1
|
Barajas-Mendoza I, Castillo-Rodríguez IO, Hernández-Rioja I, Ramirez-Apan T, Martínez-García M. Prednisone and ibuprofen conjugate Janus dendrimers and their anticancer activity. Steroids 2024; 205:109395. [PMID: 38461962 DOI: 10.1016/j.steroids.2024.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Drug release from hyperbranched Janus dendrimer-drug conjugates and their subsequent activity are influenced by the different drugs in each dendron and the linker. To understand these effects, we synthetized new Janus-type dendrimers of first and second generation. One dendron with 2,2-Bis(hydroxymethyl)propionic acid functionalized with ibuprofen and the second dendron was obtained with 3-aminopropanol-amidoamine and prednisone. The dendrimers were obtained by copper(I)-catalyzed Click azide-alkyne cycloaddition for the formation of a triazole as a dendrimeric nucleus of Janus dendrimer conjugates are reported. The influence of ibuprofen, prednisone, and spacer on cancer activity of Janus dendrimers conjugates is reported. The IC50 values of the anticancer activity on cancer cell lines the Janus dendrimer of second generation was higher in comparison to the first generation dendrimer. Similarly, the anticancer activity was higher compared to the dendron conjugates. Also, no cytotoxic effects of dendrons and dendrimers on non-cancerous kidney COS-7 cell line was observed. The interesting anticancer activity of the prepared prednisone-ibuprofen Janus dendrimer conjugates suggest that the dendrimers could be of potential use as new anticancer drug.
Collapse
Affiliation(s)
- Israel Barajas-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico
| | - Irving Osiel Castillo-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico
| | - Isabel Hernández-Rioja
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico
| | - Teresa Ramirez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico.
| |
Collapse
|
2
|
Lu D, Jia Z, Monteiro MJ. A Sequence-Defined ABC Dendritic Macromolecule with Amino Acid Peripheral Functionality via Iterative Chemoselective Reactions. Biomacromolecules 2024; 25:2007-2015. [PMID: 38349647 DOI: 10.1021/acs.biomac.3c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chemoselective reactions allow near-precision control over the polymer composition and topology to create sequence-controlled polymers with similar secondary and tertiary structures to those found in proteins. Dendrimers are recognized as well-defined macromolecules with the potential to mimic protein surface functionality due to the large number of functional groups available at its periphery with the internal structure acting as the support scaffold. Transitioning from using small-molecule dendrimers to dendritic macromolecules will not only allow retention of the high peripheral functionality but also provide an internal scaffold with a desired polymer composition within each generational layer. Here, we exemplify a systematic approach to creating a dendritic macromolecule with the placement of different polymer building blocks in precise locations within the internal structure and the placement of three different amino acid moieties clustered at the periphery. The synthesis of this ABC dendritic macromolecule was accomplished through iterative chemoselective reactions.
Collapse
Affiliation(s)
- Derong Lu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Pedro-Hernández LD, Barajas-Mendoza I, Castillo-Rodríguez IO, Klimova E, Ramírez-Ápan T, Martínez-García M. Janus Dendrimers as Nanocarriers of Ibuprofen, Chlorambucil and their Anticancer Activity. Pharm Nanotechnol 2024; 12:276-287. [PMID: 37592778 DOI: 10.2174/2211738511666230817160636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Janus Dendrimer represents a novel class of synthetic nanocarriers. Since it is possible to introduce multiple drugs and target moieties, this helps the designing of new biocompatible forms with pharmacological activities comprised of different drugs with tailor-made functionalities, such as anticancer and nonsteroidal anti-inflammatory, which could improve the anticancer activity with less toxicity. AIMS This study aimed to determine the anticancer activity of the Janus dendrimers formed by two dendrons. One dendron conjugates with chlorambucil, and the other dendron conjugates with Ibuprofen. METHODS The cytotoxicity of the drug carriers was determined by the sulforhodamine B (SRB) assay for three cell lines. PC-3 (human prostatic adenocarcinoma), HCT-15 (human colorectal adenocarcinoma), MFC-7 (human breast cancer) and the COS-7 African green monkey kidney (used as a control) cell lines were seeded into 96-well plates at a density of 5x103 cells/well and cultured for 24 h before use. All the obtained compounds were characterized by 1H and 13C NMR one and two dimensions, UVvis, FTIR, MALDI-TOF, Electrospray mass, and FAB+. Microscopic images were taken in an Inverted microscope Nikon, Diaphot 300, 10x4 in culture medium. RESULTS Janus dendrimers (G1 and G2) were synthesized via an azide-alkyne click-chemistry reaction attaching on one face dendrons with ibuprofen molecules and, on the other face, attached a chlorambucil- derivative. The IC50 behavior of the conjugates of the first and second generations showed anticancer activity against PC-3, HCT-15, and MFC-7 cell lines. The second generation was more active against PC-3, HCT-15 and MFC-7 with IC50 of 3.8±0.5, 3.0±0.2 and 3.7 ± 1.1 mM, respectively. CONCLUSION The new Janus dendrimers with anticancer chlorambucil and nonsteroidal antiinflammatory Ibuprofen can improve the anticancer activity of chlorambucil with less toxicity. FUTURE PROSPECTS Now, we are working on the synthesis of new Janus dendrimers using the most effective and fine methods. Moreover, we hope that we shall be able to obtain different generations that are more selective against cancer cells.
