1
|
Mohandas MP, Bruce JP. The need for robust model systems in the study of hybrid interfaces for photocatalysis and photoelectrocatalysis. Phys Chem Chem Phys 2025; 27:4025-4044. [PMID: 39911084 DOI: 10.1039/d4cp02967d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Small molecule conversion to value-added products using renewable energy sources has emerged as a promising strategy to mitigate our reliance on fossil fuels. Hybrid materials that integrate the strengths of photoabsorbers and co-catalysts (electrocatalysts) are essential for maximizing the efficiency of photochemical (PC) and photoelectrochemical (PEC) systems. In this perspective, we will focus on the need for fundamental studies with a strong emphasis on the importance of beginning with well-defined hybrid interfaces. A particular focus is given to small molecule adsorption studies that correlate surface structure and chemistry to reactivity, highlighting its potential in characterizing complex interfaces. We also make the case for understanding how light and electrochemical environments influence surface structure, adsorption, and reactivity and should be considered in model hybrid system design. Finally, we provide a framework to connect the theory and experiment of model hybrid surfaces to provide a molecular understanding of PC and PEC at these interfaces and accelerate our integration of these materials into real systems capable of meeting our renewable energy needs.
Collapse
Affiliation(s)
| | - Jared P Bruce
- University of Nevada, Las Vegas, Las Vegas, Nevada, USA, 89154.
| |
Collapse
|
2
|
Chen S. Controlling Metal-Support Interactions to Engineer Highly Active and Stable Catalysts for CO x Hydrogenation. CHEMSUSCHEM 2025; 18:e202401437. [PMID: 39535427 PMCID: PMC11790005 DOI: 10.1002/cssc.202401437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Indexed: 11/16/2024]
Abstract
This perspective focuses on the modulation of metal-support interaction (MSI) in catalysts for COx hydrogenation, highlighting their profound impact on catalytic performance. Firstly, it outlines different strategies, including the use of highly reducible oxides and moderate reduction treatments, which induce the classical strong metal-support interaction (SMSI) effect and the electronic metal-support interaction (EMSI) effect. Morphology engineering and crystalline phase manipulation of oxides presented as effective methods to control EMSI are also discussed. The discrimination of SMSI and EMSI can be achieved using oxides with low encapsulation tendencies, such as ZrO2, which supports electronic modifications without or minimizing the overgrowth issues, optimizing the catalytic performance for methanation. Then, the synergy between Cu and ZnO in methanol synthesis, enhanced by SMSI, is emphasized inside. Optimizing support oxides to control oxygen vacancies enhances the catalytic performance of CO2 hydrogenation to methanol. Perspectives for the future research on the fundamental understanding of structure-MSI-performance relationship for catalyst design is discussed.
Collapse
Affiliation(s)
- Shilong Chen
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Str. 224118KielGermany
| |
Collapse
|
3
|
Leybo D, Etim UJ, Monai M, Bare SR, Zhong Z, Vogt C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem Soc Rev 2024; 53:10450-10490. [PMID: 39356078 PMCID: PMC11445804 DOI: 10.1039/d4cs00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 10/03/2024]
Abstract
Supported metal catalysts are essential to a plethora of processes in the chemical industry. The overall performance of these catalysts depends strongly on the interaction of adsorbates at the atomic level, which can be manipulated and controlled by the different constituents of the active material (i.e., support and active metal). The description of catalyst activity and the relationship between active constituent and the support, or metal-support interactions (MSI), in heterogeneous (thermo)catalysts is a complex phenomenon with multivariate (dependent and independent) contributions that are difficult to disentangle, both experimentally and theoretically. So-called "strong metal-support interactions" have been reported for several decades and summarized in excellent review articles. However, in recent years, there has been a proliferation of new findings related to atomically dispersed metal sites, metal oxide defects, and, for example, the generation and evolution of MSI under reaction conditions, which has led to the designation of (sub)classifications of MSI deserving to be critically and systematically evaluated. These include dynamic restructuring under alternating redox and reaction conditions, adsorbate-induced MSI, and evidence of strong interactions in oxide-supported metal oxide catalysts. Here, we review recent literature on MSI in oxide-supported metal particles to provide an up-to-date understanding of the underlying physicochemical principles that dominate the observed effects in supported metal atomic, cluster, and nanoparticle catalysts. Critical evaluation of different subclassifications of MSI is provided, along with discussions on the formation mechanisms, theoretical and characterization advances, and tuning strategies to manipulate catalytic reaction performance. We also provide a perspective on the future of the field, and we discuss the analysis of different MSI effects on catalysis quantitatively.
Collapse
Affiliation(s)
- Denis Leybo
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ubong J Etim
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Matteo Monai
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ziyi Zhong
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Charlotte Vogt
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
4
|
Beck A, Newton MA, van de Water LGA, van Bokhoven JA. The Enigma of Methanol Synthesis by Cu/ZnO/Al 2O 3-Based Catalysts. Chem Rev 2024; 124:4543-4678. [PMID: 38564235 DOI: 10.1021/acs.chemrev.3c00148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The activity and durability of the Cu/ZnO/Al2O3 (CZA) catalyst formulation for methanol synthesis from CO/CO2/H2 feeds far exceed the sum of its individual components. As such, this ternary catalytic system is a prime example of synergy in catalysis, one that has been employed for the large scale commercial production of methanol since its inception in the mid 1960s with precious little alteration to its original formulation. Methanol is a key building block of the chemical industry. It is also an attractive energy storage molecule, which can also be produced from CO2 and H2 alone, making efficient use of sequestered CO2. As such, this somewhat unusual catalyst formulation has an enormous role to play in the modern chemical industry and the world of global economics, to which the correspondingly voluminous and ongoing research, which began in the 1920s, attests. Yet, despite this commercial success, and while research aimed at understanding how this formulation functions has continued throughout the decades, a comprehensive and universally agreed upon understanding of how this material achieves what it does has yet to be realized. After nigh on a century of research into CZA catalysts, the purpose of this Review is to appraise what has been achieved to date, and to show how, and how far, the field has evolved. To do so, this Review evaluates the research regarding this catalyst formulation in a chronological order and critically assesses the validity and novelty of various hypotheses and claims that have been made over the years. Ultimately, the Review attempts to derive a holistic summary of what the current body of literature tells us about the fundamental sources of the synergies at work within the CZA catalyst and, from this, suggest ways in which the field may yet be further advanced.
