1
|
Barajas-Mendoza I, Castillo-Rodríguez IO, Hernández-Rioja I, Ramirez-Apan T, Martínez-García M. Prednisone and ibuprofen conjugate Janus dendrimers and their anticancer activity. Steroids 2024; 205:109395. [PMID: 38461962 DOI: 10.1016/j.steroids.2024.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Drug release from hyperbranched Janus dendrimer-drug conjugates and their subsequent activity are influenced by the different drugs in each dendron and the linker. To understand these effects, we synthetized new Janus-type dendrimers of first and second generation. One dendron with 2,2-Bis(hydroxymethyl)propionic acid functionalized with ibuprofen and the second dendron was obtained with 3-aminopropanol-amidoamine and prednisone. The dendrimers were obtained by copper(I)-catalyzed Click azide-alkyne cycloaddition for the formation of a triazole as a dendrimeric nucleus of Janus dendrimer conjugates are reported. The influence of ibuprofen, prednisone, and spacer on cancer activity of Janus dendrimers conjugates is reported. The IC50 values of the anticancer activity on cancer cell lines the Janus dendrimer of second generation was higher in comparison to the first generation dendrimer. Similarly, the anticancer activity was higher compared to the dendron conjugates. Also, no cytotoxic effects of dendrons and dendrimers on non-cancerous kidney COS-7 cell line was observed. The interesting anticancer activity of the prepared prednisone-ibuprofen Janus dendrimer conjugates suggest that the dendrimers could be of potential use as new anticancer drug.
Collapse
Affiliation(s)
- Israel Barajas-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico
| | - Irving Osiel Castillo-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico
| | - Isabel Hernández-Rioja
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico
| | - Teresa Ramirez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán C.P. 04510, México D.F., Mexico.
| |
Collapse
|
2
|
Zhang D, Atochina-Vasserman EN, Maurya DS, Liu M, Xiao Q, Lu J, Lauri G, Ona N, Reagan EK, Ni H, Weissman D, Percec V. Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers. J Am Chem Soc 2021; 143:17975-17982. [PMID: 34672554 DOI: 10.1021/jacs.1c09585] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted and efficient delivery of nucleic acids with viral and synthetic vectors is the key step of genetic nanomedicine. The four-component lipid nanoparticle synthetic delivery systems consisting of ionizable lipids, phospholipids, cholesterol, and a PEG-conjugated lipid, assembled by microfluidic or T-tube technology, have been extraordinarily successful for delivery of mRNA to provide Covid-19 vaccines. Recently, we reported a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) synthetic delivery system for mRNA relying on amphiphilic Janus dendrimers and glycodendrimers developed in our laboratory. Amphiphilic Janus dendrimers consist of functional hydrophilic dendrons conjugated to hydrophobic dendrons. Co-assembly of IAJDs with mRNA into dendrimersome nanoparticles (DNPs) occurs by simple injection in acetate buffer, rather than by microfluidic devices, and provides a very efficient system for delivery of mRNA to lung. Here we report the replacement of most of the hydrophilic fragment of the dendron from IAJDs, maintaining only its ionizable amine, while changing its interconnecting group to the hydrophobic dendron from amide to ester. The resulting IAJDs demonstrated that protonated ionizable amines play dual roles of hydrophilic fragment and binding ligand for mRNA, changing delivery from lung to spleen and/or liver. Replacing the interconnecting ester with the amide switched the delivery back to lung. Delivery predominantly to liver is favored by pairs of odd and even alkyl groups in the hydrophobic dendron. This simple structural change transformed the targeted delivery of mRNA mediated with IAJDs, from lung to liver and spleen, and expands the utility of DNPs from therapeutics to vaccines.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - George Lauri
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Zhang D, Atochina-Vasserman EN, Maurya DS, Huang N, Xiao Q, Ona N, Liu M, Shahnawaz H, Ni H, Kim K, Billingsley MM, Pochan DJ, Mitchell MJ, Weissman D, Percec V. One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer Delivery Systems for mRNA. J Am Chem Soc 2021; 143:12315-12327. [PMID: 34324336 DOI: 10.1021/jacs.1c05813] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Efficient viral or nonviral delivery of nucleic acids is the key step of genetic nanomedicine. Both viral and synthetic vectors have been successfully employed for genetic delivery with recent examples being DNA, adenoviral, and mRNA-based Covid-19 vaccines. Viral vectors can be target specific and very efficient but can also mediate severe immune response, cell toxicity, and mutations. Four-component lipid nanoparticles (LNPs) containing ionizable lipids, phospholipids, cholesterol for mechanical properties, and PEG-conjugated lipid for stability represent the current leading nonviral vectors for mRNA. However, the segregation of the neutral ionizable lipid as droplets in the core of the LNP, the "PEG dilemma", and the stability at only very low temperatures limit their efficiency. Here, we report the development of a one-component multifunctional ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA that exhibits high activity at a