Collapse
Affiliation(s)
- Luis Daniel Pedro-Hernández
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Israel Barajas-Mendoza
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Irving Osiel Castillo-Rodríguez
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Elena Klimova
- Departmento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Interior, Coyoacán, C.P. 04510, México
| | - Teresa Ramírez-Ápan
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Marcos Martínez-García
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| |
Collapse
|
4
|
Biscari G, Fan Y, Namata F, Fiorica C, Malkoch M, Palumbo FS, Pitarresi G. Antibacterial Broad-Spectrum Dendritic/Gellan Gum Hybrid Hydrogels with Rapid Shape-Forming and Self-Healing for Wound Healing Application. Macromol Biosci 2023; 23:e2300224. [PMID: 37590124 DOI: 10.1002/mabi.202300224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/31/2023] [Indexed: 08/19/2023]
Abstract
Treating wound infections is a difficult task ever since pathogenic bacteria started to develop resistance to common antibiotics. The present study develops hybrid hydrogels based on the formation of a polyelectrolyte complex between the anionic charges of dopamine-functionalized Gellan Gum (GG-DA) and the cationic moieties of the TMP-G2-alanine dendrimer. The hydrogels thus obtained can be doubly crosslinked with CaCl2 , obtaining solid hydrogels. Or, by oxidizing dopamine to GG-DA, possibly causing further interactions such as Schiff Base and Michael addition to take place, hydrogels called injectables can be obtained. The latter have shear-thinning and self-healing properties (efficiency up to 100%). Human dermal fibroblasts (HDF), human epidermal keratinocytes (HaCaT), and mouse monocyte cells (RAW 264.7), after incubation with hydrogels, in most cases show cell viability up to 100%. Hydrogels exhibit adhesive behavior on various substrates, including porcine skin. At the same time, the dendrimer serves to crosslink the hydrogels and endows them with excellent broad-spectrum microbial eradication activity within four hours, evaluated using Staphylococcus aureus 2569 and Escherichia coli 178. Using the same GG-DA/TMP-G2-alanine ratios hybrid hydrogels with tunable properties and potential for wound dressing applications can be produced.
Collapse
Affiliation(s)
- Giuseppina Biscari
- KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Yanmiao Fan
- University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Faridah Namata
- University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Calogero Fiorica
- KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Michael Malkoch
- University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | | | - Giovanna Pitarresi
- KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| |
Collapse
|
5
|
Alfei S. Cationic Materials for Gene Therapy: A Look Back to the Birth and Development of 2,2-Bis-(hydroxymethyl)Propanoic Acid-Based Dendrimer Scaffolds. Int J Mol Sci 2023; 24:16006. [PMID: 37958989 PMCID: PMC10649874 DOI: 10.3390/ijms242116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Gene therapy is extensively studied as a realistic and promising therapeutic approach for treating inherited and acquired diseases by repairing defective genes through introducing (transfection) the "healthy" genetic material in the diseased cells. To succeed, the proper DNA or RNA fragments need efficient vectors, and viruses are endowed with excellent transfection efficiency and have been extensively exploited. Due to several drawbacks related to their use, nonviral cationic materials, including lipidic, polymeric, and dendrimer vectors capable of electrostatically interacting with anionic phosphate groups of genetic material, represent appealing alternative options to viral carriers. Particularly, dendrimers are highly branched, nanosized synthetic polymers characterized by a globular structure, low polydispersity index, presence of internal cavities, and a large number of peripheral functional groups exploitable to bind cationic moieties. Dendrimers are successful in several biomedical applications and are currently extensively studied for nonviral gene delivery. Among dendrimers, those derived by 2,2-bis(hydroxymethyl)propanoic acid (b-HMPA), having, unlike PAMAMs, a neutral polyester-based scaffold, could be particularly good-looking due to their degradability in vivo. Here, an overview of gene therapy, its objectives and challenges, and the main cationic materials studied for transporting and delivering genetic materials have been reported. Subsequently, due to their high potential for application in vivo, we have focused on the biodegradable dendrimer scaffolds, telling the history of the birth and development of b-HMPA-derived dendrimers. Finally, thanks to a personal experience in the synthesis of b-HMPA-based dendrimers, our contribution to this field has been described. In particular, we have enriched this work by reporting about the b-HMPA-based derivatives peripherally functionalized with amino acids prepared by us in recent years, thus rendering this paper original and different from the existing reviews.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| |
Collapse
|
6
|
Sarkar B, Mahapa A, Dey K, Manhas R, Chatterji D, Jayaraman N. Aza-Michael promoted glycoconjugation of PETIM dendrimers and selectivity in mycobacterial growth inhibitions. RSC Adv 2023; 13:4669-4677. [PMID: 36760308 PMCID: PMC9897202 DOI: 10.1039/d2ra08196b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The benign nature of aza-Michael addition reaction in aqueous solutions is demonstrated herein to conduct a direct glycoconjugation of amine-terminated poly(ether imine) (PETIM) dendrimers. Zero to three generations of dendrimers, possessing up to 16 amine functionalities at their peripheries, undergo aza-Michael reaction with unsaturated sugar vinyl sulfoxide in aq. MeOH solutions and afford the corresponding dendrimers modified with multiple glycosyl moieties at the periphery. First order kinetics of the glycoconjugation is monitored at varying temperatures and the rate constants are observed to be 60-508 s-1, for zero and first generation dendrimers. The antibacterial effects of amine-terminated dendrimers and the corresponding glycoconjugates are studied across Gram-positive, Gram-negative and acid-fast bacteria. Among the species, M. smegmatis and M. tuberculosis showed the greatest growth inhibition effect at micromolar concentrations, for the native amine-terminated and the corresponding glycoconjugated dendrimers. Quantitative assays are performed to adjudge the inhibition efficacies of dendrimers and the glycoconjugates. Selectivity to inhibit M. smegmatis and M. tuberculosis growth, and minimal effects on other bacterial species by dendrimers and glycoconjugates are emphasized.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India
| | - Avisek Mahapa
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560 012 India
- Infectious Disease Department, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
| | - Kalyan Dey
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India
| | - Rakshit Manhas
- Infectious Disease Department, CSIR-Indian Institute of Integrative Medicine Jammu-180001 India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560 012 India
| | | |
Collapse
|
7
|
Hawthorne D, Pannala A, Sandeman S, Lloyd A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Modular and efficient synthesis of a poly (propylene imine) (PPI) dendron applied to acid-sensitive doxorubicin conjugation. Tetrahedron 2022; 125. [DOI: 10.1016/j.tet.2022.133044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Degirmenci A, Yeter Bas G, Sanyal R, Sanyal A. “Clickable” Polymer Brush Interfaces: Tailoring Monovalent to Multivalent Ligand Display for Protein Immobilization and Sensing. Bioconjug Chem 2022; 33:1672-1684. [PMID: 36128725 PMCID: PMC9501913 DOI: 10.1021/acs.bioconjchem.2c00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Facile and effective functionalization of the interface
of polymer-coated
surfaces allows one to dictate the interaction of the underlying material
with the chemical and biological analytes in its environment. Herein,
we outline a modular approach that would enable installing a variety
of “clickable” handles onto the surface of polymer brushes,
enabling facile conjugation of various ligands to obtain functional
interfaces. To this end, hydrophilic anti-biofouling poly(ethylene
glycol)-based polymer brushes are fabricated on glass-like silicon
oxide surfaces using reversible addition–fragmentation chain
transfer (RAFT) polymerization. The dithioester group at the chain-end
of the polymer brushes enabled the installation of azide, maleimide,
and terminal alkene functional groups, using a post-polymerization
radical exchange reaction with appropriately functionalized azo-containing
molecules. Thus, modified polymer brushes underwent facile conjugation
of alkyne or thiol-containing dyes and ligands using alkyne–azide
cycloaddition, Michael addition, and radical thiol–ene conjugation,
respectively. Moreover, we demonstrate that the radical exchange approach
also enables the installation of multivalent motifs using dendritic
azo-containing molecules. Terminal alkene groups containing dendrons
amenable to functionalization with thiol-containing molecules using
the radical thiol–ene reaction were installed at the interface
and subsequently functionalized with mannose ligands to enable sensing
of the Concanavalin A lectin.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Gizem Yeter Bas
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
10
|
Affiliation(s)
- Yue Shao
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yilan Ye
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
|
12
|
|
13
|
Shikha, Jacob J. Dendritic core derived unimolecular micelles with poly(lactic acid) arms: Synthesis and application as a phase transfer agent. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shikha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Josemon Jacob
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
14
|
Patle RY, Meshram JS. The advanced synthetic modifications and applications of multifunctional PAMAM dendritic composites. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00074h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The profound advances in dendrimer chemistry have led to new horizons in polymer science.