Collapse
Affiliation(s)
- Arik Beck
- Institute for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Mark A Newton
- Institute for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | | | - Jeroen A van Bokhoven
- Institute for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
5
|
Hakimioun AH, Vandegehuchte BD, Curulla-Ferre D, Kaźmierczak K, Plessow PN, Studt F. Metal-Support Interactions in Heterogeneous Catalysis: DFT Calculations on the Interaction of Copper Nanoparticles with Magnesium Oxide. ACS OMEGA 2023; 8:10591-10599. [PMID: 36969458 PMCID: PMC10034847 DOI: 10.1021/acsomega.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Oxide supports play an important role in enhancing the catalytic properties of transition metal nanoparticles in heterogeneous catalysis. How extensively interactions between the oxide support and the nanoparticles impact the electronic structure as well as the surface properties of the nanoparticles is hence of high interest. In this study, the influence of a magnesium oxide support on the properties of copper nanoparticles with different size, shape, and adsorption sites is investigated using density functional theory (DFT) calculations. By proposing simple models to reduce the cost of the calculations while maintaining the accuracy of the results, we show using the nonreducible oxide support MgO as an example that there is no significant influence of the MgO support on the electronic structure of the copper nanoparticles, with the exception of adsorption directly at the Cu-MgO interface. We also propose a simplified methodology that allows us to reduce the cost of the calculations, while the accuracy of the results is maintained. We demonstrate in addition that the Cu nanowire model corresponds well to the nanoparticle model, which reduces the computational cost even further.
Collapse
Affiliation(s)
- Amir H. Hakimioun
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | - Philipp N. Plessow
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Tu W, Ren P, Li Y, Yang Y, Tian Y, Zhang Z, Zhu M, Chin YHC, Gong J, Han YF. Gas-Dependent Active Sites on Cu/ZnO Clusters for CH 3OH Synthesis. J Am Chem Soc 2023; 145:8751-8756. [PMID: 36943737 DOI: 10.1021/jacs.2c13784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
This study describes an instantaneously gas-induced dynamic transition of an industrial Cu/ZnO/Al2O3 catalyst. Cu/ZnO clusters become "alive" and lead to a promotion in reaction rate by almost one magnitude, in response to the variation of the reactant components. The promotional changes are functions of either CO2-to-CO or H2O-to-H2 ratio which determines the oxygen chemical potential thus drives Cu/ZnO clusters to undergo reconstruction and allows the maximum formation of Cu-Zn2+ sites for CH3OH synthesis.
Collapse
Affiliation(s)
- Weifeng Tu
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Pengchao Ren
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanjie Li
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yongpeng Yang
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Tian
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhou Zhang
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ya-Huei Cathy Chin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yi-Fan Han
- Engineering Research Center of Advanced Functional Material Manufacturing, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Yang M, Yu J, Zimina A, Sarma BB, Pandit L, Grunwaldt JD, Zhang L, Xu H, Sun J. Probing the Nature of Zinc in Copper-Zinc-Zirconium Catalysts by Operando Spectroscopies for CO 2 Hydrogenation to Methanol. Angew Chem Int Ed Engl 2023; 62:e202216803. [PMID: 36507860 DOI: 10.1002/anie.202216803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Active Zn species in Cu-based methanol synthesis catalysts have not been clearly identified yet due to their complex nature and dynamic structural changes during reactions. Herein, atomically dispersed Zn on ZrO2 support is established in Cu-based catalysts by separating Zn and Zr components from Cu (Cu-ZnZr) via the double-nozzle flame spray pyrolysis (DFSP) method. It exhibits superiority in methanol selectivity and yield compared to those with Cu-ZnO interface and isolated ZnO nanoparticles. Operando X-ray absorption spectroscopy (XAS) reveals that the atomically dispersed Zn species are induced during the reaction due to the strengthened Zn-Zr interaction. They can suppress formate decomposition to CO and decrease the H2 dissociation energy, shifting the reaction to methanol production. This work enlightens the rational design of unique Zn species by regulating coordination environments and offers a new perspective for exploring complex interactions in multi-component catalysts.
Collapse
Affiliation(s)
- Meng Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiafeng Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China.,Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna Zimina
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Bidyut Bikash Sarma
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Lakshmi Pandit
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Ling Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hengyong Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China
| | - Jian Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023, Dalian, China
| |
Collapse
|
8
|
Dalebout R, Barberis L, Visser NL, van der Hoeven JES, van der Eerden AMJ, Stewart JA, Meirer F, de Jong KP, de Jongh PE. Manganese Oxide as a Promoter for Copper Catalysts in CO 2 and CO Hydrogenation. ChemCatChem 2022; 14:e202200451. [PMID: 36605570 PMCID: PMC9804442 DOI: 10.1002/cctc.202200451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/19/2022] [Indexed: 01/07/2023]
Abstract
In this work, we discuss the role of manganese oxide as a promoter in Cu catalysts supported on graphitic carbon during hydrogenation of CO2 and CO. MnOx is a selectivity modifier in an H2/CO2 feed and is a highly effective activity promoter in an H2/CO feed. Interestingly, the presence of MnOx suppresses the methanol formation from CO2 (TOF of 0.7 ⋅ 10-3 s-1 at 533 K and 40 bar) and enhances the low-temperature reverse water-gas shift reaction (TOF of 5.7 ⋅ 10-3 s-1) with a selectivity to CO of 87 %C. Using time-resolved XAS at high temperatures and pressures, we find significant absorption of CO2 to the MnO, which is reversed if CO2 is removed from the feed. This work reveals fundamental differences in the promoting effect of MnOx and ZnOx and contributes to a better understanding of the role of reducible oxide promoters in Cu-based hydrogenation catalysts.