low concentration of ionizable amines organized in a sequence-defined arrangement. Six libraries containing 54 sequence-defined IAJDs were synthesized by an accelerated modular-orthogonal methodology and coassembled with mRNA into dendrimersome nanoparticles (DNPs) by a simple injection method rather than by the complex microfluidic technology often used for LNPs. Forty four (81%) showed activity in vitro and 31 (57%) in vivo. Some, exhibiting organ specificity, are stable at 5 °C and demonstrated higher transfection efficiency than positive control experiments in vitro and in vivo. Aside from practical applications, this proof of concept will help elucidate the mechanisms of packaging and release of mRNA from DNPs as a function of ionizable amine concentration, their sequence, and constitutional isomerism of IAJDs.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ning Huang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Hamna Shahnawaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kyunghee Kim
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, United States
| | - Darrin J Pochan
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
4
|
Ohta Y, Abe Y, Hoka K, Baba E, Lee YP, Dai CA, Yokozawa T. Synthesis of amphiphilic, Janus diblock hyperbranched copolyamides and their self-assembly in water. Polym Chem 2019. [DOI: 10.1039/c8py01419a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An amphiphilic, Janus diblock hyperbranched copolyamide was synthesized by the condensation reaction, and the morphologies of aggregates in water were changed from spherical to dendritic-like structures via cylindrical-like structures in response to increasing temperature.
Collapse
Affiliation(s)
- Yoshihiro Ohta
- Department of Materials and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| | - Yuji Abe
- Department of Materials and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| | - Kenta Hoka
- Department of Materials and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| | - Eisuke Baba
- Department of Materials and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| | - Yu-Ping Lee
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chi-An Dai
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Tsutomu Yokozawa
- Department of Materials and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| |
Collapse
|
5
|
Li M, Wang KR, Yang JX, Peng YT, Liu YX, Zhang HX, Li XL. Supramolecular azasugar clusters based on an amphiphilic fatty-acid-deoxynojirimycin derivative as multivalent glycosidase inhibitors. J Mater Chem B 2019; 7:1379-1383. [DOI: 10.1039/c8tb03249a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel supramolecular multivalent glycosidase inhibitor was constructed based on the amphiphilic deoxynojirimycin derivative FA-DNJ.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Ke-Rang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Jian-Xing Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Ya-Tong Peng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Yi-Xuan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Hong-Xin Zhang
- Medical Comprehensive Experimental Center of Hebei University
- Baoding
- China
| | - Xiao-Liu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| |
Collapse
|
6
|
Drożdż W, Walczak A, Bessin Y, Gervais V, Cao XY, Lehn JM, Ulrich S, Stefankiewicz AR. Multivalent Metallosupramolecular Assemblies as Effective DNA Binding Agents. Chemistry 2018; 24:10802-10811. [DOI: 10.1002/chem.201801552] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Wojciech Drożdż
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Center for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznań Poland
| | - Anna Walczak
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Center for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznań Poland
| | - Yannick Bessin
- IBMM, UMR 5247; Université de Montpellier; CNRS; ENSCM, UM; Montpellier France
| | - Virginie Gervais
- IPBS (Institut de Pharmacologie et de Biologie Structurale); Université de Toulouse; CNRS; UPS; 205 route de Narbonne 31077 Toulouse France
| | - Xiao-Yu Cao
- Laboratoire de Chimie Supramoléculaire; Institut de Science et d'Ingénierie Supramoléculaires (ISIS); UMR 7006; CNRS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire; Institut de Science et d'Ingénierie Supramoléculaires (ISIS); UMR 7006; CNRS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Sébastien Ulrich
- IBMM, UMR 5247; Université de Montpellier; CNRS; ENSCM, UM; Montpellier France
| | - Artur R. Stefankiewicz
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Center for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznań Poland
| |
Collapse
|
7
|
