gentili P, Nunes Pontes AS, Gamelas JAF, Evtuguin DV. Oxidation of phenols employing polyoxometalates as biomimetic models of the activity of phenoloxidase enzymes. NEW J CHEM 2007. [DOI: 10.1039/b703178e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Chatterjee S, Niaz Z, Gautam S, Adhikari S, Variyar PS, Sharma A. Antioxidant activity of some phenolic constituents from green pepper (Piper nigrum L.) and fresh nutmeg mace (Myristica fragrans). Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.02.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Siquet C, Paiva-Martins F, Lima JLFC, Reis S, Borges F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids--a structure-activity relationship study. Free Radic Res 2006; 40:433-42. [PMID: 16517509 DOI: 10.1080/10715760500540442] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Eight structurally similar dihydroxy and trihydroxyphenolic acids (protocatechuic acid, 3,4-dihydroxyphenylacetic acid, hydrocaffeic acid, caffeic acid, gallic acid, 3,4,5-trihydroxyphenylacetic acid, 3-(3,4,5-trihydroxyphenyl)propanoic acid and 3-(3,4,5-trihydroxyphenyl)propenoic acid) were examined for their total antioxidant capacity (TAC). Furthermore, their ability to scavenge peroxyl radicals, generated by AAPH in liposomes, was determined. The antioxidant/pro-oxidant activity of the compounds was screened using the 2'-deoxyguanosine assay. All compounds behave as radical scavengers, with 3,4,5-trihydroxyphenylacetic acid being the most potent. Nevertheless, in the lipid peroxidation assay an inverse ranking order was observed, 3,4-dihydroxyphenylacetic acid being the most effective compound. All the dihydroxylated compounds showed a pro-oxidant behaviour leading to an increase of 50% in 8-OH-dG induction. From the structure-antioxidant activity relationship studies performed it may be concluded that the number of phenolic groups and the type of the alkyl spacer between the carboxylic acid and the aromatic ring strongly influence the antioxidant activity.
Collapse
Affiliation(s)
- Christophe Siquet
- REQUIMTE, Departamento de Química-Física, Universidade do Porto, Faculdade de Farmácia, Porto, Portugal
| | | | | | | | | |
Collapse
|
28
|
Gomes JR, Ribeiro da Silva MA. A computational study on the enhanced stabilization of aminophenol derivatives by internal hydrogen bonding. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2005.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Tanko JM. Reaction mechanisms : Part (i) Radical and radical ion reactions. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b518094p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Ribeiro da Silva MAV, Gomes JRB, Ferreira AIMCL. Experimental and Computational Investigation of the Energetics of the Three Isomers of Monochloroaniline. J Phys Chem B 2005; 109:13356-62. [PMID: 16852667 DOI: 10.1021/jp0519565] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The standard (p degrees = 0.1 MPa) molar enthalpies of formation of 2-, 3-, and 4-chloroaniline were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of vaporization or sublimation of the three isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the three isomers of chloroaniline, in the gaseous phase, at T = 298.15 K, as 53.4 +/- 3.1 kJ.mol(-1) for 2-chloroaniline, 53.0 +/- 2.8 kJ.mol(-1) for 3-chloroaniline, and 59.7 +/- 2.3 kJ.mol(-1) for 4-chloroaniline. These values, which correct previously published data, were used to test the computational methodologies used. Therewith, gas-phase acidities, proton affinities, electron donor capacities, and N-H bond dissociation enthalpies were calculated and found to compare well with available experimental data for these parameters.
Collapse
Affiliation(s)
- Manuel A V Ribeiro da Silva
- Centro de Investigação em Química, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal
| | | | | |
Collapse
|
31
|
Abstract
A number of properties of interatomic surfaces, as defined by the quantum theory of atoms in molecules (QTAIM), are calculated for approximately 50 molecules. These integrated surface properties are then tested for their ability to correlate and predict bond energies from MP2 atomisation energies. Three surface properties, each with units of energy, are found to show strong correlations with bond energy: single parameter models work well for non-polar bonds, but fail for polar and ionic bonds, where multi-variate methods are required. The local curvature of the interatomic surface is found to be useful this respect, reflecting charge transfer effects.
Collapse
Affiliation(s)
- James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK CF10 3AT.
| |
Collapse
|