Collapse
Affiliation(s)
- Remco Dalebout
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Laura Barberis
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Nienke L. Visser
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Jessi E. S. van der Hoeven
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Ad M. J. van der Eerden
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Joseph A. Stewart
- TotalEnergies OneTech BelgiumZone industrielle CB-7181SeneffeBelgium
| | - Florian Meirer
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Krijn P. de Jong
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Petra E. de Jongh
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
9
|
Baumgarten R, Naumann d'Alnoncourt R, Lohr S, Gioria E, Frei E, Fako E, De S, Boscagli C, Drieß M, Schunk S, Rosowski F. Quantification and Tuning of Surface Oxygen Vacancies for the Hydrogenation of CO
2
on Indium Oxide Catalysts. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Robert Baumgarten
- BasCat – UniCat BASF JointLab, Technische Universität Berlin 10623 Berlin Germany
| | | | - Stephen Lohr
- BasCat – UniCat BASF JointLab, Technische Universität Berlin 10623 Berlin Germany
- BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Germany
| | - Esteban Gioria
- BasCat – UniCat BASF JointLab, Technische Universität Berlin 10623 Berlin Germany
| | - Elias Frei
- BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Germany
| | - Edvin Fako
- BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Germany
| | - Sandip De
- BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Germany
| | | | - Matthias Drieß
- BasCat – UniCat BASF JointLab, Technische Universität Berlin 10623 Berlin Germany
- Technische Universität Berlin Institut für Chemie: Metallorganik und Anorganische Materialien Straße des 17. Juni 135 10623 Berlin Germany
| | - Stephan Schunk
- BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Germany
- hte GmbH Kurpfalzring 104 69123 Heidelberg Germany
- Universität Leipzig Institut für Technische Chemie Linnéstraße 3 04103 Leipzig Germany
| | - Frank Rosowski
- BasCat – UniCat BASF JointLab, Technische Universität Berlin 10623 Berlin Germany
- BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Germany
| |
Collapse
|
10
|
Dalebout R, Barberis L, Totarella G, Turner SJ, La Fontaine C, de Groot FMF, Carrier X, van der Eerden AMJ, Meirer F, de Jongh PE. Insight into the Nature of the ZnO x Promoter during Methanol Synthesis. ACS Catal 2022; 12:6628-6639. [PMID: 35692251 PMCID: PMC9171830 DOI: 10.1021/acscatal.1c05101] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/08/2022] [Indexed: 11/30/2022]
Abstract
Despite the great commercial relevance of zinc-promoted copper catalysts for methanol synthesis, the nature of the Cu-ZnO x synergy and the nature of the active Zn-based promoter species under industrially relevant conditions are still a topic of vivid debate. Detailed characterization of the chemical speciation of any promoter under high-pressure working conditions is challenging but specifically hampered by the large fraction of Zn spectator species bound to the oxidic catalyst support. We present the use of weakly interacting graphitic carbon supports as a tool to study the active speciation of the Zn promoter phase that is in close contact with the Cu nanoparticles using time-resolved X-ray absorption spectroscopy under working conditions. Without an oxidic support, much fewer Zn species need to be added for maximum catalyst activity. A 5-15 min exposure to 1 bar H2 at 543 K only slightly reduces the Zn(II), but exposure for several hours to 20 bar H2/CO and/or H2/CO/CO2 leads to an average Zn oxidation number of +(0.5-0.6), only slightly increasing to +0.8 in a 20 bar H2/CO2 feed. This means that most of the added Zn is in a zerovalent oxidation state during methanol synthesis conditions. The Zn average coordination number is 8, showing that this phase is not at the surface but surrounded by other metal atoms (whether Zn or Cu), and indicating that the Zn diffuses into the Cu nanoparticles under reaction conditions. The time scale of this process corresponds to that of the generally observed activation period for these catalysts. These results reveal the speciation of the relevant Zn promoter species under methanol synthesis conditions and, more generally, present the use of weakly interacting graphitic supports as an important strategy to avoid excessive spectator species, thereby allowing us to study the nature of relevant promoter species.
Collapse
Affiliation(s)
- Remco Dalebout
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Laura Barberis
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Giorgio Totarella
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Savannah J. Turner
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Camille La Fontaine
- Synchrotron
SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, Gif-sur-Yvette 91192 CEDEX, France
| | - Frank M. F. de Groot
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Xavier Carrier
- Laboratoire
de Réactivité de Surface, UMR CNRS 7197, Sorbonne Université, 4 place Jussieu, Paris 75252 CEDEX 05, France
| | - Ad M. J. van der Eerden
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu−Ce−Zr catalysts. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Schlögl R. Chemische Batterien mit CO
2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202007397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Robert Schlögl
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| |
Collapse
|
13
|
Abstract
Efforts to obtain raw materials from CO2 by catalytic reduction as a means of combating greenhouse gas emissions are pushing the boundaries of the chemical industry. The dimensions of modern energy regimes, on the one hand, and the necessary transport and trade of globally produced renewable energy, on the other, will require the use of chemical batteries in conjunction with the local production of renewable electricity. The synthesis of methanol is an important option for chemical batteries and will, for that reason, be described here in detail. It is also shown that the necessary, robust, and fundamental understanding of processes and the material science of catalysts for the hydrogenation of CO2 does not yet exist.
