1
|
Sankaranarayanan K, Jensen KF. Similarity based functionalization for enumeration of synthetically plausible chemical libraries surrounding a target. Chem Sci 2024; 15:10221-10231. [PMID: 38966353 PMCID: PMC11220589 DOI: 10.1039/d4sc00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
Functionalization of lead compounds to create analogs is a challenging step in discovering new molecules with desired properties and it is conducted throughout the chemical industry, including pharmaceuticals and agrochemicals. The process can be time-consuming and expensive, requiring expert intuition and experience. To help address synthesis planning challenges in late-stage functionalization, we have developed a molecular similarity approach that proposes single-step functionalization reactions based on analogy to precedent reactions. The developed approach mimics reaction strategies and suggests co-reactants defined implicitly by a corpus of known reactions. Using ca. 348 k reactions from the patent literature as a knowledge base, the recorded products or close analogs are among the top 20 proposed products in 74% of ∼44 k test reactions. The combinatorial growth inherent in recursive applications of the tool allows the enumeration of chemical libraries surrounding a target compound of interest. Moreover, each step of the resulting library synthesis leverages common chemical transformations reported in the literature accessible to most chemists.
Collapse
Affiliation(s)
- Karthik Sankaranarayanan
- Department of Agriculture and Biological Engineering, Purdue University West Lafayette Indiana 47907 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|
2
|
Bouquet J, Auberger N, Ashmus R, King D, Bordes A, Fontelle N, Nakagawa S, Madden Z, Proceviat C, Kato A, Désiré J, Vocadlo DJ, Blériot Y. Structural variation of the 3-acetamido-4,5,6-trihydroxyazepane iminosugar through epimerization and C-alkylation leads to low micromolar HexAB and NagZ inhibitors. Org Biomol Chem 2021; 20:619-629. [PMID: 34940771 DOI: 10.1039/d1ob02280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of seven-membered iminosugars derived from a 3S-acetamido-4R,5R,6S-trihydroxyazepane scaffold and their evaluation as inhibitors of functionally related exo-N-acetylhexosaminidases including human O-GlcNAcase (OGA), human lysosomal β-hexosaminidase (HexAB), and Escherichia coli NagZ. Capitalizing on the flexibility of azepanes and the active site tolerances of hexosaminidases, we explore the effects of epimerization of stereocenters at C-3, C-5 and C-6 and C-alkylation at the C-2 or C-7 positions. Accordingly, epimerization at C-6 (L-ido) and at C-5 (D-galacto) led to selective HexAB inhibitors whereas introduction of a propyl group at C-7 on the C-3 epimer furnished a potent NagZ inhibitor.
Collapse
Affiliation(s)
- J Bouquet
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - N Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - R Ashmus
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - D King
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - A Bordes
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - N Fontelle
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - S Nakagawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Z Madden
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - C Proceviat
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - A Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - J Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - D J Vocadlo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - Y Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| |
Collapse
|
3
|
Elbatrawy AA, Kim EJ, Nam G. O‐GlcNAcase: Emerging Mechanism, Substrate Recognition and Small‐Molecule Inhibitors. ChemMedChem 2020; 15:1244-1257. [DOI: 10.1002/cmdc.202000077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/22/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmed A. Elbatrawy
- Center for Neuro-Medicine Brain Science Institute Korea Institutes of Science and Technology Seoul 02792 (Republic of Korea
- Division of Bio-Med KIST school Korea University of Science and Technology (UST) Gajungro 217 Youseong-gu Daejeon (Republic of Korea
| | - Eun Ju Kim
- Daegu University Department of Science Education-Chemistry Gyeongsan-si, Gyeongsangbuk-do Gyeongbuk 38453 (Republic of Korea
| | - Ghilsoo Nam
- Center for Neuro-Medicine Brain Science Institute Korea Institutes of Science and Technology Seoul 02792 (Republic of Korea
- Division of Bio-Med KIST school Korea University of Science and Technology (UST) Gajungro 217 Youseong-gu Daejeon (Republic of Korea
| |
Collapse
|
4
|
Wang J, Wen Y, Zheng L, Dou B, Li L, Zhao K, Wang N, Ma J. Characterization of chemical profiles of pH-sensitive cleavable D-gluconhydroximo-1, 5-lactam hydrolysates by LC–MS: A potential agent for promoting tumor-targeted drug delivery. J Pharm Biomed Anal 2020; 185:113244. [DOI: 10.1016/j.jpba.2020.113244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
|
5
|
Selnick HG, Hess JF, Tang C, Liu K, Schachter JB, Ballard JE, Marcus J, Klein DJ, Wang X, Pearson M, Savage MJ, Kaul R, Li TS, Vocadlo DJ, Zhou Y, Zhu Y, Mu C, Wang Y, Wei Z, Bai C, Duffy JL, McEachern EJ. Discovery of MK-8719, a Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies. J Med Chem 2019; 62:10062-10097. [DOI: 10.1021/acs.jmedchem.9b01090] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Harold G. Selnick
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - J. Fred Hess
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Cuyue Tang
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kun Liu
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Joel B. Schachter
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jeanine E. Ballard
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jacob Marcus
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Daniel J. Klein
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaohai Wang
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Michelle Pearson
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Mary J. Savage
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ramesh Kaul
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - Tong-Shuang Li
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - David J. Vocadlo
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - Yuanxi Zhou
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - Yongbao Zhu
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| | - Changwei Mu
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Yaode Wang
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Zhongyong Wei
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Chang Bai
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Joseph L. Duffy
- Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ernest J. McEachern
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, British Columbia V5A 4B5, Canada
| |
Collapse
|
6
|
Coyle T, Wu L, Debowski AW, Davies GJ, Stubbs KA. Synthetic and Crystallographic Insight into Exploiting sp 2 Hybridization in the Development of α-l-Fucosidase Inhibitors. Chembiochem 2019; 20:1365-1368. [PMID: 30663832 PMCID: PMC6589914 DOI: 10.1002/cbic.201800710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/20/2019] [Indexed: 11/25/2022]
Abstract
The sugar fucose plays a myriad of roles in biological recognition. Enzymes hydrolyzing fucose from glycoconjugates, α-l-fucosidases, are important targets for inhibitor and probe development. Here we describe the synthesis and evaluation of novel α-l-fucosidase inhibitors, with X-ray crystallographic analysis using an α-l-fucosidase from Bacteroides thetaiotamicron helping to lay a foundation for future development of inhibitors for this important enzyme class.