Collapse
Affiliation(s)
- Ramkrishna Y. Patle
- Mahatma Gandhi College of Science Gadchandur, Chandrapur, (M.S.)-442908, India
- PGTD Chemistry, R.T.M. Nagpur University, Nagpur, (M.S.)-440033, India
| | | |
Collapse
|
15
|
Dinuclear Copper(I) Thiodiacetate Complex-Mediated Expeditious Synthesis of the Chlorine-Containing Cyclen-Cored 36-Glucose-Coated Glycodendrimer. J CHEM-NY 2021. [DOI: 10.1155/2021/4209514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-sugar-tethered glycodendrimers are a remarkable tool in glycobiology for the investigation of carbohydrate-protein interaction using its multivalency property. An enthralling double-stage convergent synthetic approach was selected to build a novel class of chlorine-containing glucose-coated dendrimers using an efficient click catalyst ‘dinuclear copper(I) thiodiacetate complex.’ In this context, cyclen core was developed through a divergent approach, while the glucodendron was developed via a convergent approach independently. Both azide-alkyne partners were coupled through a modular copper azide-alkyne cycloaddition (CuAAC) strategy to afford a high yield of the desired 36-glucose-coated glycodendrimer. The synthesized glycodendrimer has been elucidated by NMR, gel permeation chromatography (GPC), and IR spectral analysis.
Collapse
|
16
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
17
|
Gao Y, Wu X, Xiang Z, Qi C. Amphiphilic Double-Brush Copolymers with a Polyurethane Backbone: A Bespoke Macromolecular Emulsifier for Ionic Liquid-in-Oil Emulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2376-2385. [PMID: 33554605 DOI: 10.1021/acs.langmuir.0c03322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study on ionic liquid (IL)-based emulsions is very interesting due to the "green" quality and potential wide applications of ILs, whereas the emulsifiers for the formation of IL-based emulsions are extremely limited and mainly centered on low molecular weight surfactants. In this work, synthesis of amphiphilic double-brush copolymers (DBCs) and their application as bespoke macromolecular emulsifiers for the formation of IL-containing non-aqueous emulsions are described. DBCs consisted of a polyurethane (PU) backbone and poly(N,N-dimethyl acrylamide) (PDMA) and poly(methyl methacrylate) (PMMA) chains that were grafted simultaneously at the same reactive site along the PU backbone (PU-g-PDMA/PMMA), which were synthesized through the combination of polyaddition and the reversible-deactivation radical polymerization reactions. Highly stable [Bmim][PF6]-in-benzene emulsions could be gained by adopting PU-g-PDMA/PMMA DBCs as macromolecular emulsifiers at a low content, such as 0.025 wt %. On the basis of the stability and the size of emulsion droplets, PU-g-PDMA/PMMA DBCs exhibited much better emulsifying performances than their analogues, including PU-g-PDMA, PU-g-PMMA, and PDMA-b-PMMA copolymers. Such excellent emulsifying performances of PU-g-PDMA/PMMA DBCs were due to high interfacial activities. PU-g-PDMA/PMMA DBCs exhibited higher capabilities in lowering the interfacial tension of the [Bmim][PF6]-benzene interface than their analogues. A large energy barrier to desorption of adsorbed PU-g-PDMA/PMMA DBCs from the interface contributed to high stability of the [Bmim][PF6]-in-benzene emulsion.
Collapse
Affiliation(s)
- Yong Gao
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xionghui Wu
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Zhe Xiang
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Chenze Qi
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
18
|
Cazin I, Rossegger E, Guedes de la Cruz G, Griesser T, Schlögl S. Recent Advances in Functional Polymers Containing Coumarin Chromophores. Polymers (Basel) 2020; 13:E56. [PMID: 33375724 PMCID: PMC7794725 DOI: 10.3390/polym13010056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 11/17/2022] Open
Abstract
Natural and synthetic coumarin derivatives have gained increased attention in the design of functional polymers and polymer networks due to their unique optical, biological, and photochemical properties. This review provides a comprehensive overview over recent developments in macromolecular architecture and mainly covers examples from the literature published from 2004 to 2020. Along with a discussion on coumarin and its photochemical properties, we focus on polymers containing coumarin as a nonreactive moiety as well as polymer systems exploiting the dimerization and/or reversible nature of the [2πs + 2πs] cycloaddition reaction. Coumarin moieties undergo a reversible [2πs + 2πs] cycloaddition reaction upon irradiation with specific wavelengths in the UV region, which is applied to impart intrinsic healability, shape-memory, and reversible properties into polymers. In addition, coumarin chromophores are able to dimerize under the exposure to direct sunlight, which is a promising route for the synthesis and cross-linking of polymer systems under "green" and environment-friendly conditions. Along with the chemistry and design of coumarin functional polymers, we highlight various future application fields of coumarin containing polymers involving tissue engineering, drug delivery systems, soft robotics, or 4D printing applications.
