1
|
Butler SM, Ercan B, You J, Schulz LP, Jolliffe KA. A change in metal cation switches selectivity of a phospholipid sensor from phosphatidic acid to phosphatidylserine. Org Biomol Chem 2024; 22:5843-5849. [PMID: 38957899 DOI: 10.1039/d4ob00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Phosphatidic acid and phosphatidylserine are anionic phospholipids with emerging signalling roles in cells. Determination of how phosphatidic acid and phosphatidylserine change location and quantity in cells over time requires selective fluorescent sensors that can distinguish these two anionic phospholipids. However, the design of such synthetic sensors that can selectively bind and respond to a single phospholipid within the complex membrane milieu remains challenging. In this work, we present a simple and robust strategy to control the selectivity of synthetic sensors for phosphatidic acid and phosphatidylserine. By changing the coordination metal of a dipicolylamine (DPA) ligand from Zn(II) to Ni(II) on the same synthetic sensor with a peptide backbone, we achieve a complete switch in selectivity from phosphatidic acid to phosphatidylserine in model lipid membranes. Furthermore, this strategy was largely unaffected by the choice and the position of the fluorophores. We envision that this strategy will provide a platform for the rational design of targeted synthetic phospholipid sensors to probe plasma and intracellular membranes.
Collapse
Affiliation(s)
- Stephen M Butler
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Bilge Ercan
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Jingyao You
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Luke P Schulz
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Baum JF, Uzun HD, Pomorski TG. Visualizing Loss of Plasma Membrane Lipid Asymmetry Using Annexin V Staining. Bio Protoc 2023; 13:e4754. [PMID: 37497452 PMCID: PMC10366992 DOI: 10.21769/bioprotoc.4754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 05/23/2023] [Indexed: 07/28/2023] Open
Abstract
Loss of plasma membrane lipid asymmetry contributes to many cellular functions and responses, including apoptosis, blood coagulation, and cell fusion. In this protocol, we describe the use of fluorescently labeled annexin V to detect loss of lipid asymmetry in the plasma membrane of adherent living cells by fluorescence microscopy. The approach provides a simple, sensitive, and reproducible method to detect changes in lipid asymmetry but is limited by low sample throughput. The protocol can also be adapted to other fluorescently labeled lipid-binding proteins or peptide probes. To validate the lipid binding properties of such probes, we additionally describe here the preparation and use of giant unilamellar vesicles as simple model membrane systems that have a size comparable to cells. Key features Monitoring loss of lipid asymmetry in the plasma membrane via confocal microscopy. Protocol can be applied to any type of cell that is adherent in culture, including primary cells. Assay can be adapted to other fluorescently labeled lipid-binding proteins or peptide probes. Giant unilamellar vesicles serve as a tool to validate the lipid binding properties of such probes. Graphical overview Imaging the binding of fluorescent annexin V to adherent mammalian cells and giant vesicles by confocal microscopy. Annexin V labeling is a useful method for detecting a loss of plasma membrane lipid asymmetry in cells (top image, red); DAPI can be used to identify nuclei (top image, blue). Giant vesicles are used as a tool to validate the lipid binding properties of annexin V to anionic lipids (lower image, red).
Collapse
Affiliation(s)
- Julia F. Baum
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Huriye D. Uzun
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Chandra A, Datta A. A Peptide-Based Fluorescent Sensor for Anionic Phospholipids. ACS OMEGA 2022; 7:10347-10354. [PMID: 35382295 PMCID: PMC8973094 DOI: 10.1021/acsomega.1c06981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Anionic phospholipids are key cell signal mediators. The distribution of these lipids on the cell membrane and intracellular organelle membranes guides the recruitment of signaling proteins leading to the regulation of cellular processes. Hence, fluorescent sensors that can detect anionic phospholipids within living cells can provide a handle into revealing molecular mechanisms underlying lipid-mediated signal regulation. A major challenge in the detection of anionic phospholipids is related to the presence of these phospholipids mostly in the inner leaflet of the plasma membrane and in the membranes of intracellular organelles. Hence, cell-permeable sensors would provide an advantage by enabling the rapid detection and tracking of intracellular pools of anionic phospholipids. We have developed a peptide-based, cell-permeable, water-soluble, and ratiometric fluorescent sensor that entered cells within 15 min of incubation via the endosomal machinery and showed punctate labeling in the cytoplasm. The probe could also be introduced into living cells via lipofection, which allows bypassing of endosomal uptake, to image anionic phospholipids in the cell membrane. We validated the ability of the sensor toward detection of intracellular anionic phospholipids by colocalization studies with a fluorescently tagged lipid and a protein-based anionic phospholipid sensor. Further, the sensor could image the externalization of anionic phospholipids during programmed cell death, indicating the ability of the probe toward detection of both intra- and extracellular anionic phospholipids based on the biological context.