Sherman SE, Xiao Q, Percec V. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes. Chem Rev 2017; 117:6538-6631. [PMID: 28417638 DOI: 10.1021/acs.chemrev.7b00097] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synthetic vesicles have been assembled and coassembled from phospholipids, their modified versions, and other single amphiphiles into liposomes, and from block copolymers into polymersomes. Their time-consuming synthesis and preparation as stable, monodisperse, and biocompatible liposomes and polymersomes called for the elaboration of new synthetic methodologies. Amphiphilic Janus dendrimers (JDs) and glycodendrimers (JGDs) represent the most recent self-assembling amphiphiles capable of forming monodisperse, stable, and multifunctional unilamellar and multilamellar onion-like vesicles denoted dendrimersomes (DSs) and glycodendrimersomes (GDSs), dendrimercubosomes (DCs), glycodendrimercubosomes (GDCs), and other complex architectures. Amphiphilic JDs consist of hydrophobic dendrons connected to hydrophilic dendrons and can be thought of as monodisperse oligomers of a single amphiphile. They can be functionalized with a variety of molecules such as dyes, and, in the case of JGDs, with carbohydrates. Their iterative modular synthesis provides efficient access to sequence control at the molecular level, resulting in topologies with specific epitope sequence and density. DSs, GDSs, and other architectures from JDs and JGDs serve as powerful tools for mimicking biological membranes and for biomedical applications such as targeted drug and gene delivery and theranostics. This Review covers all aspects of the synthesis of JDs and JGDs and their biological activity and applications after assembly in aqueous media.
Collapse
Affiliation(s)
- Samuel E Sherman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
8
|
Prabakaran P, Prasad E. Janus Dendrimer from Poly(Aryl Ether) Linked PAMAM for Supergelation and Guest Release. ChemistrySelect 2016. [DOI: 10.1002/slct.201601335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palani Prabakaran
- Department of chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Edamana Prasad
- Department of chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| |
Collapse
|
9
|
Bartolami E, Bouillon C, Dumy P, Ulrich S. Bioactive clusters promoting cell penetration and nucleic acid complexation for drug and gene delivery applications: from designed to self-assembled and responsive systems. Chem Commun (Camb) 2016; 52:4257-73. [DOI: 10.1039/c5cc09715k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in the (self-)assembly of cationic clusters promoting nucleic acids complexation and cell penetration open the door to applications in drug and gene delivery.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
10
|
García-Gallego S, Nyström AM, Malkoch M. Chemistry of multifunctional polymers based on bis-MPA and their cutting-edge applications. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Abstract
Switchable DNA condensers based on β-CD bearing imidazolium and hydrolysable linkages were synthesized, showing base or enzyme-responsive switchable condensation ability.
Collapse
Affiliation(s)
- Ping Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
12
|
Kanfar N, Bartolami E, Zelli R, Marra A, Winum JY, Ulrich S, Dumy P. Emerging trends in enzyme inhibition by multivalent nanoconstructs. Org Biomol Chem 2015; 13:9894-906. [DOI: 10.1039/c5ob01405k] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review highlights the recent implementation of multivalent nanoconstructs in enzyme inhibition and discusses the emerging trends in their design and identification.
Collapse
Affiliation(s)
- Nasreddine Kanfar
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 CNRS
- Université Montpellier
- ENSCM
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
13
|
Hung C, Chang W, Liu S, Wu S, Chu C, Tsai Y, Imae T. Self‐aggregation of amphiphilic [60]fullerenyl focal point functionalized PAMAM dendrons into pseudodendrimers: DNA binding involving dendriplex formation. J Biomed Mater Res A 2014; 103:1595-604. [DOI: 10.1002/jbm.a.35299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng‐Hsiang Hung
- School of Medical Applied Chemistry, Chung Shan Medical UniversityTaichung40201 Taiwan
| | - Wen‐Wei Chang
- School of Biomedical Sciences, Chung Shan Medical UniversityTaichung40201 Taiwan
| | - Ssu‐Ching Liu
- School of Biomedical Sciences, Chung Shan Medical UniversityTaichung40201 Taiwan
| | - Shang‐Jung Wu
- School of Medical Applied Chemistry, Chung Shan Medical UniversityTaichung40201 Taiwan
| | - Chih‐Chien Chu
- School of Medical Applied Chemistry, Chung Shan Medical UniversityTaichung40201 Taiwan
- Department of Medical EducationChung Shan Medical University HospitalTaichung40201 Taiwan
| | - Ya‐Ju Tsai
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei10607 Taiwan
| | - Toyoko Imae
- Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and TechnologyTaipei10607 Taiwan
| |
Collapse
|
14
|
Tschiche A, Malhotra S, Haag R. Nonviral gene delivery with dendritic self-assembling architectures. Nanomedicine (Lond) 2014; 9:667-93. [DOI: 10.2217/nnm.14.32] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this review, we outline the concept and applicability of self-assembling dendrimers for gene-delivery applications. Low-molecular-weight, well-defined cationic dendritic arrays which have been modified with hydrophobic domains can form self-organized multivalent systems that have significant advantages over nonassembling, high-molecular-weight/polymeric gene vectors. Particular structural variations have been highlighted with respect to the individual components of the displayed dendritic amphiphiles, namely, the employed amine termini, the hydrophobic segment, the size of the dendritic array, and the integration of special features such as targeting ability and cleavability/degradability, which can all have a crucial effect on gene-transfection efficiencies. Accordingly, the scientific efforts to create new synthetic gene-delivery vectors to act as promising in vivo transfection agents in the future will be presented and discussed here.