Collapse
Affiliation(s)
- Ines Cazin
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (I.C.); (E.R.)
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (I.C.); (E.R.)
| | - Gema Guedes de la Cruz
- Department Polymer Engineering and Science, Institute Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto Glöckel-Strasse 2, 8700 Leoben, Austria; (G.G.d.l.C.); (T.G.)
| | - Thomas Griesser
- Department Polymer Engineering and Science, Institute Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto Glöckel-Strasse 2, 8700 Leoben, Austria; (G.G.d.l.C.); (T.G.)
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (I.C.); (E.R.)
| |
Collapse
|
19
|
Wu F. The synthesis of N‐containing heterocyclic compounds catalyzed by copper/ L‐proline. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fengtian Wu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices East China University of Technology Nanchang 330013 China
| |
Collapse
|
20
|
Zhang Y, Mesa-Antunez P, Fortuin L, Andrén OCJ, Malkoch M. Degradable High Molecular Weight Monodisperse Dendritic Poly(ethylene glycols). Biomacromolecules 2020; 21:4294-4301. [PMID: 32845125 DOI: 10.1021/acs.biomac.0c01089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(ethylene glycols) (PEGs) are extensively explored by the pharma industry as foundations for new therapeutic products. PEGs are typically used for their conjugation to active drugs, peptides, and proteins and the likeliness to increase the half-life and enhance the therapeutic outcome. Considering the necessity of batch-to-batch consistency for clinical products, monodisperse PEGs are highly attractive but are generally limited to 5 kDa as an upper molecular weight (Mw) and with an oligomer purity of 95%. By amalgamating short, monodisperse PEGs with dendritic frameworks based on 2,2-bis(methylol)propionic acid polyesters, we showcase a robust synthetic approach to monodisperse PEGs with Mw ranging from 2 to 65 kDa. The latter is, to our knowledge, the highest Mw structure of its kind ever reported. Importantly, the dendritic multifunctional connector facilitated degradability at pH 7.4 at 37 °C, which is an important feature for the delivery of therapeutic agents.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, Stockholm SE-100 44, Sweden
| | - Pablo Mesa-Antunez
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, Stockholm SE-100 44, Sweden
| | - Lisa Fortuin
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, Stockholm SE-100 44, Sweden
| | - Oliver C J Andrén
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, Stockholm SE-100 44, Sweden
| | - Michael Malkoch
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-68, Stockholm SE-100 44, Sweden
| |
Collapse
|
21
|
Gao Y, Wu X, Qi C. Janus-Like Single-Chain Polymer Nanoparticles as Two-in-One Emulsifiers for Aqueous and Nonaqueous Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11467-11476. [PMID: 32975954 DOI: 10.1021/acs.langmuir.0c01756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exploration of Pickering emulsions is very significant owing to their versatile and important applications in many scopes. In this study, synthesis of a novel kind of single-chain polymer nanoparticle (SCPN) and its stabilized Pickering emulsions were demonstrated. To this end, linear-dendritic diblock copolymers consisting of poly((2-dimethylamino) ethyl methacrylate) (PDMAEMA) blocks and four-generation dendritic aliphatic polyester blocks (G4) have been first synthesized by the combination of click chemistry and reversible addition-fragmentation chain transfer (RAFT) polymerization reaction. The subsequent intramolecular cross-linking of the PDMAEMA block of PDMAEMA-b-G4 copolymers in DMF using 1,4-diiodobutane as cross-linkers afforded Janus-like SCPNs that exhibited a cross-linked PDMAEMA head tethered by a short dendritic tail. The molecular weight and distribution together with the structure of polymers were carefully characterized by GPC and NMR spectroscopy. By the employment of the as-synthesized Janus-like SCPNs as Pickering emulsifiers, aqueous and nonaqueous Pickering emulsions including water-in-oil and oil-in-oil as well as ionic liquid-in-oil were generated. Under the same conditions, it was found that the long-term stabilities of Pickering emulsions stabilized by Janus-like SCPNs were superior to those of Pickering emulsions stabilized by their linear quaternized PDMAEMA-b-G4 by CH3I analogous.
Collapse
Affiliation(s)
- Yong Gao
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Xionghui Wu
- College of Chemistry and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Chenze Qi
- Key Laboratory of Alternative Technologies for Fine Chemicals Process of Zhejiang Province, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
22
|
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H. Synthesis of amphiphilic Janus dendrimer and its application in improvement of hydrophobic drugs solubility in aqueous media. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Flexibility and Preorganization of Fluorescent Nucleobase-Pyrene Conjugates Control DNA and RNA Recognition. Molecules 2020; 25:molecules25092188. [PMID: 32392853 PMCID: PMC7248712 DOI: 10.3390/molecules25092188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 11/17/2022] Open
Abstract
We synthesized a new amino acid-fluorescent nucleobase derivative (qAN1-AA) and from it two new fluorescent nucleobase–fluorophore (pyrene) conjugates, whereby only the analogue with the longer and more flexible linker (qAN1-pyr2) self-folded into intramolecularly stacked qAN1/pyrene conformation, yielding characteristic, 100 nm-red-shifted emission (λmax = 500 nm). On the contrary, the shorter and more rigid linker resulted in non-stacked conformation (qAN1-pyr1), characterized by the emission of free pyrene at λmax = 400 nm. Both fluorescent nucleobase–fluorophore (pyrene) conjugates strongly interacted with ds-DNA/RNA grooves with similar affinity but opposite fluorescence response (due to pre-organization), whereas the amino acid-fluorescent base derivative (qAN1-AA) was inactive. However, only intramolecularly self-folded qAN1-pyr2 showed strong fluorescence selectivity toward poly U (Watson–Crick complementary to qAN1 nucleobase) and poly A (reverse Hoogsteen complementary to qAN1 nucleobase), while an opposite emission change was observed for non-complementary poly G and poly C. Non-folded analogue (qAN1-pyr1) showed no ss-RNA selectivity, demonstrating the importance of nucleobase-fluorophore pre-organization.