Collapse
|
4
|
Kundu R, Chandra A, Datta A. Fluorescent Chemical Tools for Tracking Anionic Phospholipids. Isr J Chem 2021. [DOI: 10.1002/ijch.202100003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rajasree Kundu
- Department of Chemical Sciences Tata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Amitava Chandra
- Department of Chemical Sciences Tata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Ankona Datta
- Department of Chemical Sciences Tata Institute of Fundamental Research 1 Homi Bhabha Road, Colaba Mumbai 400005 India
| |
Collapse
|
5
|
Zwicker VE, Oliveira BL, Yeo JH, Fraser ST, Bernardes GJL, New EJ, Jolliffe KA. A Fluorogenic Probe for Cell Surface Phosphatidylserine Using an Intramolecular Indicator Displacement Sensing Mechanism. Angew Chem Int Ed Engl 2018; 58:3087-3091. [DOI: 10.1002/anie.201812489] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 11/11/2022]
Affiliation(s)
| | - Bruno L. Oliveira
- University of Cambridge Department of Chemistry Lensfield Road CB2 1EW Cambridge UK
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Jia Hao Yeo
- University of Sydney School of Chemistry Sydney NSW 2006 Australia
- University of Sydney School of Medical Sciences Camperdown NSW 2050 Australia
| | - Stuart T. Fraser
- University of Sydney School of Medical Sciences Camperdown NSW 2050 Australia
| | - Gonçalo J. L. Bernardes
- University of Cambridge Department of Chemistry Lensfield Road CB2 1EW Cambridge UK
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Elizabeth J. New
- University of Sydney School of Chemistry Sydney NSW 2006 Australia
| | | |
Collapse
|
6
|
Zwicker VE, Oliveira BL, Yeo JH, Fraser ST, Bernardes GJL, New EJ, Jolliffe KA. A Fluorogenic Probe for Cell Surface Phosphatidylserine Using an Intramolecular Indicator Displacement Sensing Mechanism. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Bruno L. Oliveira
- University of Cambridge Department of Chemistry Lensfield Road CB2 1EW Cambridge UK
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Jia Hao Yeo
- University of Sydney School of Chemistry Sydney NSW 2006 Australia
- University of Sydney School of Medical Sciences Camperdown NSW 2050 Australia
| | - Stuart T. Fraser
- University of Sydney School of Medical Sciences Camperdown NSW 2050 Australia
| | - Gonçalo J. L. Bernardes
- University of Cambridge Department of Chemistry Lensfield Road CB2 1EW Cambridge UK
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Elizabeth J. New
- University of Sydney School of Chemistry Sydney NSW 2006 Australia
| | | |
Collapse
|
7
|
Kwong JMK, Hoang C, Dukes RT, Yee RW, Gray BD, Pak KY, Caprioli J. Bis(zinc-dipicolylamine), Zn-DPA, a new marker for apoptosis. Invest Ophthalmol Vis Sci 2014; 55:4913-21. [PMID: 25034598 DOI: 10.1167/iovs.13-13346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the labeling of apoptotic cells with a molecular probe of bis(zinc(II)-dipicolylamine) (Zn-DPA) conjugated with a fluorescent reporter in a rat model of retinal ganglion cell (RGC) degeneration induced by N-methyl-D-aspartate (NMDA). METHODS Adult Wistar rats were given unilateral intravitreal injections of 3 μL 40 mM neutralized NMDA and euthanized at 1, 2, 4, 24, and 48 hours. One hour before euthanasia, 3 μL Zn-DPA conjugated with fluorescein (Zn-DPA 480) was intravitreally injected. Prelabeling of RGC with retrograde fluorogold (FG), TUNEL, and immunohistochemistry with III β-tubulin and vimentin were performed. RESULTS Fluorescence labeling of Zn-DPA 480 was observed in the retinas from 1 hour up to 24 hours after NMDA injection, whereas the labeling was reduced at 48 hours postinjection. At both 4 and 24 hours postinjection, most Zn-DPA 480-positive cells in the RGC layer were labeled by FG and III β-tubulin. The number of TUNEL-positive cells increased from 4 to 24 hours. At 24 hours, 95.7% of Zn-DPA 480-positive cells were TUNEL positive, whereas 95.1% of TUNEL-positive cells were Zn-DPA 480 positive. The numbers of Zn-DPA 480-positive cells at 1 and 2 hours after NMDA injection were significantly higher than TUNEL. CONCLUSIONS Our findings demonstrate that intravitreal injection of fluorescent Zn-DPA 480 labels retinal neurons undergoing apoptosis and that recognition of exposed phosphatidylserine appears earlier than detection of DNA fragmentation, indicating the potential of Zn-DPA as an imaging probe for tracking degenerating retinal neurons.