Collapse
Affiliation(s)
- Travis Coyle
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA6009Australia
- Present address: School of ChemistryUniversity College DublinStillorgan RoadBelfield, Dublin4Ireland
| | - Liang Wu
- Department of Chemistry, York Structural LaboratoryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Aleksandra W. Debowski
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA6009Australia
| | - Gideon J. Davies
- Department of Chemistry, York Structural LaboratoryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Keith A. Stubbs
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA6009Australia
| |
Collapse
|
7
|
Dong L, Shen S, Xu Y, Wang L, Feng R, Zhang J, Lu H. Computational Studies on the Potency and Selectivity of PUGNAc Derivatives Against GH3, GH20, and GH84 β-N-acetyl-D-hexosaminidases. Front Chem 2019; 7:235. [PMID: 31111026 PMCID: PMC6499197 DOI: 10.3389/fchem.2019.00235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
β-N-acetyl-D-hexosaminidases have attracted significant attention due to their crucial role in diverse physiological functions including antibacterial synergists, pathogen defense, virus infection, lysosomal storage, and protein glycosylation. In particular, the GH3 β-N-acetyl-D-hexosaminidase of V. cholerae (VcNagZ), human GH20 β-N-acetyl-D-hexosaminidase B (HsHexB), and human GH84 β-N-acetyl-D-hexosaminidase (hOGA) are three important representative glycosidases. These have been found to be implicated in β-lactam resistance (VcNagZ), lysosomal storage disorders (HsHexB) and Alzheimer's disease (hOGA). Considering the profound effects of these three enzymes, many small molecule inhibitors with good potency and selectivity have been reported to regulate the corresponding physiological functions. In this paper, the best-known inhibitors PUGNAc and two of its derivatives (N-valeryl-PUGNAc and EtBuPUG) were selected as model compounds and docked into the active pockets of VcNagZ, HsHexB, and hOGA, respectively. Subsequently, molecular dynamics simulations of the nine systems were performed to systematically compare their binding modes from active pocket architecture and individual interactions. Furthermore, the binding free energy and free energy decomposition are calculated using the MM/GBSA methods to predict the binding affinities of enzyme-inhibitor systems and to quantitatively analyze the contribution of each residue. The results show that PUGNAc is deeply-buried in the active pockets of all three enzymes, which indicates its potency (but not selectivity) against VcNagZ, HsHexB, and hOGA. However, EtBuPUG, bearing branched 2-isobutamido, adopted strained conformations and was only located in the active pocket of VcNagZ. It has completely moved out of the pocket of HsHexB and lacks interactions with HsHexB. This indicates why the selectivity of EtBuPUG to VcNagZ/HsHexB is the largest, reaching 968-fold. In addition, the contributions of the catalytic residue Asp253 (VcNagZ), Asp254 (VcNagZ), Asp175 (hOGA), and Asp354 (HsHexB) are important to distinguish the activity and selectivity of these inhibitors. The results of this study provide a helpful structural guideline to promote the development of novel and selective inhibitors against specific β-N-acetyl-D-hexosaminidases.
Collapse
Affiliation(s)
- Lili Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shengqiang Shen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yefei Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Leng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ruirui Feng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Meekrathok P, Stubbs KA, Suginta W. Potent inhibition of a GH20 exo-β-N-acetylglucosaminidase from marine Vibrio bacteria by reaction intermediate analogues. Int J Biol Macromol 2018; 115:1165-1173. [DOI: 10.1016/j.ijbiomac.2018.04.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/14/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
|
9
|
Chen W, Shen S, Dong L, Zhang J, Yang Q. Selective inhibition of β-N-acetylhexosaminidases by thioglycosyl–naphthalimide hybrid molecules. Bioorg Med Chem 2018; 26:394-400. [DOI: 10.1016/j.bmc.2017.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023]
|
10
|
Coyle T, Debowski AW, Varrot A, Stubbs KA. Exploiting sp 2 -Hybridisation in the Development of Potent 1,5-α-l-Arabinanase Inhibitors. Chembiochem 2017; 18:974-978. [PMID: 28266777 DOI: 10.1002/cbic.201700073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 11/07/2022]
Abstract
The synthesis of potent inhibitors of GH93 arabinanases as well as a synthesis of a chromogenic substrate to measure GH93 arabinanase activity are described. An insight into the reasons behind the potency of the inhibitors was gained through X-ray crystallographic analysis of the arabinanase Arb93A from Fusarium graminearum. These compounds lay a foundation for future inhibitor development as well as for the use of the chromogenic substrate in biochemical studies of GH93 arabinanases.
Collapse
Affiliation(s)
- Travis Coyle
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Present address: School of Chemistry, University College Dublin, Stillorgan Road, Belfield, Dublin, 4, Ireland
| | - Aleksandra W Debowski
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Annabelle Varrot
- CERMAV, Université Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
11
|
Vadlamani G, Stubbs KA, Désiré J, Blériot Y, Vocadlo DJ, Mark BL. Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance. Protein Sci 2017; 26:1161-1170. [PMID: 28370529 DOI: 10.1002/pro.3166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/10/2022]
Abstract
NagZ is an N-acetyl-β-d-glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram-negative bacteria by removing N-acetyl-glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6-anhydromuramoyl-peptide products generated by NagZ activate β-lactam resistance in many Gram-negative bacteria by inducing the expression of AmpC β-lactamase. Blocking NagZ activity can thereby suppress β-lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X-ray structures of NagZ bound to the potent yet non-selective N-acetyl-β-glucosaminidase inhibitor PUGNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate), and two NagZ-selective inhibitors - EtBuPUG, a PUGNAc derivative bearing a 2-N-ethylbutyryl group, and MM-156, a 3-N-butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM-156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N-acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.
Collapse
Affiliation(s)
- Grishma Vadlamani
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Jérôme Désiré
- IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Yves Blériot
- IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5S 1P6
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2
| |
Collapse
|
12
|
Zhou QF, Zhang K, Cai L, Kwon O. Phosphine-Catalyzed Intramolecular Cyclizations of α-Nitroethylallenoates Forming (Z)-Furanone Oximes. Org Lett 2016; 18:2954-7. [PMID: 27232451 PMCID: PMC4922534 DOI: 10.1021/acs.orglett.6b01299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and efficient phosphine-catalyzed intramolecular cyclization of α-nitroethylallenic esters is reported. This process appears to be practical for the stereoselective syntheses of (Z)-furan-2(3H)-one oxime derivatives in excellent yields. Mechanistically, the reaction involves a phosphine-catalyzed Michael addition of an alkylideneazinate and rearrangement of the cyclic nitronate to the α-nitrosodihydrofuran.
Collapse
Affiliation(s)
- Qing-Fa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Kui Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Lingchao Cai
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
13
|
Cekic N, Heinonen JE, Stubbs KA, Roth C, He Y, Bennet AJ, McEachern EJ, Davies GJ, Vocadlo DJ. Analysis of transition state mimicry by tight binding aminothiazoline inhibitors provides insight into catalysis by human O-GlcNAcase. Chem Sci 2016; 7:3742-3750. [PMID: 29997861 PMCID: PMC6008586 DOI: 10.1039/c6sc00370b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022] Open
Abstract
2′-Aminothiazoline inhibitors of human OGA are tight binding transition state mimics for which binding depends on inhibitor pKa.