Collapse
|
24
|
Delorme V, Lichon L, Mahindad H, Hunger S, Laroui N, Daurat M, Godefroy A, Coudane J, Gary-Bobo M, Van Den Berghe H. Reverse poly(ε-caprolactone)-g-dextran graft copolymers. Nano-carriers for intracellular uptake of anticancer drugs. Carbohydr Polym 2020; 232:115764. [DOI: 10.1016/j.carbpol.2019.115764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 01/29/2023]
|
25
|
García-Gallego S, Andrén OCJ, Malkoch M. Accelerated Chemoselective Reactions to Sequence-Controlled Heterolayered Dendrimers. J Am Chem Soc 2020; 142:1501-1509. [PMID: 31895981 DOI: 10.1021/jacs.9b11726] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemoselective reactions are a highly desirable approach to generate well-defined functional macromolecules. Their extraordinary efficiency and selectivity enable the development of flawless structures, such as dendrimers, with unprecedented structure-to-property capacity but with typically tedious synthetic protocols. Here we demonstrate the potency of chemoselective reactions to accomplish sequence-controlled heterolayered dendrimers. An accurate accelerated design of bis-MPA monomers with orthogonally complementary moieties and a wisely selected chemical toolbox generated highly complex monodisperse dendrimers through simplified protocols. The versatility of the strategy was proved by obtaining different dendritic families with different properties after altering the order of addition of the monomers. Moreover, we evaluated the feasibility of the one-pot approach toward these heterolayered dendrimers as proof-of-concept.
Collapse
Affiliation(s)
- Sandra García-Gallego
- Royal Institute of Technology , School of Chemical Science and Engineering, Fiber and Polymer Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden.,Department of Organic and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR) , University of Alcalá , 28805 Madrid , Spain
| | - Oliver C J Andrén
- Royal Institute of Technology , School of Chemical Science and Engineering, Fiber and Polymer Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| | - Michael Malkoch
- Royal Institute of Technology , School of Chemical Science and Engineering, Fiber and Polymer Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| |
Collapse
|
26
|
Sumer Bolu B, Golba B, Sanyal A, Sanyal R. Trastuzumab targeted micellar delivery of docetaxel using dendron–polymer conjugates. Biomater Sci 2020; 8:2600-2610. [DOI: 10.1039/c9bm01764j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Incorporation of a therapeutic antibody into nanosized drug delivery systems can improve their target specificity.
Collapse
Affiliation(s)
- Burcu Sumer Bolu
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Bianka Golba
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Rana Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| |
Collapse
|
27
|
Zhou Y, Feng J, Feng L, Xie D, Peng H, Cai M, He H. Synthesis and Activity of 1,2,3-Triazole Aminopyrimidines against Cyanobacteria as PDHc-E1 Competitive Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12538-12546. [PMID: 31638796 DOI: 10.1021/acs.jafc.9b02878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyanobacteria harmful algal blooms are of global concern, but all currently available algicides in the market are nonselective and have potential side effects on nontarget species. In the present work, two series of compounds (4 and 6) comprising 16 novel 1,2,3-triazole aminopyrimidines were rationally designed and synthesized as control agent for cyanobacteria. Our design focus was the inhibiting cyanobacteria by inhibition against pyruvate dehydrogenase complex E1 (PDHc-E1). Compounds 4 and 6 showed potent inhibition against Escherichia coli PDHc-E1 (IC50 = 4.13-23.76 μM) and also strong algicidal activities against Synechocystis sp. PCC 6803 (EC50 = 1.7-8.1 μM) and Microcystis sp. FACHB905 (EC50 = 2.1-11.8 μM). In particular, the algicidal activities of 6d against four algal species were not only higher than that of prometryn; they were also comparable to or higher than that of copper sulfate. The analogues 4c, 4d, 6d, and 6e displayed potent algicidal activities and inhibition of E. coli PDHc-E1 but exhibited negligible inhibition of porcine PDHc-E1. As revealed by molecular docking, site-directed mutagenesis, enzymatic assays, and an inhibition kinetic analysis, 4c and 6d inhibited PDHc-E1 in a competitive manner. Our results suggest that highly selective, effective algicides can be developed by rationally designing competitive PDHc-E1 inhibitors.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan 430079 , P. R. China
| | - Jiangtao Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan 430079 , P. R. China
| | - Lingling Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan 430079 , P. R. China
| | - Dan Xie
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan 430079 , P. R. China
| | - Hao Peng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan 430079 , P. R. China
| | - Meng Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan 430079 , P. R. China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan 430079 , P. R. China
| |
Collapse
|
28
|
Merkt FK, Pieper K, Klopotowski M, Janiak C, Müller TJJ. Sequential Cu‐Catalyzed Four‐ and Five‐Component Syntheses of Luminescent 3‐Triazolylquinoxalines. Chemistry 2019; 25:9447-9455. [DOI: 10.1002/chem.201900277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Franziska K. Merkt
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Konstantin Pieper
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Maximilian Klopotowski
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
29
|
Calik F, Degirmenci A, Eceoglu M, Sanyal A, Sanyal R. Dendron–Polymer Conjugate Based Cross-Linked Micelles: A Robust and Versatile Nanosystem for Targeted Delivery. Bioconjug Chem 2019; 30:1087-1097. [DOI: 10.1021/acs.bioconjchem.9b00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Jia F, Zhang B. Mechanistic insight into the silver-catalyzed cycloaddition synthesis of 1,4-disubstituted-1,2,3-triazoles: the key role of silver. NEW J CHEM 2019. [DOI: 10.1039/c9nj01700c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using DFT calculations, we disclose the reason why silver(i) catalytically promotes the activity and regioselectivity of the cycloaddition of 1,4-disubstituted-1,2,3-triazoles.