Collapse
Affiliation(s)
- Jacky M K Kwong
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Celia Hoang
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Reshil T Dukes
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Richard W Yee
- Cizik Eye Clinic, Hermann University Eye Associates, Houston, Texas, United States
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania, United States
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania, United States
| | - Joseph Caprioli
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
8
|
Illuminating the lipidome to advance biomedical research: peptide-based probes of membrane lipids. Future Med Chem 2013; 5:947-59. [PMID: 23682570 DOI: 10.4155/fmc.13.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Systematic investigation of the lipidome will reveal new opportunities for disease diagnosis and intervention. However, lipidomic research has been hampered by the lack of molecular tools to track specific lipids of interest. Accumulating reports indicate lipid recognition can be achieved with properly constructed short peptides in addition to large proteins. This review summarizes the key developments of this area within the past decade. Select lantibiotic peptides present the best examples of low-molecular-weight probes of membrane lipids, displaying selectivity comparable to lipid-binding proteins. Designed peptides, through biomimetic approaches and combinational screening, have begun to demonstrate their potential for lipid tracking in cultured cells and even in living organisms. Biophysical characterization of these lipid-targeting peptides has revealed certain features critical for selective membrane binding, including preorganized scaffolds and the balance of polar and nonpolar interactions. The knowledge summarized herein should facilitate the development of molecular tools to target a variety of membrane lipids.
Collapse
|
9
|
Xiao S, Turkyilmaz S, Smith BD. Convenient Synthesis of Multivalent Zinc(II)-Dipicolylamine Complexes for Molecular Recognition. Tetrahedron Lett 2013; 54:861-864. [PMID: 23459472 PMCID: PMC3580864 DOI: 10.1016/j.tetlet.2012.11.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A pair of novel dipicolylamine ligands bearing isothiocyanate groups were used as conjugation reagents to prepare multivalent molecules with anionic recognition capability. The isothiocyanates were reacted with two classes of dendritic scaffolds bearing primary amines, squaraine rotaxanes and PAMAM dendrimers, and the products were converted into water soluble zinc(II) coordination complexes. The multivalent squaraine rotaxanes exhibit high fluorescence quantum yields in water and are very well suited for biological imaging applications.
Collapse
Affiliation(s)
- Shuzhang Xiao
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Serhan Turkyilmaz
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
10
|
Cho YS, Kim KM, Lee D, Kim WJ, Ahn KH. Turn-On Fluorescence Detection of Apoptotic Cells Using a Zinc(II)-Dipicolylamine-Functionalized Poly(diacetylene) Liposome. Chem Asian J 2013; 8:755-9. [DOI: 10.1002/asia.201201139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Indexed: 11/10/2022]
|
11
|
Yuen KKY, Jolliffe KA. Bis[zinc(ii)dipicolylamino]-functionalised peptides as high affinity receptors for pyrophosphate ions in water. Chem Commun (Camb) 2013; 49:4824-6. [DOI: 10.1039/c3cc40937f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
|
13
|
Wyffels L, Gray BD, Barber C, Pak KY, Forbes S, Mattis JA, Woolfenden JM, Liu Z. Detection of myocardial ischemia-reperfusion injury using a fluorescent near-infrared zinc(II)-dipicolylamine probe and 99mTc glucarate. Mol Imaging 2012; 11:187-96. [PMID: 22554483 DOI: 10.2310/7290.2011.00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A fluorescent zinc 2,2'-dipicolylamine coordination complex PSVue®794 (probe 1) is known to selectively bind to phosphatidylserine exposed on the surface of apoptotic and necrotic cells. In this study, we investigated the cell death targeting properties of probe 1 in myocardial ischemia-reperfusion injury. A rat heart model of ischemia-reperfusion was used. Probe 1, control dye, or 99mTc glucarate was intravenously injected in rats subjected to 30-minute and 5-minute myocardial ischemia followed by 2-hour reperfusion. At 90 minutes or 20 hours postinjection, myocardial uptake was evaluated ex vivo by fluorescence imaging and autoradiography. Hematoxylin-eosin and cleaved caspase-3 staining was performed on myocardial sections to demonstrate the presence of ischemia-reperfusion injury and apoptosis. Selective accumulation of probe 1 could be detected in the area at risk up to 20 hours postinjection. Similar topography and extent of uptake of probe 1 and 99mTc glucarate were observed at 90 minutes postinjection. Histologic analysis demonstrated the presence of necrosis, but only a few apoptotic cells could be detected. Probe 1 selectively accumulates in myocardial ischemia-reperfusion injury and is a promising cell death imaging tool.