The modification of nucleocytoplasmic proteins with O-linked N-acetylglucosamine (O-GlcNAc) plays diverse roles in multicellular organisms. Inhibitors of O-GlcNAc hydrolase (OGA), the enzyme that removes O-GlcNAc from proteins, lead to increased O-GlcNAc levels in cells and are seeing widespread adoption in the field as a research tool used in cells and in vivo. Here we synthesize and study a series of tight binding carbohydrate-based inhibitors of human OGA (hOGA). The most potent of these 2′-aminothiazolines binds with a sub-nanomolar Ki value to hOGA (510 ± 50 pM) and the most selective has greater than 1 800 000-fold selectivity for hOGA over mechanistically related human lysosomal β-hexosaminidase. Structural data of inhibitors in complex with an hOGA homologue reveals the basis for variation in binding among these compounds. Using linear free energy analyses, we show binding of these 2′-aminothiazoline inhibitors depends on the pKa of the aminothiazoline ring system, revealing the protonation state of the inhibitor is a key driver of binding. Using series of inhibitors and synthetic substrates, we show that 2′-aminothiazoline inhibitors are transition state analogues of hOGA that bind to the enzyme up to 1-million fold more tightly than the substrate. These collective data support an oxazoline, rather than a protonated oxazolinium ion, intermediate being formed along the reaction pathway. Inhibitors from this series will prove generally useful tools for the study of O-GlcNAc. The new insights gained here, into the catalytic mechanism of hOGA and the fundamental drivers of potency and selectivity of OGA inhibitors, should enable tuning of hOGA inhibitors with desirable properties.
Collapse
Affiliation(s)
- N Cekic
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - J E Heinonen
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - K A Stubbs
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada . .,School of Chemistry and Biochemistry , The University of Western Australia (M313) , 35 Stirling Highway , Crawley , WA 6009 , Australia
| | - C Roth
- York Structural Biology Laboratory , Department of Chemistry , The University of York , YO10 5DD , UK
| | - Y He
- York Structural Biology Laboratory , Department of Chemistry , The University of York , YO10 5DD , UK
| | - A J Bennet
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - E J McEachern
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - G J Davies
- York Structural Biology Laboratory , Department of Chemistry , The University of York , YO10 5DD , UK
| | - D J Vocadlo
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada . .,Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
14
|
Hattie M, Cekic N, Debowski AW, Vocadlo DJ, Stubbs KA. Modifying the phenyl group of PUGNAc: reactivity tuning to deliver selective inhibitors for N-acetyl-d-glucosaminidases. Org Biomol Chem 2016; 14:3193-7. [DOI: 10.1039/c6ob00297h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of analogues of the potentN-acetylhexosamindase inhibitor PUGNAc are described and were found to vary in both potency and selectivity against a set of biologically importantN-acetyl-d-glucosaminidases.
Collapse
Affiliation(s)
- Mitchell Hattie
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
| | - Nevena Cekic
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| | - Aleksandra W. Debowski
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
- School of Pathology and Laboratory Medicine
| | - David J. Vocadlo
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
- Department of Molecular Biology and Biochemistry
| | - Keith A. Stubbs
- School of Chemistry and Biochemistry
- The University of Western Australia
- Crawley
- Australia
| |
Collapse
|
15
|
Abstract
The synthesis and chemical and physicochemical properties as well as biological and medical applications of various hydroxylamine-functionalized carbohydrate derivatives are summarized.
Collapse
Affiliation(s)
- N. Chen
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| | - J. Xie
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| |
Collapse
|
16
|
Ayers BJ, Glawar AFG, Martínez RF, Ngo N, Liu Z, Fleet GWJ, Butters TD, Nash RJ, Yu CY, Wormald MR, Nakagawa S, Adachi I, Kato A, Jenkinson SF. Nine of 16 Stereoisomeric Polyhydroxylated Proline Amides Are Potent β-N-Acetylhexosaminidase Inhibitors. J Org Chem 2014; 79:3398-409. [DOI: 10.1021/jo500157p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Benjamin J. Ayers
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Andreas F. G. Glawar
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - R. Fernando Martínez
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Nigel Ngo
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Zilei Liu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Terry D. Butters
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Robert J. Nash
- Phytoquest Limited,
IBERS, Plas Gogerddan, Ceredigion, Aberystwyth, SY23 3EB, U.K
| | - Chu-Yi Yu
- CAS
Key Laboratory of Molecular Recognition and Function, Institute of
Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Mark R. Wormald
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Shinpei Nakagawa
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
17
|
Stubbs KA, Bacik JP, Perley-Robertson GE, Whitworth GE, Gloster TM, Vocadlo DJ, Mark BL. The development of selective inhibitors of NagZ: increased susceptibility of Gram-negative bacteria to β-lactams. Chembiochem 2013; 14:1973-81. [PMID: 24009110 PMCID: PMC3920638 DOI: 10.1002/cbic.201300395] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Indexed: 11/21/2022]
Abstract
The increasing incidence of inducible chromosomal AmpC β-lactamases within the clinic is a growing concern because these enzymes deactivate a broad range of even the most recently developed β-lactam antibiotics. As a result, new strategies are needed to block the action of this antibiotic resistance enzyme. Presented here is a strategy to combat the action of inducible AmpC by inhibiting the β-glucosaminidase NagZ, which is an enzyme involved in regulating the induction of AmpC expression. A divergent route facilitating the rapid synthesis of a series of N-acyl analogues of 2-acetamido-2-deoxynojirimycin is reported here. Among these compounds are potent NagZ inhibitors that are selective against functionally related human enzymes. These compounds reduce minimum inhibitory concentration values for β-lactams against a clinically relevant Gram-negative bacterium bearing inducible chromosomal AmpC β-lactamase, Pseudomonas aeruginosa. The structure of a NagZ–inhibitor complex provides insight into the molecular basis for inhibition by these compounds.
Collapse
Affiliation(s)
- Keith A Stubbs
- School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia).
| | | | | | | | | | | | | |
Collapse
|
18
|
Pluvinage B, Stubbs KA, Hattie M, Vocadlo DJ, Boraston AB. Inhibition of the family 20 glycoside hydrolase catalytic modules in the Streptococcus pneumoniae exo-β-d-N-acetylglucosaminidase, StrH. Org Biomol Chem 2013; 11:7907-15. [DOI: 10.1039/c3ob41579a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Sumida T, Stubbs KA, Ito M, Yokoyama S. Gaining insight into the inhibition of glycoside hydrolase family 20 exo-β-N-acetylhexosaminidases using a structural approach. Org Biomol Chem 2012; 10:2607-12. [PMID: 22367352 DOI: 10.1039/c2ob06636j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One useful methodology that has been used to give insight into how chemically synthesized inhibitors bind to enzymes and the reasons underlying their potency is crystallographic studies of inhibitor-enzyme complexes. Presented here is the X-ray structural analysis of a representative family 20 exo-β-N-acetylhexosaminidase in complex with various known classes of inhibitor of these types of enzymes, which highlights how different inhibitor classes can inhibit the same enzyme. This study will aid in the future development of inhibitors of not only exo-β-N-acetylhexosaminidases but also other types of glycoside hydrolases.