Collapse
Affiliation(s)
- Robert Schlögl
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| |
Collapse
|
14
|
Ma B, Pan H, Yang F, Liu X, Guo Y, Wang Y. Efficient CO 2 catalytic hydrogenation over CuO x–ZnO/silicalite-1 with stable Cu + species. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient and stable CuOx–ZnO/S-1 catalysts for CO2 hydrogenation were inexpensively prepared, in which the ZnO–Cu2O interface and silanol nests play key roles.
Collapse
Affiliation(s)
- Baorun Ma
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hongxin Pan
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fan Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
15
|
Fehr SM, Nguyen K, Krossing I. Realistic
Operando‐
DRIFTS Studies on Cu/ZnO Catalysts for CO
2
Hydrogenation to Methanol – Direct Observation of Mono‐ionized Defect Sites and Implications for Reaction Intermediates. ChemCatChem 2021. [DOI: 10.1002/cctc.202101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Samuel M. Fehr
- Institut für Anorganische und Analytische Chemie Universität Freiburg Albertstr. 21 D-79104 Freiburg Germany
- Freiburger Materialforschungszentrum (FMF) Universität Freiburg Stefan-Meier-Str. 21 D-79104 Freiburg Germany
| | - Karin Nguyen
- Institut für Anorganische und Analytische Chemie Universität Freiburg Albertstr. 21 D-79104 Freiburg Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie Universität Freiburg Albertstr. 21 D-79104 Freiburg Germany
- Freiburger Materialforschungszentrum (FMF) Universität Freiburg Stefan-Meier-Str. 21 D-79104 Freiburg Germany
| |
Collapse
|
16
|
Abstract
Hydrogen production through methanol reforming processes has been stimulated over the years due to increasing interest in fuel cell technology and clean energy production. Among different types of methanol reforming, the steam reforming of methanol has attracted great interest as reformate gas stream where high concentration of hydrogen is produced with a negligible amount of carbon monoxide. In this review, recent progress of the main reforming processes of methanol towards hydrogen production is summarized. Different catalytic systems are reviewed for the steam reforming of methanol: mainly copper- and group 8–10-based catalysts, highlighting the catalytic key properties, while the promoting effect of the latter group in copper activity and selectivity is also discussed. The effect of different preparation methods, different promoters/stabilizers, and the formation mechanism is analyzed. Moreover, the integration of methanol steam reforming process and the high temperature–polymer electrolyte membrane fuel cells (HT-PEMFCs) for the development of clean energy production is discussed.
Collapse
|
17
|
Fehr SM, Nguyen K, Njel C, Krossing I. Enhancement of Methanol Synthesis by Oxidative Fluorination of Cu/ZnO Catalysts─Insights from Surface Analyses. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Samuel M. Fehr
- Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
- Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
| | - Karin Nguyen
- Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
| | - Christian Njel
- Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
- Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Dong Z, Liu W, Zhang L, Wang S, Luo L. Structural Evolution of Cu/ZnO Catalysts during Water-Gas Shift Reaction: An In Situ Transmission Electron Microscopy Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41707-41714. [PMID: 34427430 DOI: 10.1021/acsami.1c11839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported metal catalysts experience significant structural evolution during the activation process and reaction conditions, which is critical to achieve a desired active surface and interface enabling efficient catalytic processes. However, such dynamic structural information and related mechanistic understandings remain largely elusive owing to the limitation of real-time capturing dynamic information under reaction conditions. Here, using in situ environment transmission electron microscopy, we demonstrate the atomic-scale structural evolution of the model Cu/ZnO catalyst under relevant water-gas shift reaction (WGSR) conditions. Under a CO gas environment, Cu nanoparticles decompose into smaller Cu species and redistribute on ZnO supports with either the crystalline Cu2O or amorphous CuOx phase due to a strong CO-Cu interaction. In addition, we visualize various metal-support interactions between Cu and ZnO under reaction conditions, e.g., ZnO clusters precipitating on Cu nanoparticles, which are critical to understand active sites of Cu/ZnO as catalysts for WGSR. These in situ atomic-scale observations highlight the dynamic interplays between Cu and ZnO that can be extended to other supported metal catalysts.
Collapse
Affiliation(s)
- Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Shuangbao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
19
|
Gao J, Sawant KJ, Miller JT, Zeng Z, Zemlyanov D, Greeley JP. Structural and Chemical Transformations of Zinc Oxide Ultrathin Films on Pd(111) Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35113-35123. [PMID: 34275280 DOI: 10.1021/acsami.1c07510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Structural and chemical transformations of ultrathin oxide films on transition metals lie at the heart of many complex phenomena in heterogeneous catalysis, such as the strong metal-support interaction (SMSI). However, there is limited atomic-scale understanding of these transformations, especially for irreducible oxides such as ZnO. Here, by combining density functional theory calculations and surface science techniques, including scanning tunneling microscopy, X-ray photoelectron spectroscopy, high-resolution electron energy loss spectroscopy, and low-energy electron diffraction, we investigated the interfacial interaction of well-defined ultrathin ZnOxHy films on Pd(111) under varying gas-phase conditions [ultrahigh vacuum (UHV), 5 × 10-7 mbar of O2, and a D2/O2 mixture] to shed light on the SMSI effect of irreducible oxides. Sequential treatment of submonolayer zinc oxide films in a D2/O2 mixture (1:4) at 550 K evoked reversible structural transformations from a bilayer to a monolayer and further to a Pd-Zn near-surface alloy, demonstrating that zinc oxide, as an irreducible oxide, can spread on metal surfaces and show an SMSI-like behavior in the presence of hydrogen. A mixed canonical-grand canonical phase diagram was developed to bridge the gap between UHV conditions and true SMSI environments, revealing that, in addition to surface alloy formation, certain ZnOxHy films with stoichiometries that do not exist in bulk are stabilized by Pd in the presence of hydrogen. Based on the combined theoretical and experimental observations, we propose that SMSI metal nanoparticle encapsulation for irreducible oxide supports such as ZnO involves both surface (hydroxy)oxide and surface alloy formation, depending on the environmental conditions.