Collapse
Affiliation(s)
- Leonie Wyffels
- Department of Radiology, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Plaunt AJ, Courbanou MB, Cuison KD, Harmatys KM, Smith BD. Selective non-covalent triggered release from liposomes. Chem Commun (Camb) 2012; 48:8123-5. [PMID: 22772732 PMCID: PMC3417318 DOI: 10.1039/c2cc32962j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zinc(II)-dipicolylamine coordination complex selectively associates with anionic liposomes, including sterically protected PEGylated liposomes, and causes rapid leakage of encapsulated contents.
Collapse
Affiliation(s)
| | | | | | | | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
15
|
Demchenko AP. Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology 2012; 65:157-72. [PMID: 22797774 DOI: 10.1007/s10616-012-9481-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/24/2012] [Indexed: 02/07/2023] Open
Abstract
Dramatic changes in the structure of cell membranes on apoptosis allow easy, sensitive and non-destructive analysis of this process with the application of fluorescence methods. The strong plasma membrane asymmetry is present in living cells, and its loss on apoptosis is commonly detected with the probes interacting strongly and specifically with phosphatidylserine (PS). This phospholipid becomes exposed to the cell surface, and the application of annexin V labeled with fluorescent dye is presently the most popular tool for its detection. Several methods have been suggested recently that offer important advantages over annexin V assay with the ability to study apoptosis by spectroscopy of cell suspensions, flow cytometry and confocal or two-photon microscopy. The PS exposure marks the integrated changes in the outer leaflet of cell membrane that involve electrostatic potential and hydration, and the attempts are being made to provide direct probing of these changes. This review describes the basic mechanisms underlying the loss of membrane asymmetry during apoptosis and discusses, in comparison with the annexin V-binding assay, the novel fluorescence techniques of detecting apoptosis on cellular membrane level. In more detail we describe the detection method based on smart fluorescent dye F2N12S incorporated into outer leaflet of cell membrane and reporting on apoptotic cell transformation by easily detectable change of the spectral distribution of fluorescent emission. It can be adapted to any assay format.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, 01030, Ukraine,
| |
Collapse
|
16
|
Ngo HT, Liu X, Jolliffe KA. Anion recognition and sensing with Zn(II)-dipicolylamine complexes. Chem Soc Rev 2012; 41:4928-65. [PMID: 22688834 DOI: 10.1039/c2cs35087d] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This critical review covers the developments in anion recognition and sensing using Zn(II)-dipicolylamine functionalized receptors over the past decade with emphasis on recent rapid advances in the last five years.