Collapse
Affiliation(s)
- Ariane Tschiche
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Shashwat Malhotra
- Institute of Chemistry & Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | |
Collapse
|
15
|
Barnard A, Posocco P, Fermeglia M, Tschiche A, Calderon M, Pricl S, Smith DK. Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA. Org Biomol Chem 2013; 12:446-55. [PMID: 24263553 DOI: 10.1039/c3ob42202j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA--this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembly allows these structures to undergo triggered reductive cleavage, with dithiothreitol (DTT) inducing controlled breakdown, enabling the release of bound DNA. As such, the high-affinity self-assembled multivalent binding is temporary. Furthermore, because the multivalent dendrons are constructed from esters, a second slow degradation step causes further breakdown of these structures. This two-step double-degradation mechanism converts a large self-assembling unit with high affinity for DNA into small units with no measurable binding affinity--demonstrating the advantage of self-assembled multivalency (SAMul) in achieving highly responsive nanoscale binding of biological targets.
Collapse
Affiliation(s)
- Anna Barnard
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Guerra J, Rodrigo AC, Merino S, Tejeda J, García-Martínez JC, Sánchez-Verdú P, Ceña V, Rodríguez-López J. PPV–PAMAM Hybrid Dendrimers: Self-Assembly and Stabilization of Gold Nanoparticles. Macromolecules 2013. [DOI: 10.1021/ma401505k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Javier Guerra
- Área
de Química Orgánica, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ana C. Rodrigo
- Área
de Química Orgánica, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Sonia Merino
- Área
de Química Orgánica, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Juan Tejeda
- Área
de Química Orgánica, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Joaquín C. García-Martínez
- Química
Orgánica Farmacéutica, Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Prado Sánchez-Verdú
- Área
de Química Orgánica, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Valentín Ceña
- Unidad
Asociada Neurodeath, Facultad de Medicina, CSIC-Universidad de Castilla-La Mancha, 02006 Albacete, Spain, and CIBERNED, Instituto de Salud Carlos III, 28071 Madrid, Spain
| | - Julián Rodríguez-López
- Área
de Química Orgánica, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
17
|
Welsh DJ, Posocco P, Pricl S, Smith DK. Self-assembled multivalent RGD-peptide arrays – morphological control and integrin binding. Org Biomol Chem 2013; 11:3177-86. [DOI: 10.1039/c3ob00034f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Malhotra S, Bauer H, Tschiche A, Staedtler AM, Mohr A, Calderón M, Parmar VS, Hoeke L, Sharbati S, Einspanier R, Haag R. Glycine-Terminated Dendritic Amphiphiles for Nonviral Gene Delivery. Biomacromolecules 2012; 13:3087-98. [DOI: 10.1021/bm300892v] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shashwat Malhotra
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Hannah Bauer
- Institute of Veterinary
Biochemistry, Freie Universität Berlin, Oertzenweg 19b, Berlin 14163, Germany
| | - Ariane Tschiche
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Anna Maria Staedtler
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Andreas Mohr
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Marcelo Calderón
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Virinder S. Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Lena Hoeke
- Institute of Veterinary
Biochemistry, Freie Universität Berlin, Oertzenweg 19b, Berlin 14163, Germany
| | - Soroush Sharbati
- Institute of Veterinary
Biochemistry, Freie Universität Berlin, Oertzenweg 19b, Berlin 14163, Germany
| | - Ralf Einspanier
- Institute of Veterinary
Biochemistry, Freie Universität Berlin, Oertzenweg 19b, Berlin 14163, Germany
| | - Rainer Haag
- Institut für
Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| |
Collapse
|
19
|
Barnard A, Smith DK. Selbstorganisierte Multivalenz: dynamische Ligandenanordnungen für hochaffine Bindungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Barnard A, Smith DK. Self-assembled multivalency: dynamic ligand arrays for high-affinity binding. Angew Chem Int Ed Engl 2012; 51:6572-81. [PMID: 22689381 DOI: 10.1002/anie.201200076] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 12/12/2022]
Abstract
Multivalency is a powerful strategy for achieving high-affinity molecular recognition in biological systems. Recently, attention has begun to focus on using self-assembly rather than covalent scaffold synthesis to organize multiple ligands. This approach has a number of advantages, including ease of synthesis/assembly, tunability of nanostructure morphology and ligands, potential to incorporate multiple active units, and the responsive nature of self-assembly. We suggest that self-assembled multivalency is a strategy of fundamental importance in the design of synthetic nanosystems to intervene in biological pathways and has potential applications in nanomedicine.