Collapse
Affiliation(s)
- Junxian Gao
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Kaustubh J Sawant
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 W State Street, West Lafayette, Indiana 47907, United States
| | - Jeffrey P Greeley
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| |
Collapse
|
20
|
Chen S, Abdel-Mageed AM, Mochizuki C, Ishida T, Murayama T, Rabeah J, Parlinska-Wojtan M, Brückner A, Behm RJ. Controlling the O-Vacancy Formation and Performance of Au/ZnO Catalysts in CO 2 Reduction to Methanol by the ZnO Particle Size. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shilong Chen
- Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany
| | - Ali M. Abdel-Mageed
- Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany
| | - Chihiro Mochizuki
- Research Center for Gold Chemistry, Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 192-0397 Tokyo, Japan
| | - Tamao Ishida
- Research Center for Gold Chemistry, Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 192-0397 Tokyo, Japan
| | - Toru Murayama
- Research Center for Gold Chemistry, Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 192-0397 Tokyo, Japan
| | - Jabor Rabeah
- Leibniz Institute for Catalysis (LIKAT Rostock), D-18059 Rostock, Germany
| | | | - Angelika Brückner
- Leibniz Institute for Catalysis (LIKAT Rostock), D-18059 Rostock, Germany
| | - R. Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany
| |
Collapse
|
21
|
Zhu J, Ciolca D, Liu L, Parastaev A, Kosinov N, Hensen EJM. Flame Synthesis of Cu/ZnO-CeO 2 Catalysts: Synergistic Metal-Support Interactions Promote CH 3OH Selectivity in CO 2 Hydrogenation. ACS Catal 2021; 11:4880-4892. [PMID: 33898079 PMCID: PMC8057230 DOI: 10.1021/acscatal.1c00131] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Indexed: 11/28/2022]
Abstract
![]()
The hydrogenation
of CO2 to CH3OH is an important
reaction for future renewable energy scenarios. Herein, we compare
Cu/ZnO, Cu/CeO2, and Cu/ZnO–CeO2 catalysts
prepared by flame spray pyrolysis. The Cu loading and support composition
were varied to understand the role of Cu–ZnO and Cu–CeO2 interactions. CeO2 addition improves Cu dispersion
with respect to ZnO, owing to stronger Cu–CeO2 interactions.
The ternary Cu/ZnO–CeO2 catalysts displayed a substantially
higher CH3OH selectivity than binary Cu/CeO2 and Cu/ZnO catalysts. The high CH3OH selectivity in comparison
with a commercial Cu–ZnO catalyst is also confirmed for Cu/ZnO–CeO2 catalyst prepared with high Cu loading (∼40 wt %).
In situ IR spectroscopy was used to probe metal–support interactions
in the reduced catalysts and to gain insight into CO2 hydrogenation
over the Cu–Zn–Ce oxide catalysts. The higher CH3OH selectivity can be explained by synergistic Cu–CeO2 and Cu–ZnO interactions. Cu–ZnO interactions
promote CO2 hydrogenation to CH3OH by Zn-decorated
Cu active sites. Cu–CeO2 interactions inhibit the
reverse water–gas shift reaction due to a high formate coverage
of Cu and a high rate of hydrogenation of the CO intermediate to CH3OH. These insights emphasize the potential of fine-tuning
metal–support interactions to develop improved Cu-based catalysts
for CO2 hydrogenation to CH3OH.
Collapse
Affiliation(s)
- Jiadong Zhu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Diana Ciolca
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Liang Liu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
22
|
Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction. Nat Commun 2021; 12:1435. [PMID: 33664267 PMCID: PMC7933282 DOI: 10.1038/s41467-021-21604-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/01/2021] [Indexed: 11/08/2022] Open
Abstract
Although Cu/ZnO-based catalysts have been long used for the hydrogenation of CO2 to methanol, open questions still remain regarding the role and the dynamic nature of the active sites formed at the metal-oxide interface. Here, we apply high-pressure operando spectroscopy methods to well-defined Cu and Cu0.7Zn0.3 nanoparticles supported on ZnO/Al2O3, γ-Al2O3 and SiO2 to correlate their structure, composition and catalytic performance. We obtain similar activity and methanol selectivity for Cu/ZnO/Al2O3 and CuZn/SiO2, but the methanol yield decreases with time on stream for the latter sample. Operando X-ray absorption spectroscopy data reveal the formation of reduced Zn species coexisting with ZnO on CuZn/SiO2. Near-ambient pressure X-ray photoelectron spectroscopy shows Zn surface segregation and the formation of a ZnO-rich shell on CuZn/SiO2. In this work we demonstrate the beneficial effect of Zn, even in diluted form, and highlight the influence of the oxide support and the Cu-Zn interface in the reactivity.