Collapse
Affiliation(s)
- Tomomi Sumida
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
20
|
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302:H1905-18. [PMID: 22287582 DOI: 10.1152/ajpheart.00445.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Zachara NE, Vosseller K, Hart GW. Detection and analysis of proteins modified by O-linked N-acetylglucosamine. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2011; Chapter 12:12.8.1-12.8.33. [PMID: 22045558 PMCID: PMC3349994 DOI: 10.1002/0471140864.ps1208s66] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
O-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that is implicated in the etiology of type II diabetes and Alzheimer's disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O-GlcNAc, studying the enzymes that add and remove O-GlcNAc, and mapping O-GlcNAc modification sites.
Collapse
Affiliation(s)
- Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Keith Vosseller
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Gerald W. Hart
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Zachara NE, Vosseller K, Hart GW. Detection and analysis of proteins modified by O-linked N-acetylglucosamine. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2011; Chapter 17:Unit 17.6. [PMID: 21732316 PMCID: PMC3329785 DOI: 10.1002/0471142727.mb1706s95] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that is implicated in the etiology of type II diabetes and Alzheimer's disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O-GlcNAc, studying the enzymes that add and remove O-GlcNAc, and mapping O-GlcNAc modification sites.
Collapse
Affiliation(s)
- Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Keith Vosseller
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Gerald W. Hart
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Dorfmueller HC, Borodkin VS, Schimpl M, Zheng X, Kime R, Read KD, van Aalten DMF. Cell-penetrant, nanomolar O-GlcNAcase inhibitors selective against lysosomal hexosaminidases. ACTA ACUST UNITED AC 2011; 17:1250-5. [PMID: 21095575 PMCID: PMC3032886 DOI: 10.1016/j.chembiol.2010.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/24/2010] [Accepted: 09/01/2010] [Indexed: 11/16/2022]
Abstract
Posttranslational modification of metazoan nucleocytoplasmic proteins with N-acetylglucosamine (O-GlcNAc) is essential, dynamic, and inducible and can compete with protein phosphorylation in signal transduction. Inhibitors of O-GlcNAcase, the enzyme removing O-GlcNAc, are useful tools for studying the role of O-GlcNAc in a range of cellular processes. We report the discovery of nanomolar OGA inhibitors that are up to 900,000-fold selective over the related lysosomal hexosaminidases. When applied at nanomolar concentrations on live cells, these cell-penetrant molecules shift the O-GlcNAc equilibrium toward hyper-O-GlcNAcylation with EC₅₀ values down to 3 nM and are thus invaluable tools for the study of O-GlcNAc cell biology.
Collapse
Affiliation(s)
- Helge C Dorfmueller
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD15EH, Scotland
| | | | | | | | | | | | | |
Collapse
|
24
|
Slámová K, Bojarová P, Petrásková L, Křen V. β-N-Acetylhexosaminidase: What's in a name…? Biotechnol Adv 2010; 28:682-93. [DOI: 10.1016/j.biotechadv.2010.04.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/17/2010] [Accepted: 04/24/2010] [Indexed: 01/28/2023]
|
25
|
Goddard-Borger ED, Stubbs KA. An improved route to PUGNAc and its galacto-configured congener. J Org Chem 2010; 75:3931-4. [PMID: 20443616 DOI: 10.1021/jo100614b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient, scalable, and reliable synthesis of PUGNAc and its galacto-configured congener is reported.
Collapse
Affiliation(s)
- Ethan D Goddard-Borger
- Chemistry M313, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | |
Collapse
|
26
|
Borodkin VS, van Aalten DM. An efficient and versatile synthesis of GlcNAcstatins-potent and selective O-GlcNAcase inhibitors built on the tetrahydroimidazo[1,2-a]pyridine scaffold. Tetrahedron 2010; 66:7838-7849. [PMID: 20976183 PMCID: PMC2956484 DOI: 10.1016/j.tet.2010.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/24/2010] [Accepted: 07/15/2010] [Indexed: 11/24/2022]
Abstract
We report a novel approach to the synthesis of GlcNAcstatins—members of an emerging family of potent and selective inhibitors of peptidyl O-GlcNAc hydrolase build upon tetrahydroimidazo[1,2-a]pyridine scaffold. Making use of a streamlined synthetic sequence featuring de novo synthesis of imidazoles from glyoxal, ammonia and aldehydes, a properly functionalised linear GlcNAcstatin precursor has been efficiently prepared starting from methyl 3,4-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-d-mannopyranoside. Subsequent ring closure of the linear precursor in an intramolecular SN2 process furnished the key fused d-mannose-imidazole GlcNAcstatin precursor in excellent yield. Finally, a sequence of transformations of this key intermediate granted expeditious access to a variety of the target compounds bearing a C(2)-phenethyl group and a range of N(8) acyl substituents. The versatility of the new approach stems from an appropriate choice of a set of acid labile permanent protecting groups on the monosaccharide starting material. Application was demonstrated by the synthesis of GlcNAcstatins containing polyunsaturated and thiol-containing amido substituents.
Collapse
|
27
|
Abstract
Glycosylation is one of the most common and complex forms of posttranslational modifications of proteins in eukaryotes. Seven different protein-carbohydrate linkages have been characterized on nuclear and cytoplasmic glycoproteins, the most widespread of which is the modification of Ser/Thr residues with monosaccharides of O-linked beta-N-acetylglucosamine (O-GlcNAc). O-GlcNAc modification is concentrated in nuclear proteins. O-GlcNAc is thought to regulate protein function in a manner analogous to phosphorylation; and is implicated in the regulation of transcription, the proteasome, insulin and MAP kinase signaling, the cell cycle, and the cellular stress response. In this chapter we focus on methods for the detection of O-GlcNAc-modified proteins and discuss general techniques for the detection and subsequent analysis of other protein-carbohydrate conjugates.
Collapse
|
28
|
He Y, Bubb AK, Stubbs KA, Gloster TM, Davies GJ. Inhibition of a bacterial O-GlcNAcase homologue by lactone and lactam derivatives: structural, kinetic and thermodynamic analyses. Amino Acids 2010; 40:829-39. [PMID: 20689974 DOI: 10.1007/s00726-010-0700-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/13/2010] [Indexed: 11/26/2022]
Abstract
The dynamic, intracellular, O-GlcNAc modification is of continuing interest and one whose study through targeted "chemical genetics" approaches is set to increase. Of particular importance is the inhibition of the O-GlcNAc hydrolase, O-GlcNAcase (OGA), since this provides a route to elevate cellular O-GlcNAc levels, and subsequent phenotypic evaluation. Such a small molecule approach complements other methods and potentially avoids changes in protein-protein interactions that manifest themselves in molecular biological approaches to O-GlcNAc transferase knockout or over-expression. Here we describe the kinetic, thermodynamic and three-dimensional structural analysis of a bacterial OGA analogue from Bacteroides thetaiotaomicron, BtGH84, in complex with a lactone oxime (LOGNAc) and a lactam form of N-acetylglucosamine and compare their binding signatures with that of the more potent inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc). We show that both LOGNAc and the N-acetyl gluconolactam are significantly poorer inhibitors than PUGNAc, which may reflect poorer mimicry of transition state geometry and steric clashes with the enzyme upon binding; drawbacks that the phenyl carbamate adornment of PUGNAc helps mitigate. Implications for the design of future generations of inhibitors are discussed.