Collapse
Affiliation(s)
- Huy Tien Ngo
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
17
|
Zheng H, Wang F, Wang Q, Gao J. Cofactor-Free Detection of Phosphatidylserine with Cyclic Peptides Mimicking Lactadherin. J Am Chem Soc 2011; 133:15280-3. [DOI: 10.1021/ja205911n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hong Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Fang Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Qin Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
18
|
wyffels L, Gray BD, Barber C, Woolfenden JM, Pak KY, Liu Z. Synthesis and preliminary evaluation of radiolabeled bis(zinc(II)-dipicolylamine) coordination complexes as cell death imaging agents. Bioorg Med Chem 2011; 19:3425-33. [PMID: 21570306 PMCID: PMC3102142 DOI: 10.1016/j.bmc.2011.04.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/06/2011] [Accepted: 04/13/2011] [Indexed: 11/30/2022]
Abstract
The aim of this study was the development of (⁹⁹m)Tc labeled bis(zinc(II)-dipicolylamine) (Zn²⁺-DPA) coordination complexes, and the in vivo evaluation of their usefulness as radiotracers for the detection of cell death. DPA ligand 1 was labeled with (⁹⁹m)Tc via the (⁹⁹m)Tc-tricarbonyl core ([(⁹⁹m)Tc(CO)₃-1]³⁺) or via HYNIC ((⁹⁹m)Tc-HYNIC-1) in good radiochemical yields. Highest in vitro stabilities were demonstrated for [(⁹⁹m)Tc(CO)₃-1]³⁺. A mouse model of hepatic apoptosis (anti-Fas mAb) was used to demonstrate binding to apoptotic cells. (⁹⁹m)Tc-HYNIC-1 showed the best targeting of apoptotic hepatic tissue with a 2.2 times higher liver uptake in anti-Fas treated mice as compared to healthy animals. A rat model of ischemia-reperfusion injury was used to further explore the ability of the (⁹⁹m)Tc-labeled Zn²⁺-DPA coordination complexes to target cell death. Selective accumulation could be detected for both tracers in the area at risk, correlating with histological proof of cell death. Area at risk to normal tissue uptake ratios were 3.82 for [(⁹⁹m)Tc(CO)₃-1]³⁺ and 5.45 for (⁹⁹m)Tc-HYNIC-1.
Collapse
Affiliation(s)
- Leonie wyffels
- Department of Radiology, University of Arizona, Tucson, AZ, USA
| | - Brian D. Gray
- Molecular Targeting Technologies, Inc. West Chester, PA, USA
| | - Christy Barber
- Department of Radiology, University of Arizona, Tucson, AZ, USA
| | | | - Koon Y. Pak
- Molecular Targeting Technologies, Inc. West Chester, PA, USA
| | - Zhonglin Liu
- Department of Radiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
19
|
Götzke L, Gloe K, Jolliffe KA, Lindoy LF, Heine A, Doert T, Jäger A, Gloe K. Nickel(II) and zinc(II) complexes of N-substituted di(2-picolyl)amine derivatives: Synthetic and structural studies. Polyhedron 2011. [DOI: 10.1016/j.poly.2010.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Butler SJ, Jolliffe KA, Lee WYG, McDonough MJ, Reynolds AJ. Synthesis of backbone modified cyclic peptides bearing dipicolylamino sidearms. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.11.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Surman AJ, Kenny GD, Kumar DK, Bell JD, Casey DR, Vilar R. Targeting of anionic membrane species by lanthanide(iii) complexes: towards improved MRI contrast agents for apoptosis. Chem Commun (Camb) 2011; 47:10245-7. [DOI: 10.1039/c1cc13284a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Watanabe S, Ohtsuka K, Sato S, Takenaka S. Discrimination of phosphorylated double stranded DNA by naphthalene diimide having zinc(II) dipicolylamine complexes. Bioorg Med Chem 2010; 19:1361-5. [PMID: 21237662 DOI: 10.1016/j.bmc.2010.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/27/2010] [Indexed: 11/17/2022]
Abstract
Discrimination of phosphomonoesters and phosphodiesters of DNA was attempted with naphthalene diimide carrying two zinc-dipicolylamine (Dpa) units (1). The binding constant of 1 for a self-complementary octanucleotide was 1.3×10(6)M(-1), while the value for the phosphorylated counterpart was 4.8×10(6)M(-1). This fourfold increase in the binding constant seems to stem from higher affinity of the terminal monophosphate over the phosphodiesters of DNA as the fourth ligand for the metal in 1. Likewise, the binding constant of 1 for DNase I-treated calf thymus DNA (average size 200bp) was twice as large as that for untreated DNA (1kb), possibly because the terminal phosphate groups are five times abundant in the former. These findings provide a clue to developing a system where phosphomonoesters generated upon DNA nicking are discriminated specifically from intact phosphodiesters.