Collapse
|
23
|
Li YF, Lu W, Chen K, Xia M, Jelle A, Ozin GA. Anchoring Ba
II
to Pd/H
y
WO
3−
x
Nanowires Promotes a Photocatalytic Reverse Water–Gas Shift Reaction. Chemistry 2020; 26:12355-12358. [DOI: 10.1002/chem.202002975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Young Feng Li
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Waylon Lu
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Kai Chen
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Meikun Xia
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Abdinoor Jelle
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Geoffrey A. Ozin
- Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
24
|
Laudenschleger D, Ruland H, Muhler M. Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al 2O 3 catalysts. Nat Commun 2020; 11:3898. [PMID: 32753573 PMCID: PMC7403733 DOI: 10.1038/s41467-020-17631-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 11/28/2022] Open
Abstract
The heterogeneously catalysed reaction of hydrogen with carbon monoxide and carbon dioxide (syngas) to methanol is nearly 100 years old, and the standard methanol catalyst Cu/ZnO/Al2O3 has been applied for more than 50 years. Still, the nature of the Zn species on the metallic Cu0 particles (interface sites) is heavily debated. Here, we show that these Zn species are not metallic, but have a positively charged nature under industrial methanol synthesis conditions. Our kinetic results are based on a self-built high-pressure pulse unit, which allows us to inject selective reversible poisons into the syngas feed passing through a fixed-bed reactor containing an industrial Cu/ZnO/Al2O3 catalyst under high-pressure conditions. This method allows us to perform surface-sensitive operando investigations as a function of the reaction conditions, demonstrating that the rate of methanol formation is only decreased in CO2-containing syngas mixtures when pulsing NH3 or methylamines as basic probe molecules.
Collapse
Affiliation(s)
- Daniel Laudenschleger
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Holger Ruland
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470, Mülheim an der Ruhr, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany.
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
25
|
The Challenge of CO Hydrogenation to Methanol: Fundamental Limitations Imposed by Linear Scaling Relations. Top Catal 2020. [DOI: 10.1007/s11244-020-01283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Ingale P, Knemeyer K, Piernavieja Hermida M, Naumann d’Alnoncourt R, Thomas A, Rosowski F. Atomic Layer Deposition of ZnO on Mesoporous Silica: Insights into Growth Behavior of ZnO via In-Situ Thermogravimetric Analysis. NANOMATERIALS 2020; 10:nano10050981. [PMID: 32443853 PMCID: PMC7279530 DOI: 10.3390/nano10050981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022]
Abstract
ZnO is a remarkable material with many applications in electronics and catalysis. Atomic layer deposition (ALD) of ZnO on flat substrates is an industrially applied and well-known process. Various studies describe the growth of ZnO layers on flat substrates. However, the growth characteristics and reaction mechanisms of atomic layer deposition of ZnO on mesoporous powders have not been well studied. This study investigates the ZnO ALD process based on diethylzinc (DEZn) and water with silica powder as substrate. In-situ thermogravimetric analysis gives direct access to the growth rates and reaction mechanisms of this process. Ex-situ analytics, e.g., N2 sorption analysis, XRD, XRF, HRTEM, and STEM-EDX mapping, confirm deposition of homogenous and thin films of ZnO on SiO2. In summary, this study offers new insights into the fundamentals of an ALD process on high surface area powders.
Collapse
Affiliation(s)
- Piyush Ingale
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; (P.I.); (K.K.); (M.P.H.); (F.R.)
| | - Kristian Knemeyer
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; (P.I.); (K.K.); (M.P.H.); (F.R.)
| | - Mar Piernavieja Hermida
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; (P.I.); (K.K.); (M.P.H.); (F.R.)
| | - Raoul Naumann d’Alnoncourt
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; (P.I.); (K.K.); (M.P.H.); (F.R.)
- Correspondence:
| | - Arne Thomas
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Frank Rosowski
- BasCat—UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany; (P.I.); (K.K.); (M.P.H.); (F.R.)
- Process Research and Chemical Engineering, BASF SE, 67056 Ludwigshafen, Germany
| |
Collapse
|
27
|
Heenemann M, Millet MM, Girgsdies F, Eichelbaum M, Risse T, Schlögl R, Jones T, Frei E. The Mechanism of Interfacial CO2 Activation on Al Doped Cu/ZnO. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Maria Heenemann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Marie-Mathilde Millet
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Frank Girgsdies
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Maik Eichelbaum
- Technische Hochschule Nürnberg Georg Simon Ohm, Faculty of Applied Chemistry, Institute of Analytical Chemistry, Keßlerplatz 12, 90489 Nürnberg, Germany
| | - Thomas Risse
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195 Berlin, Germany
| | - Robert Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, Heterogeneous Reactions, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Travis Jones
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Elias Frei
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
28
|
Schüttler KM, Bansmann J, Engstfeld AK, Behm RJ. Adlayer growth vs spontaneous (near-) surface alloy formation: Zn growth on Au(111). J Chem Phys 2020; 152:124701. [DOI: 10.1063/1.5145294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Konstantin M. Schüttler
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| | - Joachim Bansmann
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| | - Albert K. Engstfeld
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| | - R. Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| |
Collapse
|
29
|
Silva LP, Freitas MM, Terra LE, Coutinho AC, Passos FB. Preparation of CuO/ZnO/Nb2O5 catalyst for the water-gas shift reaction. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Jiang X, Nie X, Guo X, Song C, Chen JG. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem Rev 2020; 120:7984-8034. [DOI: 10.1021/acs.chemrev.9b00723] [Citation(s) in RCA: 456] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao Jiang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, 209 Academic Projects Building, University Park, Pennsylvania 16802, United States
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
31
|
Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 2020; 49:1385-1413. [DOI: 10.1039/c9cs00614a] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ever-increasing amount of anthropogenic carbon dioxide (CO2) emissions has resulted in great environmental impacts, the heterogeneous catalysis of CO2 hydrogenation to methanol is of great significance.