Collapse
Affiliation(s)
- Yuan He
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK
| | | | | | | | | |
Collapse
|
29
|
Dorfmueller HC, Borodkin VS, Blair DE, Pathak S, Navratilova I, van Aalten DMF. Substrate and product analogues as human O-GlcNAc transferase inhibitors. Amino Acids 2010; 40:781-92. [PMID: 20640461 PMCID: PMC3040809 DOI: 10.1007/s00726-010-0688-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 07/01/2010] [Indexed: 11/03/2022]
Abstract
Protein glycosylation on serine/threonine residues with N-acetylglucosamine (O-GlcNAc) is a dynamic, inducible and abundant post-translational modification. It is thought to regulate many cellular processes and there are examples of interplay between O-GlcNAc and protein phosphorylation. In metazoa, a single, highly conserved and essential gene encodes the O-GlcNAc transferase (OGT) that transfers GlcNAc onto substrate proteins using UDP-GlcNAc as the sugar donor. Specific inhibitors of human OGT would be useful tools to probe the role of this post-translational modification in regulating processes in the living cell. Here, we describe the synthesis of novel UDP-GlcNAc/UDP analogues and evaluate their inhibitory properties and structural binding modes in vitro alongside alloxan, a previously reported weak OGT inhibitor. While the novel analogues are not active on living cells, they inhibit the enzyme in the micromolar range and together with the structural data provide useful templates for further optimisation.
Collapse
Affiliation(s)
- Helge C Dorfmueller
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | |
Collapse
|
30
|
O-GlcNAc modification of proteins affects volume regulation in Jurkat cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1207-17. [PMID: 20043149 DOI: 10.1007/s00249-009-0573-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/07/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
An increasing amount of recent research has demonstrated that the hexosamine biosynthesis pathway (HBP) plays a significant role in the modulation of intracellular signaling transduction pathways, and affects cellular processes via modification of protein by O-linked beta-N-acetylglucosamine (O-GlcNAc). Besides the many known and postulated effects of protein O-GlcNAc modifications, there is little available data on the role of O-GlcNAc in cellular volume regulation. Our objective was to test the effect of increased O-GlcNAc levels on hypotonia-induced volume changes in Jurkat cells. We pretreated Jurkat cells for 1 h with glucosamine (GlcN), PUGNAc (O-(2-acetamido-2-deoxy-D-glucopyranosylidene)-amino-N-phenylcarbamate) an inhibitor of O-GlcNAcase, or a high level of glucose to induce elevated levels of O-GlcNAc. We found that the response of Jurkat cells to hypotonic stress was significantly altered. The hypotonia induced cell-swelling was augmented in both GlcN and PUGNAc-treated cells and, to a lesser extent, in high glucose concentration-treated cells. Evaluated by NMR measurements, GlcN and PUGNAc treatment also significantly reduced intracellular water diffusion. Taken together, increased cell swelling and reduced water diffusion caused by elevated O-GlcNAc show notable analogy to the regulatory volume changes seen by magnetic resonance methods in nervous and other tissues in different pathological states. In conclusion, we demonstrate for the first time that protein O-GlcNAc could modulate cell volume regulation.
Collapse
|
31
|
Balcewich MD, Stubbs KA, He Y, James TW, Davies GJ, Vocadlo DJ, Mark BL. Insight into a strategy for attenuating AmpC-mediated beta-lactam resistance: structural basis for selective inhibition of the glycoside hydrolase NagZ. Protein Sci 2009; 18:1541-51. [PMID: 19499593 DOI: 10.1002/pro.137] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
NagZ is an exo-N-acetyl-beta-glucosaminidase, found within Gram-negative bacteria, that acts in the peptidoglycan recycling pathway to cleave N-acetylglucosamine residues off peptidoglycan fragments. This activity is required for resistance to cephalosporins mediated by inducible AmpC beta-lactamase. NagZ uses a catalytic mechanism involving a covalent glycosyl enzyme intermediate, unlike that of the human exo-N-acetyl-beta-glucosaminidases: O-GlcNAcase and the beta-hexosaminidase isoenzymes. These latter enzymes, which remove GlcNAc from glycoconjugates, use a neighboring-group catalytic mechanism that proceeds through an oxazoline intermediate. Exploiting these mechanistic differences we previously developed 2-N-acyl derivatives of O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), which selectively inhibits NagZ over the functionally related human enzymes and attenuate antibiotic resistance in Gram-negatives that harbor inducible AmpC. To understand the structural basis for the selectivity of these inhibitors for NagZ, we have determined its crystallographic structure in complex with N-valeryl-PUGNAc, the most selective known inhibitor of NagZ over both the human beta-hexosaminidases and O-GlcNAcase. The selectivity stems from the five-carbon acyl chain of N-valeryl-PUGNAc, which we found ordered within the enzyme active site. In contrast, a structure determination of a human O-GlcNAcase homologue bound to a related inhibitor N-butyryl-PUGNAc, which bears a four-carbon chain and is selective for both NagZ and O-GlcNAcase over the human beta-hexosamnidases, reveals that this inhibitor induces several conformational changes in the active site of this O-GlcNAcase homologue. A comparison of these complexes, and with the human beta-hexosaminidases, reveals how selectivity for NagZ can be engineered by altering the 2-N-acyl substituent of PUGNAc to develop inhibitors that repress AmpC mediated beta-lactam resistance.
Collapse
Affiliation(s)
- Misty D Balcewich
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Usuki H, Toyo-oka M, Kanzaki H, Okuda T, Nitoda T. Pochonicine, a polyhydroxylated pyrrolizidine alkaloid from fungus Pochonia suchlasporia var. suchlasporia TAMA 87 as a potent beta-N-acetylglucosaminidase inhibitor. Bioorg Med Chem 2009; 17:7248-53. [PMID: 19775896 DOI: 10.1016/j.bmc.2009.08.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
A new polyhydroxylated pyrrolizidine alkaloid designated as pochonicine (1) was isolated from a solid fermentation culture of the fungal strain Pochonia suchlasporia var. suchlasporia TAMA 87. The structure of 1 was determined using NMR and MS techniques as (1R*, 3S*, 5S*, 6S*, 7R*, 7a S*)-5-acetamidomethyl-3-hydroxymethyl-1,6,7-trihydroxypyrrolizidine. Pochonicine (1) showed potent inhibition against beta-N-acetylglucosaminidases (GlcNAcases) of various organisms including insects, fungi, mammals, and a plant but no inhibition against beta-glucosidase of almond, alpha-glucosidase of yeast, or chitinase of Bacillus sp. The GlcNAcase inhibitory activity of pochonicine (1) was comparable to nagstatin, a potent GlcNAcase inhibitor of natural origin.