Collapse
Affiliation(s)
- Anna Barnard
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
21
|
|
22
|
Ottaviani MF, Cangiotti M, Fiorani L, Barnard A, Jones SP, Smith DK. Probing dendron structure and nanoscale self-assembly using computer-aided analysis of EPR spectra. NEW J CHEM 2012. [DOI: 10.1039/c1nj20685k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Barnard A, Posocco P, Pricl S, Calderon M, Haag R, Hwang ME, Shum VWT, Pack DW, Smith DK. Degradable Self-Assembling Dendrons for Gene Delivery: Experimental and Theoretical Insights into the Barriers to Cellular Uptake. J Am Chem Soc 2011; 133:20288-300. [DOI: 10.1021/ja2070736] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anna Barnard
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Paola Posocco
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology (DI3), University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology (DI3), University of Trieste, 34127 Trieste, Italy
| | - Marcelo Calderon
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Mark E. Hwang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Victor W. T. Shum
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Daniel W. Pack
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David K. Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
24
|
Jones SP, Gabrielson NP, Wong CH, Chow HF, Pack DW, Posocco P, Fermeglia M, Pricl S, Smith DK. Hydrophobically modified dendrons: developing structure-activity relationships for DNA binding and gene transfection. Mol Pharm 2011; 8:416-29. [PMID: 21291280 DOI: 10.1021/mp100260c] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper develops a structure-activity relationship understanding of the way in which surfactant-like dendrons with hydrophilic spermine surface groups and a variety of lipophilic units at their focal points can self-assemble and subsequently bind to DNA with high affinity. The choice of functional group at the focal point of the dendron and the high tunability of the molecular structure have a very significant impact on DNA binding. Mesoscale modeling of the mode of dendron self-assembly provides a direct insight into how the mode of self-assembly exerts its effect on the DNA binding process. In particular, the hydrophobic unit controls the number of dendrons in the self-assembled micellar structures, and hence their diameters and surface charge density. The DNA binding affinity correlates with the surface charge density of the dendron aggregates. Furthermore, these structure-activity effects can also be extended to cellular gene delivery, as surface charge density plays a role in controlling the extent of endosomal escape. It is reported that higher generation dendrons, although binding DNA less strongly than the self-assembling lower generation dendrons, are more effective for transfection. The impact of the lipophilic group at the focal point is less significant for the DNA binding ability of these larger dendrons, which is predominantly controlled by the spermine surface groups, but it does modify the levels of gene transfection. Significant synergistic effects on gene delivery were observed when employing combinations of the dendrons and polyethyleneimine (PEI, 25 kDa), with transfection becoming possible at low loading levels where the two components would not transfect individually, giving practically useful levels of gene delivery.