Collapse
Affiliation(s)
- Feiyun Jia
- School of Basic Medical Sciences, North Sichuan Medical College
- Nanchong
- P. R. China
| | - Bo Zhang
- School of Basic Medical Sciences, North Sichuan Medical College
- Nanchong
- P. R. China
| |
Collapse
|
31
|
Kim MY, Lee CH, Jun CH. Surface functionalization of silica using catalytic hydroesterification modified polybutadienes. RSC Adv 2019; 9:12265-12268. [PMID: 35515853 PMCID: PMC9063514 DOI: 10.1039/c9ra01080g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/14/2019] [Indexed: 11/21/2022] Open
Abstract
A new method for covalent immobilization of catalytic hydroesterification modified polybutadiene on a silica surface is described.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
- Center for NanoMedicine
| | - Chang-Hee Lee
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
- Center for NanoMedicine
| | - Chul-Ho Jun
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
- Center for NanoMedicine
| |
Collapse
|
32
|
Tulli LG, Miranda D, Lee CC, Sullivan Y, Grotzfeld R, Hollingworth G, Kneuer R, Karpov AS. Modular synthesis and modification of novel bifunctional dendrons. Org Biomol Chem 2019; 17:2906-2912. [DOI: 10.1039/c8ob02988a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The modular synthesis of two generations of highly branched bifunctional dendrons is reported. The first generation dendron–antibody conjugate is shown to selectively detect CD4+ T cells in the PBMC culture.
Collapse
Affiliation(s)
| | - Daniela Miranda
- Novartis Institutes for BioMedical Research
- 4002 Basel
- Switzerland
| | | | - Yang Sullivan
- Novartis Institutes for BioMedical Research
- Cambridge
- USA
| | - Robert Grotzfeld
- Novartis Institutes for BioMedical Research
- 4002 Basel
- Switzerland
| | | | - Rainer Kneuer
- Novartis Institutes for BioMedical Research
- 4002 Basel
- Switzerland
| | - Alexei S. Karpov
- Novartis Institutes for BioMedical Research
- 4002 Basel
- Switzerland
| |
Collapse
|
33
|
Roohzadeh R, Nasiri B, Chipman A, Yates BF, Ariafard A. Disclosure of Some Obscure Mechanistic Aspects of the Copper-Catalyzed Click Reactions Involving N2 Elimination Promoted by the Use of Electron-Deficient Azides from a DFT Perspective. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rooholah Roohzadeh
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
- Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran 1955847881, Iran
| | - Bahare Nasiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
- Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran 1955847881, Iran
| | - Antony Chipman
- School of Physical Science (Chemistry), University of Tasmania, Private Bag
75, Hobart, TAS 7001, Australia
| | - Brian F. Yates
- School of Physical Science (Chemistry), University of Tasmania, Private Bag
75, Hobart, TAS 7001, Australia
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
- School of Physical Science (Chemistry), University of Tasmania, Private Bag
75, Hobart, TAS 7001, Australia
| |
Collapse
|
34
|
A Tetra-Orthogonal Strategy for the Efficient Synthesis of Scaffolds Based on Cyclic Peptides. Int J Pept Res Ther 2018; 24:535-542. [PMID: 30416404 PMCID: PMC6208650 DOI: 10.1007/s10989-017-9642-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 11/26/2022]
Abstract
We have developed a straightforward and robust strategy for synthesizing a family of cyclic peptide scaffolds for the presentation of defined moieties in a wide range of orientations. Specifically we are exploring quinoxaline as the moiety, as a potential nucleic acid binding motif. The method requires the use of four degrees of orthogonality, which in turn allow the extension of the main chain, incorporation of the target side chains, on-resin cyclization, and the revelation of an amino group upon cleavage to increase solubility. We show that related approaches fail for a range of reasons, including the failure of cyclization. Following the optimization of the approach with a single cyclic peptide, we synthesized a family of all possible bis and tris quinoxaline adducts showing by ESI–MS that the desired full length cyclic product is produced in a majority of cases.
Collapse
|
35
|
Selin M, Nummelin S, Deleu J, Ropponen J, Viitala T, Lahtinen M, Koivisto J, Hirvonen J, Peltonen L, Kostiainen MA, Bimbo LM. High-Generation Amphiphilic Janus-Dendrimers as Stabilizing Agents for Drug Suspensions. Biomacromolecules 2018; 19:3983-3993. [PMID: 30207704 DOI: 10.1021/acs.biomac.8b00931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pharmaceutical nanosuspensions are formed when drug crystals are suspended in aqueous media in the presence of stabilizers. This technology offers a convenient way to enhance the dissolution of poorly water-soluble drug compounds. The stabilizers exert their action through electrostatic or steric interactions, however, the molecular requirements of stabilizing agents have not been studied extensively. Here, four structurally related amphiphilic Janus-dendrimers were synthesized and screened to determine the roles of different macromolecular domains on the stabilization of drug crystals. Physical interaction and nanomilling experiments have substantiated that Janus-dendrimers with fourth generation hydrophilic dendrons were superior to third generation analogues and Poloxamer 188 in stabilizing indomethacin suspensions. Contact angle and surface plasmon resonance measurements support the hypothesis that Janus-dendrimers bind to indomethacin surfaces via hydrophobic interactions and that the number of hydrophobic alkyl tails determines the adsorption kinetics of the Janus-dendrimers. The results showed that amphiphilic Janus-dendrimers adsorb onto drug particles and thus can be used to provide steric stabilization against aggregation and recrystallization. The modular synthetic route for new amphiphilic Janus-dendrimers offers, thus, for the first time a versatile platform for stable general-use stabilizing agents of drug suspensions.