Collapse
Affiliation(s)
- Hirokazu Usuki
- Laboratory of Bioresources Chemistry, The Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
33
|
Macauley MS, Vocadlo DJ. Increasing O-GlcNAc levels: An overview of small-molecule inhibitors of O-GlcNAcase. Biochim Biophys Acta Gen Subj 2009; 1800:107-21. [PMID: 19664691 DOI: 10.1016/j.bbagen.2009.07.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/17/2009] [Accepted: 07/28/2009] [Indexed: 11/25/2022]
Abstract
The O-GlcNAc modification is found on many nucleocytoplasmic proteins. The dynamic nature of O-GlcNAc, which in some ways is reminiscent of phosphorylation, has enabled investigators to modulate the stoichiometry of O-GlcNAc on proteins in order to study its function. Although several genetic and pharmacological methods for manipulating O-GlcNAc levels have been described, one of the most direct approaches of increasing global O-GlcNAc levels is by using small-molecule inhibitors of O-GlcNAcase (OGA). As the interest in increasing O-GlcNAc levels has grown, so too has the number of OGA inhibitors. This review provides an overview of the available methods of increasing O-GlcNAc levels, with a special emphasis on inhibition of OGA by small molecules. Known inhibitors of OGA are discussed with particular attention on those most suitable for cell-based biological studies. Several examples in which OGA inhibitors have been used to study the functional role of the O-GlcNAc modification in biological systems are discussed, highlighting the pros and cons of different inhibitors.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
34
|
Hanover JA, Krause MW, Love DC. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta Gen Subj 2009; 1800:80-95. [PMID: 19647043 DOI: 10.1016/j.bbagen.2009.07.017] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 07/10/2009] [Accepted: 07/18/2009] [Indexed: 12/14/2022]
Abstract
The enzymes of O-GlcNAc cycling couple the nutrient-dependent synthesis of UDP-GlcNAc to O-GlcNAc modification of Ser/Thr residues of key nuclear and cytoplasmic targets. This series of reactions culminating in O-GlcNAcylation of targets has been termed the hexosamine signaling pathway (HSP). The evolutionarily ancient enzymes of O-GlcNAc cycling have co-evolved with other signaling effecter molecules; they are recruited to their targets by many of the same mechanisms used to organize canonic kinase-dependent signaling pathways. This co-recruitment of the enzymes of O-GlcNAc cycling drives a binary switch impacting pathways of anabolism and growth (nutrient uptake) and catabolic pathways (nutrient sparing and salvage). The hexosamine signaling pathway (HSP) has thus emerged as a versatile cellular regulator modulating numerous cellular signaling cascades influencing growth, metabolism, cellular stress, circadian rhythm, and host-pathogen interactions. In mammals, the nutrient-sensing HSP has been harnessed to regulate such cell-specific functions as neutrophil migration, and activation of B-cells and T-cells. This review summarizes the diverse approaches being used to examine O-GlcNAc cycling. It will emphasize the impact O-GlcNAcylation has upon signaling pathways that may be become deregulated in diseases of the immune system, diabetes mellitus, cancer, cardiovascular disease, and neurodegenerative diseases.
Collapse
Affiliation(s)
- John A Hanover
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
35
|
Detecting the "O-GlcNAc-ome"; detection, purification, and analysis of O-GlcNAc modified proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009. [PMID: 19277546 DOI: 10.1007/978-1-59745-022-5_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The modification of Ser and Thr residues of cytoplasmic and nuclear proteins with a monosaccharide of O-linked beta-N-acetylglucosamine is an essential and dynamic post-translational modification of metazoans. Deletion of the O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, is lethal in mammalian cells highlighting the importance of this post-translational modification in regulating cellular function. O-GlcNAc is believed to modulate protein function in a manner analogous to protein phosphorylation. Notably, on some proteins O-GlcNAc and O-phosphate modify the same Ser/Thr residue, suggesting that a reciprocal relationship exists between these two post-translational modifications. In this chapter we describe the most robust techniques for the detection and purification of O-GlcNAc modified proteins, and discuss some more specialized techniques for site-mapping and detection of O-GlcNAc during mass spectrometry.
Collapse
|
36
|
GlcNAcstatins are nanomolar inhibitors of human O-GlcNAcase inducing cellular hyper-O-GlcNAcylation. Biochem J 2009; 420:221-7. [PMID: 19275764 PMCID: PMC2691177 DOI: 10.1042/bj20090110] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
O-GlcNAcylation is an essential, dynamic and inducible post-translational glycosylation of cytosolic proteins in metazoa and can show interplay with protein phosphorylation. Inhibition of OGA (O-GlcNAcase), the enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, is a useful strategy to probe the role of this modification in a range of cellular processes. In the present study, we report the rational design and evaluation of GlcNAcstatins, a family of potent, competitive and selective inhibitors of human OGA. Kinetic experiments with recombinant human OGA reveal that the GlcNAcstatins are the most potent human OGA inhibitors reported to date, inhibiting the enzyme in the sub-nanomolar to nanomolar range. Modification of the GlcNAcstatin N-acetyl group leads to up to 160-fold selectivity against the human lysosomal hexosaminidases which employ a similar substrate-assisted catalytic mechanism. Mutagenesis studies in a bacterial OGA, guided by the structure of a GlcNAcstatin complex, provides insight into the role of conserved residues in the human OGA active site. GlcNAcstatins are cell-permeant and, at low nanomolar concentrations, effectively modulate intracellular O-GlcNAc levels through inhibition of OGA, in a range of human cell lines. Thus these compounds are potent selective tools to study the cell biology of O-GlcNAc.