Collapse
Affiliation(s)
- Sadayoshi Watanabe
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Senesui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan
| | | | | | | |
Collapse
|
23
|
Bae SW, Cho MS, Jeong AR, Choi BR, Kim DE, Yeo WS, Hong JI. Apoptotic cell imaging using phosphatidylserine-specific receptor-conjugated Ru(bpy)(3) (2+)-doped silica nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1499-1503. [PMID: 20623738 DOI: 10.1002/smll.201000564] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Se Won Bae
- Department of Chemistry Seoul National University Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Smith BA, Akers WJ, Leevy WM, Lampkins AJ, Xiao S, Wolter W, Suckow MA, Achilefu S, Smith BD. Optical imaging of mammary and prostate tumors in living animals using a synthetic near infrared zinc(II)-dipicolylamine probe for anionic cell surfaces. J Am Chem Soc 2010; 132:67-9. [PMID: 20014845 PMCID: PMC2805267 DOI: 10.1021/ja908467y] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vivo optical imaging shows that a fluorescent imaging probe, comprised of a near-infrared fluorophore attached to an affinity group containing two zinc(II)-dipicolylamine (Zn-DPA) units, targets prostate and mammary tumors in two different xenograft animal models. The tumor selectivity is absent with control fluorophores whose structures do not have appended Zn-DPA targeting ligands. Ex vivo biodistribution and histological analyses indicate that the probe is targeting the necrotic regions of the tumors, which is consistent with in vitro microscopy showing selective targeting of the anionic membrane surfaces of dead and dying cells.
Collapse
Affiliation(s)
- Bryan A. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556
| | - Walter J. Akers
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, MO 63110
| | - W. Matthew Leevy
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556
| | - Andrew J. Lampkins
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556
| | - Shuzhang Xiao
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556
| | - William Wolter
- Freimann Life Science Center, 400 Galvin Life Science, University of Notre Dame, Notre Dame, IN 46556
| | - Mark A. Suckow
- Freimann Life Science Center, 400 Galvin Life Science, University of Notre Dame, Notre Dame, IN 46556
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, MO 63110
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
25
|
Veliscek Carolan J, Butler SJ, Jolliffe KA. Selective Anion Binding in Water with Use of a Zinc(II) Dipicolylamino Functionalized Diketopiperazine Scaffold. J Org Chem 2009; 74:2992-6. [DOI: 10.1021/jo802555u] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Thapa N, Kim S, So IS, Lee BH, Kwon IC, Choi K, Kim IS. Discovery of a phosphatidylserine-recognizing peptide and its utility in molecular imaging of tumour apoptosis. J Cell Mol Med 2008; 12:1649-60. [PMID: 18363834 PMCID: PMC3918081 DOI: 10.1111/j.1582-4934.2008.00305.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The exposure of phosphatidylserine (PS) molecules from the inner to the outer leaflet of the plasma membrane has been recognized as a well-defined molecular epitope of cells undergoing apoptosis. Examination and monitoring of PS exposure is an extensively used molecular marker in non-invasive apoptosis imaging under a variety of clinical conditions, including the assessment of therapeutic anti-cancer agents and myocardial infarction. Herein, we report the identification of a PS-recognizing peptide which was identified by the screening of an M13 phage display peptide library onto PS-coated ELISA plates. Repeated biopanning for a total of four rounds revealed a predominant enrichment of the phage clone displaying peptide sequence, CLSYYPSYC (46%). The identified phage clone evidenced enhanced binding to a number of apoptotic cells over non-apoptotic cells, and this binding was inhibited by both annexin V and synthesized peptide displayed on the phage. The binding of the fluorescein-labelled CLSYYPSYC peptide to apoptotic versus normal cells was assessed by both FACS analysis and fluorescence microscopy. Optical imaging after the systemic administration of fluorescein-labelled CLSYYPSYC peptide to tumour-bearing nude mice (H460 cells xenograft model) treated with a single dose of an anticancer drug (camp-tothecin) indicated peptide homing to the tumour. The histological examination of tumour tissues showed intense staining of the tumour vasculature and apoptotic tumour cells. With these results, the CLSYYPSYC peptide is recognized as a novel PS-recognizing moiety which may possibly be developed into a molecular probe for the imaging of apoptosis in vivo. This application would clearly be relevant to assessments of the efficacy of anticancer therapy in tumours.
Collapse
Affiliation(s)
- Narendra Thapa
- Cell and Matrix Research Institute, Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|