Collapse
Affiliation(s)
- Markus Selin
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , FI-00014 , Finland
| | - Sami Nummelin
- Biohybrid Materials, Department of Bioproducts and Biosystems , Aalto University , FI-00076 , Finland
| | - Jill Deleu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , FI-00014 , Finland.,Faculty of Pharmaceutical Sciences , Ghent University , 9000 Ghent , Belgium
| | - Jarmo Ropponen
- VTT-Technical Research Centre of Finland Ltd , P.O. Box 1000, FI-02044 VTT Finland
| | - Tapani Viitala
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , FI-00014 , Finland
| | - Manu Lahtinen
- Department of Chemistry , University of Jyväskylä , FI-40014 , Finland
| | - Jari Koivisto
- Department of Chemistry and Materials Science , Aalto University , FI-00076 , Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , FI-00014 , Finland
| | - Leena Peltonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , FI-00014 , Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems , Aalto University , FI-00076 , Finland.,HYBER Center of Excellence, Department of Applied Physics , Aalto University , FI-00076 , Finland
| | - Luis M Bimbo
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , FI-00014 , Finland.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow , G4 ORE , United Kingdom
| |
Collapse
|
36
|
Sharma A, Porterfield JE, Smith E, Sharma R, Kannan S, Kannan RM. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. J Control Release 2018; 283:175-189. [PMID: 29883694 PMCID: PMC6091673 DOI: 10.1016/j.jconrel.2018.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/21/2018] [Accepted: 06/02/2018] [Indexed: 01/02/2023]
Abstract
Neurotherapeutics for the treatment of central nervous system (CNS) disorders must overcome challenges relating to the blood-brain barrier (BBB), brain tissue penetration, and the targeting of specific cells. Neuroinflammation mediated by activated microglia is a major hallmark of several neurological disorders, making these cells a desirable therapeutic target. Building on the promise of hydroxyl-terminated generation four polyamidoamine (PAMAM) dendrimers (D4-OH) for penetrating the injured BBB and targeting activated glia, we explored if conjugation of targeting ligands would enhance and modify brain and organ uptake. Since mannose receptors [cluster of differentiation (CD) 206] are typically over-expressed on injured microglia, we conjugated mannose to the surface of multifunctional D4-OH using highly efficient, atom-economical, and orthogonal Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry and evaluated the effect of mannose conjugation on the specific cell uptake of targeted and non-targeted dendrimers both in vitro and in vivo. In vitro results indicate that the conjugation of mannose as a targeting ligand significantly changes the mechanism of dendrimer internalization, giving mannosylated dendrimer a preference for mannose receptor-mediated endocytosis as opposed to non-specific fluid phase endocytosis. We further investigated the brain uptake and biodistribution of targeted and non-targeted fluorescently labeled dendrimers in a maternal intrauterine inflammation-induced cerebral palsy (CP) rabbit model using quantification methods based on fluorescence spectroscopy and confocal microscopy. We found that the conjugation of mannose modified the distribution of D4-OH throughout the body in this neonatal rabbit CP model without lowering the amount of dendrimer delivered to injured glia in the brain, even though significantly higher glial uptake was not observed in this model. Mannose conjugation to the dendrimer modifies the dendrimer's interaction with cells, but does not minimize its inherent inflammation-targeting abilities.
Collapse
Affiliation(s)
- Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Smith
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute - Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute - Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA.
| |
Collapse
|
37
|
Firdaus S, Geisler M, Friedel P, Banerjee S, Appelhans D, Voit B, Lederer A. Glyco-pseudodendrimers on a Polyester Basis: Synthesis and Investigation of Protein-Pseudodendrimer Interaction. Macromol Rapid Commun 2018; 39:e1800364. [PMID: 29984438 DOI: 10.1002/marc.201800364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/08/2018] [Indexed: 11/09/2022]
Abstract
Molar mass and end group number of a hyperbranched polyester are significantly increased by its transformation to a pseudodendrimer. Three generations of pseudodendrimers are obtained from hyperbranched aliphatic polyester core by modification with a protected AB*2 monomer. A sequence of protection and deprotection steps leads to OH-terminated pseudodendrimers. NMR studies confirm maximum degree of branching in the first generation, which slightly decreases in the next two generations. Uniform, dense molecular structure formation was confirmed by MD simulation. Further modification to glyco-pseudodendrimers was performed with α-D-mannose leading to high molar masses and dense distribution of sugar units. The interaction of these sugar units with a plant lectin concanavalin A (Con A) was investigated using dynamic light scattering and cryogenic transmission electron microscopy. The protein-interaction studies of the glyco-pseudodendrimers confirm a loose network with Con A. The interaction activity depends on the generation number and modification degree.
Collapse
Affiliation(s)
- Shamila Firdaus
- Polymer Separation Group, Institute of Macromolecular Chemistry, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
- School of Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Martin Geisler
- Polymer Separation Group, Institute of Macromolecular Chemistry, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
- School of Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Peter Friedel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, India
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Albena Lederer
- Polymer Separation Group, Institute of Macromolecular Chemistry, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
- School of Science, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
38
|
Bolu BS, Sanyal R, Sanyal A. Drug Delivery Systems from Self-Assembly of Dendron-Polymer Conjugates †. Molecules 2018; 23:E1570. [PMID: 29958437 PMCID: PMC6099537 DOI: 10.3390/molecules23071570] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
This review highlights the utilization of dendron-polymer conjugates as building blocks for the fabrication of nanosized drug delivery vehicles. The examples given provide an overview of the evolution of these delivery platforms, from simple micellar containers to smart stimuli- responsive drug delivery systems through their design at the macromolecular level. Variations in chemical composition and connectivity of the dendritic and polymeric segments provide a variety of self-assembled micellar nanostructures that embody desirable attributes of viable drug delivery systems.
Collapse
Affiliation(s)
- Burcu Sumer Bolu
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|
39
|
Abstract
This chapter reviews the use of dendronized systems as nanocarriers for the delivery of chemotherapeutic drugs. Dendronized systems include dendrimers prepared through convergent methods as well as other systems containing dendrons (e.g., polymers, nanoparticles, liposomes). The preparation of such systems is detailed, followed by the various conjugation techniques used for the transport of chemotherapeutic drugs and their specific delivery to tumor cells. In addition, the ability of dendronized systems to provide passive and active targeting to tumors is discussed. The efficacy of drug delivery using dendronized systems is also illustrated through specific examples of kinetic and biological studies. Finally, the newest trends in conjugation of the most common chemotherapeutics to dendronized systems are described. Overall, this chapter highlights dendronized systems as a way to improve the therapeutic efficiency of drugs for the treatment of cancer. All the recent developments in areas, such as biodegradable dendrimers, modifications to enhance biocompatibility, selectively cleavable drug conjugations, ligand-mediated targeting, and the potential for multifunctional properties, show promises for future advances in cancer therapy.