Collapse
|
37
|
Macauley MS, Vocadlo DJ. Enzymatic characterization and inhibition of the nuclear variant of human O-GlcNAcase. Carbohydr Res 2009; 344:1079-84. [PMID: 19423084 DOI: 10.1016/j.carres.2009.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Increasing cellular O-GlcNAc levels through pharmacological inhibition of O-GlcNAcase, the enzyme responsible for removal of the O-GlcNAc post-translational modification, is being increasingly used to aid in discerning the roles played by this form of intracellular glycosylation. Interestingly, two forms of O-GlcNAcase have been studied; a full-length isoform that is better characterized, and a shorter nuclear-localized variant, arising from failure to splice out one intron, which has not been as well characterized. Given the increasing use of O-GlcNAcase inhibitors as research tools, we felt that a clear understanding of how these inhibitors affect both isoforms of O-GlcNAcase is important for proper interpretation of studies making use of these inhibitors in cell culture and in vivo. Here we describe an enzymatic characterization of the nuclear variant of human O-GlcNAcase. We find that this short nuclear variant of O-GlcNAcase, which has the identical catalytic domain as the full-length enzyme, has similar trends in a pH-rate profile and Taft linear free energy analysis as the full-length enzyme. These findings strongly suggest that both enzymes use broadly similar transition states. Consistent with this interpretation, the short isoform is potently inhibited by several previously described inhibitors of full-length O-GlcNAcase including PUGNAc, NAG-thiazoline, and the selective O-GlcNAcase inhibitor NButGT. These findings contrast with earlier studies and suggest that studies using O-GlcNAcase inhibitors in cultured cells or in vivo can be interpreted with the knowledge that both these forms of O-GlcNAcase are inhibited when present.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | | |
Collapse
|
38
|
Stubbs K, Macauley M, Vocadlo D. A Selective Inhibitor Gal-PUGNAc of Human Lysosomal β-Hexosaminidases Modulates Levels of the Ganglioside GM2 in Neuroblastoma Cells. Angew Chem Int Ed Engl 2009; 48:1300-3. [DOI: 10.1002/anie.200804583] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Stubbs K, Macauley M, Vocadlo D. A Selective Inhibitor Gal-PUGNAc of Human Lysosomal β-Hexosaminidases Modulates Levels of the Ganglioside GM2 in Neuroblastoma Cells. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Macauley MS, Bubb AK, Martinez-Fleites C, Davies GJ, Vocadlo DJ. Elevation of global O-GlcNAc levels in 3T3-L1 adipocytes by selective inhibition of O-GlcNAcase does not induce insulin resistance. J Biol Chem 2008; 283:34687-95. [PMID: 18842583 PMCID: PMC3259902 DOI: 10.1074/jbc.m804525200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 10/06/2008] [Indexed: 11/06/2022] Open
Abstract
The O-GlcNAc post-translational modification is considered to act as a sensor of nutrient flux through the hexosamine biosynthetic pathway. A cornerstone of this hypothesis is that global elevation of protein O-GlcNAc levels, typically induced with the non-selective O-GlcNAcase inhibitor PUGNAc (O-(2-acetamido-2-deoxy-D-glycopyranosylidene) amino-N-phenylcarbamate), causes insulin resistance in adipocytes. Here we address the potential link between elevated O-GlcNAc and insulin resistance by using a potent and selective inhibitor of O-GlcNAcase (NButGT (1,2-dideoxy-2'-propyl-alpha-D-glucopyranoso-[2,1-D]-Delta 2'-thiazoline), 1200-fold selectivity). A comparison of the structures of a bacterial homologue of O-GlcNAcase in complex with PUGNAc or NButGT reveals that these inhibitors bind to the same region of the active site, underscoring the competitive nature of their inhibition of O-GlcNAcase and the molecular basis of selectivity. Treating 3T3-L1 adipocytes with NButGT induces rapid increases in global O-GlcNAc levels, but strikingly, NButGT treatment does not replicate the insulin desensitizing effects of the non-selective O-GlcNAcase inhibitor PUGNAc. Consistent with these observations, NButGT also does not recapitulate the impaired insulin-mediated phosphorylation of Akt that is induced by treatment with PUGNAc. Collectively, these results suggest that increases in global levels of O-GlcNAc-modified proteins of cultured adipocytes do not, on their own, cause insulin resistance.
Collapse
Affiliation(s)
- Matthew S. Macauley
- Department of Chemistry, Simon Fraser
University, Burnaby, British Columbia V5A 1S6, Canada and
York Structural Biology Laboratory, Department
of Chemistry, University of York, Heslington, York YO10 5YW, United
Kingdom
| | - Abigail K. Bubb
- Department of Chemistry, Simon Fraser
University, Burnaby, British Columbia V5A 1S6, Canada and
York Structural Biology Laboratory, Department
of Chemistry, University of York, Heslington, York YO10 5YW, United
Kingdom
| | - Carlos Martinez-Fleites
- Department of Chemistry, Simon Fraser
University, Burnaby, British Columbia V5A 1S6, Canada and
York Structural Biology Laboratory, Department
of Chemistry, University of York, Heslington, York YO10 5YW, United
Kingdom
| | - Gideon J. Davies
- Department of Chemistry, Simon Fraser
University, Burnaby, British Columbia V5A 1S6, Canada and
York Structural Biology Laboratory, Department
of Chemistry, University of York, Heslington, York YO10 5YW, United
Kingdom
| | - David J. Vocadlo
- Department of Chemistry, Simon Fraser
University, Burnaby, British Columbia V5A 1S6, Canada and
York Structural Biology Laboratory, Department
of Chemistry, University of York, Heslington, York YO10 5YW, United
Kingdom
| |
Collapse
|
41
|
Scaffidi A, Stubbs KA, Vocadlo DJ, Stick RV. The synthesis and biological evaluation of some carbocyclic analogues of PUGNAc. Carbohydr Res 2008; 343:2744-53. [DOI: 10.1016/j.carres.2008.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/04/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
|
42
|
A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol 2008; 4:483-90. [DOI: 10.1038/nchembio.96] [Citation(s) in RCA: 492] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 05/19/2008] [Indexed: 11/08/2022]
|
43
|
Affiliation(s)
- Heather E. Murrey
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
44
|
Usuki H, Nitoda T, Ichikawa M, Yamaji N, Iwashita T, Komura H, Kanzaki H. TMG-chitotriomycin, an Enzyme Inhibitor Specific for Insect and Fungal β-N-Acetylglucosaminidases, Produced by ActinomyceteStreptomyces anulatusNBRC 13369. J Am Chem Soc 2008; 130:4146-52. [DOI: 10.1021/ja077641f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Rexach JE, Clark PM, Hsieh-Wilson LC. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 2008; 4:97-106. [PMID: 18202679 DOI: 10.1038/nchembio.68] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
O-GlcNAc glycosylation is a unique, dynamic form of glycosylation found on intracellular proteins of all multicellular organisms. Studies suggest that O-GlcNAc represents a key regulatory modification in the brain, contributing to transcriptional regulation, neuronal communication and neurodegenerative disease. Recently, several new chemical tools have been developed to detect and study the modification, including chemoenzymatic tagging methods, quantitative proteomics strategies and small-molecule inhibitors of O-GlcNAc enzymes. Here we highlight some of the emerging roles for O-GlcNAc in the nervous system and describe how chemical tools have significantly advanced our understanding of the scope, functional significance and cellular dynamics of this modification.