Collapse
Affiliation(s)
- Jiawei Zhong
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiaofeng Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Zhilian Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Binglian Liang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
32
|
Zheng H, Narkhede N, Han L, Zhang H, Li Z. Methanol synthesis from CO2: a DFT investigation on Zn-promoted Cu catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04061-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Wöll C. Structure and Chemical Properties of Oxide Nanoparticles Determined by Surface-Ligand IR Spectroscopy. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
34
|
Li YF, Lu W, Chen K, Duchesne P, Jelle A, Xia M, Wood TE, Ulmer U, Ozin GA. Cu Atoms on Nanowire Pd/HyWO3–x Bronzes Enhance the Solar Reverse Water Gas Shift Reaction. J Am Chem Soc 2019; 141:14991-14996. [DOI: 10.1021/jacs.9b08030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Young Feng Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Waylon Lu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Kai Chen
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Paul Duchesne
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abdinoor Jelle
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Meikun Xia
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Thomas E. Wood
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ulrich Ulmer
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Geoffrey A. Ozin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
35
|
Park J, Cho J, Lee Y, Park MJ, Lee WB. Practical Microkinetic Modeling Approach for Methanol Synthesis from Syngas over a Cu-Based Catalyst. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jongmin Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyeong Cho
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongkyu Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Won Bo Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
36
|
Hu B, Yin Y, Zhong Z, Wu D, Liu G, Hong X. Cu@ZIF-8 derived inverse ZnO/Cu catalyst with sub-5 nm ZnO for efficient CO2 hydrogenation to methanol. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02546k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu@ZIF-8 derived inverse ZnO/Cu with sub-5 nm ZnO acts as an efficient catalyst for CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
- Bing Hu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Yazhi Yin
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Zixin Zhong
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Dengdeng Wu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Guoliang Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
- Wuhan-Oxford Joint Catalysis Laboratory
| | - Xinlin Hong
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
- Wuhan-Oxford Joint Catalysis Laboratory
| |
Collapse
|
37
|
Zhu Y, Kong X, Zheng H, Zhu Y. Strong metal-oxide interactions induce bifunctional and structural effects for Cu catalysts. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Schittkowski J, Ruland H, Laudenschleger D, Girod K, Kähler K, Kaluza S, Muhler M, Schlögl R. Methanol Synthesis from Steel Mill Exhaust Gases: Challenges for the Industrial Cu/ZnO/Al2O3Catalyst. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julian Schittkowski
- Max Planck Institute for Chemical Energy Conversion,; Stiftstraße 34 - 36 45470 Mülheim an der Ruhr Germany
| | - Holger Ruland
- Max Planck Institute for Chemical Energy Conversion,; Stiftstraße 34 - 36 45470 Mülheim an der Ruhr Germany
| | - Daniel Laudenschleger
- Ruhr University Bochum; Laboratory of Industrial Chemistry; Universitätsstraße 150 44801 Bochum Germany
| | - Kai Girod
- Fraunhofer UMSICHT; Osterfelder Straße 3 46047 Oberhausen Germany
| | - Kevin Kähler
- Max Planck Institute for Chemical Energy Conversion,; Stiftstraße 34 - 36 45470 Mülheim an der Ruhr Germany
| | - Stefan Kaluza
- Fraunhofer UMSICHT; Osterfelder Straße 3 46047 Oberhausen Germany
| | - Martin Muhler
- Ruhr University Bochum; Laboratory of Industrial Chemistry; Universitätsstraße 150 44801 Bochum Germany
| | - Robert Schlögl
- Max Planck Institute for Chemical Energy Conversion,; Stiftstraße 34 - 36 45470 Mülheim an der Ruhr Germany
- Max Planck Society; Fritz Haber Institute; Faradayweg 4 - 6 14195 Berlin Germany
| |
Collapse
|
39
|
Reichenbach T, Mondal K, Jäger M, Vent-Schmidt T, Himmel D, Dybbert V, Bruix A, Krossing I, Walter M, Moseler M. Ab initio study of CO2 hydrogenation mechanisms on inverse ZnO/Cu catalysts. J Catal 2018. [DOI: 10.1016/j.jcat.2018.01.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Minyukova TP, Khassin AA, Yurieva TM. Controlling the Catalytic Properties of Copper-Containing Oxide Catalysts. KINETICS AND CATALYSIS 2018. [DOI: 10.1134/s0023158418010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Wong FH, Tiong TJ, Leong LK, Lin KS, Yap YH. Effects of ZnO on Characteristics and Selectivity of Coprecipitated Ni/ZnO/Al2O3 Catalysts for Partial Hydrogenation of Sunflower Oil. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Farng Hui Wong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor, Malaysia
| | - Timm Joyce Tiong
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Malaysia Campus, Jalan Broga 43500, Semenyih, Malaysia
| | - Loong Kong Leong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor, Malaysia
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chungli District, Taoyuan City 32003, Taiwan, Republic of China
| | - Yeow Hong Yap
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
42
|
Masoud N, Delannoy L, Schaink H, van der Eerden A, de Rijk JW, Silva TAG, Banerjee D, Meeldijk JD, de Jong KP, Louis C, de Jongh PE. Superior Stability of Au/SiO 2 Compared to Au/TiO 2 Catalysts for the Selective Hydrogenation of Butadiene. ACS Catal 2017; 7:5594-5603. [PMID: 28944089 PMCID: PMC5601997 DOI: 10.1021/acscatal.7b01424] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/14/2017] [Indexed: 11/29/2022]
Abstract
Supported gold nanoparticles are highly selective catalysts for a range of both liquid-phase and gas-phase hydrogenation reactions. However, little is known about their stability during gas-phase catalysis and the influence of the support thereon. We report on the activity, selectivity, and stability of 2-4 nm Au nanoparticulate catalysts, supported on either TiO2 or SiO2, for the hydrogenation of 0.3% butadiene in the presence of 30% propene. Direct comparison of the stability of the Au catalysts was possible as they were prepared via the same method but on different supports. At full conversion of butadiene, only 0.1% of the propene was converted for both supported catalysts, demonstrating their high selectivity. The TiO2-supported catalysts showed a steady loss of activity, which was recovered by heating in air. We demonstrated that the deactivation was not caused by significant metal particle growth or strong metal-support interaction, but rather, it is related to the deposition of carbonaceous species under reaction conditions. In contrast, all the SiO2-supported catalysts were highly stable, with very limited formation of carbonaceous deposits. It shows that SiO2-supported catalysts, despite their 2-3 times lower initial activities, clearly outperform TiO2-supported catalysts within a day of run time.