Collapse
|
40
|
Khan B, Shah MR, Rabnawaz M. Synthesis of novel macrocycles carrying pincer-type ligands as future candidates for potential applications in size-selective, stereochemical and recyclable catalysts. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Bolu BS, Golba B, Boke N, Sanyal A, Sanyal R. Designing Dendron–Polymer Conjugate Based Targeted Drug Delivery Platforms with a “Mix-and-Match” Modularity. Bioconjug Chem 2017; 28:2962-2975. [DOI: 10.1021/acs.bioconjchem.7b00595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Burcu Sumer Bolu
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Bianka Golba
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Nazli Boke
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Amitav Sanyal
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| | - Rana Sanyal
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey
| |
Collapse
|
42
|
Hayeebueraheng A, Kaewmee B, Rukachaisirikul V, Kaeobamrung J. Synthesis of 2-(1,2,3-Triazolyl)benzamide Derivatives by a Copper(I)-Catalyzed Multicomponent Reaction. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Abdulhakim Hayeebueraheng
- Department of Chemistry and Center of Excellence for Innovation in Chemistry; Prince of Songkla University; 15 Kanjanavanit Road, Kohong 90112 Hat-Yai, Songkhla Thailand
| | - Benyapa Kaewmee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry; Prince of Songkla University; 15 Kanjanavanit Road, Kohong 90112 Hat-Yai, Songkhla Thailand
| | - Vatcharin Rukachaisirikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry; Prince of Songkla University; 15 Kanjanavanit Road, Kohong 90112 Hat-Yai, Songkhla Thailand
| | - Juthanat Kaeobamrung
- Department of Chemistry and Center of Excellence for Innovation in Chemistry; Prince of Songkla University; 15 Kanjanavanit Road, Kohong 90112 Hat-Yai, Songkhla Thailand
| |
Collapse
|
43
|
Sharma R, Kim SY, Sharma A, Zhang Z, Kambhampati SP, Kannan S, Kannan RM. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation. Bioconjug Chem 2017; 28:2874-2886. [PMID: 29028353 PMCID: PMC6023550 DOI: 10.1021/acs.bioconjchem.7b00569] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal day 1 to rabbit kits with a clinically relevant phenotype of cerebral palsy. The in vivo imaging study indicates that Cy5-D-mino crossed the impaired blood-brain barrier and co-localized with activated microglia at the periventricular white matter areas, including the corpus callosum and the angle of the lateral ventricle, with significant implications for positive therapeutic outcomes. The enhanced efficacy of D-mino, when combined with the inherent neuroinflammation-targeting capability of the PAMAM dendrimers, may provide new opportunities for targeted drug delivery to treat neurological disorders.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Soo-Young Kim
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Siva Pramodh Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| |
Collapse
|
44
|
|
45
|
McNelles SA, Adronov A. Rapid Synthesis of Functionalized High-Generation Polyester Dendrimers via Strain-Promoted Alkyne–Azide Cycloaddition. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stuart A. McNelles
- Department of Chemistry and
Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S
4M1, Canada
| | - Alex Adronov
- Department of Chemistry and
Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S
4M1, Canada
| |
Collapse
|
46
|
Tabarelli G, Dornelles L, Iglesias BA, Gonçalves DF, Terra Stefanello S, Soares FAA, Piccoli BC, D'Avila da Silva F, da Rocha JBT, Schultze E, Bonemann Bender C, Collares T, Kömmling Seixas F, Peterle MM, Braga AL, Rodrigues OED. Synthesis and Antitumoral Lung Carcinoma A549 and Antioxidant Activity Assays Of New Chiral β-Aryl-Chalcogenium Azide Compounds. ChemistrySelect 2017. [DOI: 10.1002/slct.201701107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Greice Tabarelli
- LabSelen-NanoBio - Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| | - Luciano Dornelles
- LabSelen-NanoBio - Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| | - Bernardo A. Iglesias
- Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| | - Débora Farina Gonçalves
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Sílvio Terra Stefanello
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Félix A. A. Soares
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Bruna Candia Piccoli
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Fernanda D'Avila da Silva
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - João B. T. da Rocha
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Eduarda Schultze
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Camila Bonemann Bender
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Fabiana Kömmling Seixas
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Marcos M. Peterle
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Antônio L. Braga
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio - Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| |
Collapse
|
47
|
Chen J, Banaszak Holl MM. Dendrimer and dendrimer–conjugate protein complexes and protein coronas. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dendrimers and dendrimer conjugates are widely employed for biological applications such as bio-imaging and drug delivery. Understanding the interaction between dendrimers and their biological environment is key to evaluating the efficacy and safety of these materials. Proteins can form an adsorbed layer, termed a “protein corona”, on dendrimers in either a non-specific or specific fashion. A tight-binding, non-exchangeable corona is defined as a “hard” corona, whereas a loosely bound, highly exchangeable corona is called a “soft” corona. Recent research indicates that small molecules conjugated to the polymer surface can induce protein structural change, leading to tighter protein–dendrimer binding and further protein aggregation. This “triggered” corona formation on dendrimer and dendrimer conjugates is reviewed and discussed along with the existing hard or soft corona model. This review describes the triggered corona model to further the understanding of protein corona formation.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
48
|
Sha M, Yao W, Zhang X, Li Z. Synthesis of structure-defined branched hyaluronan tetrasaccharide glycoclusters. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Kaufman EA, Tarallo R, Elacqua E, Carberry TP, Weck M. Synthesis of Well-Defined Bifunctional Newkome-Type Dendrimers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elizabeth A. Kaufman
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Rossella Tarallo
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Elizabeth Elacqua
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Tom P. Carberry
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Department of Chemistry and
Molecular Design Institute, New York University, New York, New York 10003, United States
| |
Collapse
|
50
|
Kalva N, Ambade AV. Synthesis and tunable thermoresponsive solution morphologies of 2,2-bis-methylolpropionic acid dendron-azobenzene-poly(N
-isopropyl acrylamide) copolymers. POLYM INT 2017. [DOI: 10.1002/pi.5363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nagendra Kalva
- CSIR-National Chemical Laboratory; Pune India
- Academy of Scientific and Innovative Research; New Delhi India
| | - Ashootosh V Ambade
- CSIR-National Chemical Laboratory; Pune India
- Academy of Scientific and Innovative Research; New Delhi India
| |
Collapse
|