Collapse
Affiliation(s)
- Jessica E Rexach
- Division of Chemistry and Chemical Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
46
|
Dias WB, Hart GW. O-GlcNAc modification in diabetes and Alzheimer's disease. MOLECULAR BIOSYSTEMS 2007; 3:766-72. [PMID: 17940659 DOI: 10.1039/b704905f] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Similar to phosphorylation, O-GlcNAcylation (or simply GlcNAcylation) is an abundant, dynamic, and inducible post-translational modification. In some cases, GlcNAcylation and phosphorylation occur at the same or adjacent sites, modulating each other. GlcNAcylated proteins are crucial in regulating virtually all cellular processes, including signaling, cell cycle, and transcription, among others. GlcNAcylation affects protein-protein interactions, activity, stability, and expression. Several GlcNAcylated proteins are involved in diabetes and Alzheimer's disease. Hyperglycemia increases GlcNAcylation of proteins within the insulin signaling pathway and contributes to insulin resistance. In addition, hyperinsulinemia and hyperlipidemia are also associated with increased GlcNAcylation, which affect and regulate several insulin signaling proteins, as well as proteins involved on the pathology of diabetes. With respect to Alzheimer's disease, several proteins involved in the etiology of the disease, including tau, neurofilaments, beta-amyloid precursor protein, and synaptosomal proteins are GlcNAcylated in normal brain. The impairment of brain glucose uptake/metabolism is a known metabolic defect in Alzheimer's neurons. Data support the hypothesis that hypoglycemia within the brain may reduce the normal GlcNAcylation of tau, exposing kinase acceptor sites, thus leading to hyperphosphorylation, which induces tangle formation and neuronal death. Alzheimer's disease and type II diabetes represent two metabolic disorders where dysfunctional protein GlcNAcylation/phosphorylation may be important for disease pathology.
Collapse
Affiliation(s)
- Wagner B Dias
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2185
| | | |
Collapse
|
47
|
Stubbs KA, Balcewich M, Mark BL, Vocadlo DJ. Small Molecule Inhibitors of a Glycoside Hydrolase Attenuate Inducible AmpC-mediated β-Lactam Resistance. J Biol Chem 2007; 282:21382-91. [PMID: 17439950 DOI: 10.1074/jbc.m700084200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing spread of plasmid-borne ampC-ampR operons is of considerable medical importance, since the AmpC beta-lactamases they encode confer high level resistance to many third generation cephalosporins. Induction of AmpC beta-lactamase from endogenous or plasmid-borne ampC-ampR operons is mediated by a catabolic inducer molecule, 1,6-anhydro-N-acetylmuramic acid (MurNAc) tripeptide, an intermediate of the cell wall recycling pathway derived from the peptidoglycan. Here we describe a strategy for attenuating the antibiotic resistance associated with the ampC-ampR operon by blocking the formation of the inducer molecule using small molecule inhibitors of NagZ, the glycoside hydrolase catalyzing the formation of this inducer molecule. The structure of the NagZ-inhibitor complex provides insight into the molecular basis for inhibition and enables the development of inhibitors with 100-fold selectivity for NagZ over functionally related human enzymes. These PUGNAc-derived inhibitors reduce the minimal inhibitory concentration (MIC) values for several clinically relevant cephalosporins in both wild-type and AmpC-hyperproducing strains lacking functional AmpD.
Collapse
Affiliation(s)
- Keith A Stubbs
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6
| | | | | | | |
Collapse
|
48
|
Knapp S, Abdo M, Ajayi K, Huhn RA, Emge TJ, Kim EJ, Hanover JA. Tautomeric modification of GlcNAc-thiazoline. Org Lett 2007; 9:2321-4. [PMID: 17508759 DOI: 10.1021/ol0706814] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potent O-GlcNAcase (OGA) inhibitor GlcNAc-thiazoline has been modified by buffer- or acylation-induced imine-to-enamine conversion and then electrophile or radical addition (Xn = D3, F, N3, OH, SMe, COCF3, CF3). Several functionalized GlcNAc-thiazolines show highly selective inhibition of OGA vs human hexosaminidase and thus have promise as tools for targeted investigations of OGA, an enzyme linked to diabetes and neurodegeneration. A new radical addition/fragmentation reaction of the N-(trifluoroacetyl)enamine has been discovered.
Collapse
Affiliation(s)
- Spencer Knapp
- Department of Chemistry and Chemical Biology, Rutgers-The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 2007; 446:1017-22. [PMID: 17460662 DOI: 10.1038/nature05815] [Citation(s) in RCA: 1100] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All animals and plants dynamically attach and remove O-linked beta-N-acetylglucosamine (O-GlcNAc) at serine and threonine residues on myriad nuclear and cytoplasmic proteins. O-GlcNAc cycling, which is tightly regulated by the concerted actions of two highly conserved enzymes, serves as a nutrient and stress sensor. On some proteins, O-GlcNAc competes directly with phosphate for serine/threonine residues. Glycosylation with O-GlcNAc modulates signalling, and influences protein expression, degradation and trafficking. Emerging data indicate that O-GlcNAc glycosylation has a role in the aetiology of diabetes and neurodegeneration.
Collapse
Affiliation(s)
- Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | | | |
Collapse
|
50
|
Whitworth GE, Macauley MS, Stubbs KA, Dennis RJ, Taylor EJ, Davies GJ, Greig IR, Vocadlo DJ. Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise. J Am Chem Soc 2007; 129:635-44. [PMID: 17227027 DOI: 10.1021/ja065697o] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O-GlcNAcase catalyzes the cleavage of beta-O-linked 2-acetamido-2-deoxy-beta-d-glucopyranoside (O-GlcNAc) from serine and threonine residues of post-translationally modified proteins. Two potent inhibitors of this enzyme are O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) and 1,2-dideoxy-2'-methyl-alpha-d-glucopyranoso[2,1-d]-Delta2'-thiazoline (NAG-thiazoline). Derivatives of these inhibitors differ in their selectivity for human O-GlcNAcase over the functionally related human lysosomal beta-hexosamindases, with PUGNAc derivatives showing modest selectivities and NAG-thiazoline derivatives showing high selectivities. The molecular basis for this difference in selectivities is addressed as is how well these inhibitors mimic the O-GlcNAcase-stabilized transition state (TS). Using a series of substrates, ground state (GS) inhibitors, and transition state mimics having analogous structural variations, we describe linear free energy relationships of log(KM/kcat) versus log(KI) for PUGNAc and NAG-thiazoline. These relationships suggest that PUGNAc is a poor transition state analogue, while NAG-thiazoline is revealed as a transition state mimic. Comparative X-ray crystallographic analyses of enzyme-inhibitor complexes reveal subtle molecular differences accounting for the differences in selectivities between these two inhibitors and illustrate key molecular interactions. Computational modeling of species along the reaction coordinate, as well as PUGNAc and NAG-thiazoline, provide insight into the features of NAG-thiazoline that resemble the transition state and reveal where PUGNAc fails to capture significant binding energy. These studies also point to late transition state poise for the O-GlcNAcase catalyzed reaction with significant nucleophilic participation and little involvement of the leaving group. The potency of NAG-thiazoline, its transition state mimicry, and its lack of traditional transition state-like design features suggest that potent rationally designed glycosidase inhibitors can be developed that exploit variation in transition state poise.
Collapse
Affiliation(s)
- Garrett E Whitworth
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|