Collapse
Affiliation(s)
- Simon P Jones
- Department of Chemistry, University of York, Heslington, York YO105DD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Morales-Sanfrutos J, Megia-Fernandez A, Hernandez-Mateo F, Giron-Gonzalez MD, Salto-Gonzalez R, Santoyo-Gonzalez F. Alkyl sulfonyl derivatized PAMAM-G2 dendrimers as nonviral gene delivery vectors with improved transfection efficiencies. Org Biomol Chem 2010; 9:851-64. [PMID: 21120228 DOI: 10.1039/c0ob00355g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic dendrimer-based gene delivery vectors bearing peripheral alkyl sulfonyl hydrophobic tails were constructed using low-generation PAMAM-G2 as the core and functionalized by means of the aza-Michael type addition of its primary amino groups to vinylsulfone derivatives as an efficient tool for surface engineering. While the unmodified PAMAM-G2 was unable to efficiently transfect eukaryotic cells, functionalized PAMAM-G2 dendrimers were able to bind DNA at low N/P ratios, protect DNA from digestion with DNase I and showed high transfection efficiencies and low cytotoxicity. Dendrimers with a C18 alkyl chain produced transfection efficiencies up to 3.1 fold higher than LipofectAMINE™ 2000 in CHO-k1 cells. The dendriplexes based in functionalized PAMAM-G2 also showed the ability to retain their transfection properties in the presence of serum and the ability to transfect different eukaryotic cell lines such as Neuro-2A and RAW 264.7. Taking advantage of the vinylsulfone chemistry, fluorescent PAMAM-G2 derivatives of these vectors were prepared as molecular probes to determine cellular uptake and internalization through a clathrin-independent mechanism.
Collapse
Affiliation(s)
- Julia Morales-Sanfrutos
- Departamento de Q. Orgánica, Facultad de Ciencia, Instituto de Biotecnología, Universidad de Granada, Granada, 18071, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- George R. Newkome
- Departments of Polymer Science and Chemistry, University of Akron, Akron, Ohio 44325-4717, and Department of Chemistry, Hiram College, Hiram, Ohio 44234
| | - Carol Shreiner
- Departments of Polymer Science and Chemistry, University of Akron, Akron, Ohio 44325-4717, and Department of Chemistry, Hiram College, Hiram, Ohio 44234
| |
Collapse
|
27
|
Vuram PK, Subuddhi U, Krishnaji ST, Chadha A, Mishra AK. Synthesis and Aggregation Properties of Dansylated Glycerol-Based Amphiphilic Polyether Dendrons. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Hou S, Li X, Feng XZ. Method to improve DNA condensation efficiency by alkali treatment. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:725-35. [PMID: 20183612 DOI: 10.1080/15257770903155493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The improvement of DNA's bioactivities by altering their structure is meaningful for their biological applications, ranging from DNA condensation study to gene therapeutic research. In this study, we treated the plasmid DNA with alkali and investigated the structure and the condensation efficiency of the alkali-treated DNA. We noticed that the alkali treatment could significantly increase the DNA condensation efficiency with spermidine and polyethylenimine (PEI). In addition, due to the improved interactions between the alkali-treated DNA and PEI, gene transfection experiments could be performed in the presence of less PEI. This research can contribute to the creation of a universal method to enhance the interaction between DNA and gene delivery vectors by alkali treatment, and should have significant potential in the field of gene therapy.
Collapse
Affiliation(s)
- Sen Hou
- College of Life Science, Nankai University, Tianjin, China
| | | | | |
Collapse
|
29
|
Jones SP, Pavan GM, Danani A, Pricl S, Smith DK. Quantifying the effect of surface ligands on dendron-DNA interactions: insights into multivalency through a combined experimental and theoretical approach. Chemistry 2010; 16:4519-32. [PMID: 20235240 DOI: 10.1002/chem.200902546] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/27/2010] [Indexed: 11/10/2022]
Abstract
We report the synthesis, DNA binding ability and preliminary gene delivery profiles of dendrons with different amine surface groups, 1,3-diaminopropane (DAP), N,N-di-(3-aminopropyl)-N-(methyl)amine (DAPMA) and spermine (SPM). By using a combination of ethidium bromide displacement, gel electrophoresis and transfection assays, it is shown that the dendrons with SPM groups are the most effective DNA binders, while the DAPMA-functionalised dendrons were the most effective systems for gene delivery (although the gene delivery profiles were still modest). In order to provide deeper insight into the experimental data, we performed a molecular dynamics simulation of the interactions between the dendrons and DNA. The results of these simulations demonstrated that, in general terms, the enthalpic contribution to binding was roughly proportional to the dendron surface charge, but that dendrons with DAP (and DAPMA) surface amines had significant entropic costs of binding to DNA. In the case of DAP, this is a consequence of the fact that the entire dendron structure has to be organised in order for each individual monoamine charge to make effective contact with DNA. For SPM, however, each surface ligand is already a multivalent triamine, therefore, each individual charge has a much lower entropic cost of binding. For DAPMA, we observed that strong binding of the hindered tertiary amine to the DNA double helix led to ligand back-folding and significant geometric distortion of DNA. Although this weakens the overall binding, we suggest that this distortion might be an explanation for the experimentally observed enhanced gene delivery, in which DNA compaction is an important step. Overall, this paper demonstrates how structure-activity relationships can be developed for multivalent dendritic ligands and provides insights into the thermodynamics of multivalent interactions.