Collapse
Affiliation(s)
- Nazila Masoud
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Laurent Delannoy
- Laboratoire
de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7197, 4 Place Jussieu, Case 178, F-75252 Paris, France
| | - Herrick Schaink
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ad van der Eerden
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jan Willem de Rijk
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Tiago A. G. Silva
- Laboratoire
de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7197, 4 Place Jussieu, Case 178, F-75252 Paris, France
| | - Dipanjan Banerjee
- Dutch−Belgian
Beamline (DUBBLE), ESRF-The European Synchrotron, CS40220, 38043 CEDEX 9 Grenoble, France
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Johannes D. Meeldijk
- Electron
Microscopy Facility, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Krijn P. de Jong
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Catherine Louis
- Laboratoire
de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7197, 4 Place Jussieu, Case 178, F-75252 Paris, France
| | - Petra E. de Jongh
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
43
|
|
44
|
IR-Spectroscopic Study on the Interface of Cu-Based Methanol Synthesis Catalysts: Evidence for the Formation of a ZnO Overlayer. Top Catal 2017. [DOI: 10.1007/s11244-017-0850-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
|
46
|
Hu J, Song Y, Huang J, Li Y, Chen M, Wan H. New Insights into the Role of Al 2 O 3 in the Promotion of CuZnAl Catalysts: A Model Study. Chemistry 2017; 23:10632-10637. [PMID: 28544004 DOI: 10.1002/chem.201701697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Indexed: 11/05/2022]
Abstract
The Cu/Al2 O3 /ZnO(0001)-Zn ternary model catalysts and their binary analogues were prepared and characterized. It was found that Al2 O3 grew on the ZnO(0001)-Zn surface by a layer-by-layer model, whereas Cu grew on the ZnO(0001)-Zn surface as two-dimensional clusters up to 0.2 monolayers (ML), and thereafter formed three-dimensional clusters. Because of the layer-by-layer growth of Al2 O3 on the ZnO(0001)-Zn, Cu/Al2 O3 can be considered without the effect of ZnO. Ternary model catalyst Cu/Al2 O3 /ZnO(0001)-Zn, which has all three parts on the surface, was prepared by deposition of Cu on the surface of Al2 O3 /ZnO(0001)-Zn. Low-energy ion scattering spectra showed that Cu preferred to locate at the Al2 O3 /ZnO interfaces. Compared with Cu/ZnO, the addition of Al2 O3 obviously suppressed the reduction of copper oxides and led to a higher concentration of Cu+ . The Cu clusters were found to be covered by thin ZnOx overlayers after reduction of Cu/Al2 O3 /ZnO(0001)-Zn by using H2 . Therefore, the high activity of industrial Cu/ZnO/Al2 O3 catalysts may origin from Cu+ -rich clusters at the Al2 O3 /ZnO interface that are covered by thin ZnOx overlayers.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Yanying Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Junjie Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Yangyang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Huilin Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| |
Collapse
|
47
|
Richard AR, Fan M. Low-Pressure Hydrogenation of CO2 to CH3OH Using Ni-In-Al/SiO2 Catalyst Synthesized via a Phyllosilicate Precursor. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00848] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anthony R. Richard
- Department
of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Maohong Fan
- Department
of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School
of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
48
|
Wang Y, Wöll C. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chem Soc Rev 2017; 46:1875-1932. [DOI: 10.1039/c6cs00914j] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we highlight recent progress (2008–2016) in infrared reflection absorption spectroscopy (IRRAS) studies on oxide powders achieved by using different types of metal oxide single crystals as reference systems.
Collapse
Affiliation(s)
- Yuemin Wang
- Institute of Functional Interfaces
- Karlsruhe Institute of Technology
- Eggenstein-Leopoldshafen
- Germany
| | - Christof Wöll
- Institute of Functional Interfaces
- Karlsruhe Institute of Technology
- Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|
49
|
Li MMJ, Zeng Z, Liao F, Hong X, Tsang SCE. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. J Catal 2016. [DOI: 10.1016/j.jcat.2016.03.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nat Commun 2016; 7:13057. [PMID: 27703166 PMCID: PMC5476790 DOI: 10.1038/ncomms13057] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/31/2016] [Indexed: 01/17/2023] Open
Abstract
For decades it has been debated whether the conversion of synthesis gas to methanol over copper catalysts is sensitive or insensitive to the structure of the copper surface. Here we have systematically investigated the effect of the copper particle size in the range where changes in surface structure occur, that is, below 10 nm, for catalysts with and without zinc promotor at industrially relevant conditions for methanol synthesis. Regardless of the presence or absence of a zinc promotor in the form of zinc oxide or zinc silicate, the surface-specific activity decreases significantly for copper particles smaller than 8 nm, thus revealing structure sensitivity. In view of recent theoretical studies we propose that the methanol synthesis reaction takes place at copper surface sites with a unique configuration of atoms such as step-edge sites, which smaller particles cannot accommodate. The dependence of the Cu-catalysed methanol synthesis on the structure of the Cu surface is a matter of debate. Here the authors show that activity falls for Cu and Cu-Zn particles below 8 nm and propose this is due to the absence of certain atomic configurations on the smaller particle surfaces.
Collapse
|