Collapse
Affiliation(s)
- Simon P Jones
- Department of Chemistry, University of York, Heslington, York, YO10 5DD (UK), Fax: (+44) 1904 432516
| | | | | | | | | |
Collapse
|
30
|
Posocco P, Pricl S, Jones S, Barnard A, Smith DK. Less is more – multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery. Chem Sci 2010. [DOI: 10.1039/c0sc00291g] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
31
|
Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V. Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chem Rev 2009; 109:6275-540. [DOI: 10.1021/cr900157q] [Citation(s) in RCA: 1066] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Brad M. Rosen
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Christopher J. Wilson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Daniela A. Wilson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Mohammad R. Imam
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
32
|
Pavan GM, Danani A, Pricl S, Smith DK. Modeling the Multivalent Recognition between Dendritic Molecules and DNA: Understanding How Ligand “Sacrifice” and Screening Can Enhance Binding. J Am Chem Soc 2009; 131:9686-94. [DOI: 10.1021/ja901174k] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Giovanni M. Pavan
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Andrea Danani
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Sabrina Pricl
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - David K. Smith
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
33
|
|
34
|
Hou S, Yang K, Liu Z, Feng XZ. A method to increase the bioactivity of plasmid DNA by heat treatment. ACTA ACUST UNITED AC 2008; 70:1066-72. [DOI: 10.1016/j.jprot.2008.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/22/2007] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
|
35
|
Yelamaggad CV, Shanker G. Liquid crystal dimers derived from naturally occurring chiral moieties: synthesis and characterization. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Jones SP, Gabrielson NP, Pack DW, Smith DK. Synergistic effects in gene delivery—a structure–activity approach to the optimisation of hybrid dendritic–lipidic transfection agents. Chem Commun (Camb) 2008:4700-2. [DOI: 10.1039/b811852c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Wigglesworth TJ, Teixeira F, Axthelm F, Eisler S, Csaba NS, Merkle HP, Meier W, Diederich F. Dendronised block copolymers as potential vectors for gene transfection. Org Biomol Chem 2008; 6:1905-11. [DOI: 10.1039/b802808g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Kostiainen MA, Szilvay GR, Lehtinen J, Smith DK, Linder MB, Urtti A, Ikkala O. Precisely defined protein-polymer conjugates: construction of synthetic DNA binding domains on proteins by using multivalent dendrons. ACS NANO 2007; 1:103-113. [PMID: 19206526 DOI: 10.1021/nn700053y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature has evolved proteins and enzymes to carry out a wide range of sophisticated tasks. Proteins modified with functional polymers possess many desirable physical and chemical properties and have applications in nanobiotechnology. Here we describe multivalent Newkome-type polyamine dendrons that function as synthetic DNA binding domains, which can be conjugated with proteins. These polyamine dendrons employ naturally occurring spermine surface groups to bind DNA with high affinity and are attached onto protein surfaces in a site-specific manner to yield well-defined one-to-one protein-polymer conjugates, where the number of dendrons and their attachment site on the protein surface are precisely known. This precise structure is achieved by using N-maleimido-core dendrons that selectively react via 1,4-conjugate addition with a single free thiol group on the protein surface--either Cys-34 of bovine serum albumin (BSA) or a genetically engineered cysteine mutant of Class II hydrophobin (HFBI). This reaction can be conducted in mild aqueous solutions (pH 7.2-7.4) and at ambient temperature, resulting in BSA- and HFBI-dendron conjugates. The protein-dendron conjugates constitute a specific biosynthetic diblock copolymer and bind DNA with high affinity, as shown by ethidium bromide displacement assay. Importantly, even the low-molecular-weight first-generation polyamine dendron (1 kDa) can bind a large BSA protein (66.4 kDa) to DNA with relatively good affinity. Preliminary gene transfection, cytotoxicity, and self-assembly studies establish the relevance of this methodology for in vitro applications, such as gene therapy and surface patterning. These results encourage further developments in protein-dendron block copolymer-like conjugates and will allow the advance of functional biomimetic nanoscale materials.
Collapse
Affiliation(s)
- Mauri A Kostiainen
- Department of Engineering, Physics, and Mathematics and Center for New Materials, Helsinki University of Technology, P.O. Box 2200, 02015 HUT, Espoo, Finland.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang W, Sun H, Kaifer AE. Redox Active, Hybrid Dendrimers Containing Fréchet- and Newkome-Type Blocks. Org Lett 2007; 9:2657-60. [PMID: 17550260 DOI: 10.1021/ol0708525] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new series of dendrimers was prepared by covalently attaching a Newkome dendron, a Fréchet dendron, and a redox active, aminoferrocene group to a central triazine core. Growth of the Newkome dendron has a more pronounced effect on the half-wave potential for the one-electron oxidation of the ferrocene residue than growth of the Fréchet dendron. All dendrimers show reversible or quasireversible voltammetric behavior at scan rates in the range 0.10-2.0 V s-1.
Collapse
Affiliation(s)
- Wei Wang
- Center for Supramolecular Science and Department of Chemistry, University of Miami, Coral Gables, FL 33124-0431, USA
| | | | | |
Collapse
|
40
|
Guillot-Nieckowski M, Joester D, Stöhr M, Losson M, Adrian M, Wagner B, Kansy M, Heinzelmann H, Pugin R, Diederich F, Gallani JL. Self-assembly, DNA complexation, and pH response of amphiphilic dendrimers for gene transfection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:737-46. [PMID: 17209628 DOI: 10.1021/la0624891] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cationic lipids and polymers are routinely used for cell transfection, and a variety of structure-activity relation data have been collected. Few studies, however, focus on the structural aspects of self-assembly as a crucial control parameter for gene delivery. We present here the observations collected for a set of cationic dendritic amphiphiles based on a stiff tolane core (1-4) that are built from identical subunits but differ in the number and balance of their hydrophobic and cationic hydrophilic moieties. We established elsewhere that vectors 3 and 4 have promising transfection properties. Scanning probe microscopy (AFM, STM), cryo-transmission electron microscopy (cryo-TEM), and Langmuir techniques provide insight into the self-assembly properties of the molecules under physiological conditions. Furthermore, we present DNA and pH "jump" experiments where we study the response of Langmuir films to a sudden increase in DNA concentration or a drop in pH. We find that the primary self-assembly of the amphiphile is of paramount importance and influences DNA binding, serum sensitivity, and pH response of the vector system.
Collapse
|
41
|
Lalor R, DiGesso JL, Mueller A, Matthews SE. Efficient gene transfection with functionalised multicalixarenes. Chem Commun (Camb) 2007:4907-9. [DOI: 10.1039/b712100h] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
|
43
|
Ke CF, Hou S, Zhang HY, Liu Y, Yang K, Feng XZ. Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes. Chem Commun (Camb) 2007:3374-6. [DOI: 10.1039/b704279e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Sansone F, Dudic M, Donofrio G, Rivetti C, Baldini L, Casnati A, Cellai S, Ungaro R. DNA Condensation and Cell Transfection Properties of Guanidinium Calixarenes: Dependence on Macrocycle Lipophilicity, Size, and Conformation. J Am Chem Soc 2006; 128:14528-36. [PMID: 17090036 DOI: 10.1021/ja0634425] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calix[n]arenes functionalized with guanidinium groups at the upper rim and alkyl chains at the lower rim bind to DNA, condense it, and in some cases, promote cell transfection depending on their structure and lipophilicity. Atomic force microscopy (AFM) studies indicate that upon DNA binding the hydrophobic association of the lipophilic chains of cone guanidinium calix[4]arenes drives the formation of intramolecular DNA condensates, characterized by DNA loops emerging from a dense core. Furthermore, hexyl and octyl chains confer to these calixarenes cell transfection capabilities. Conversely, larger and conformationally mobile calix[6]- and calix[8]arene methoxy derivatives form intermolecular aggregates characterized by "gorgonlike" structures composed of multiple plectomenes. These adducts, in which interstrand connections are dominated by electrostatic interactions, fail to promote cell transfection. Finally, calix[4]arenes in a 1,3-alternate conformation show an intermediate behavior because they condense DNA, but the process is driven by charge-charge interactions.
Collapse
Affiliation(s)
- Francesco Sansone
- Dipartimento di Chimica Organica e Industriale, Università degli Studi, Viale G. P. Usberti 17/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|