1
|
Kua J, Peña MT, Cotter SN, Leca J. Sulfur Analogs of the Core Formose Cycle: A Free Energy Map. Life (Basel) 2024; 15:1. [PMID: 39859941 PMCID: PMC11766735 DOI: 10.3390/life15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Using computational methods, we examine if the presence of H2S can tame the unruly formose reaction by generating a free energy map of the reaction thermodynamics and kinetics of sulfur analogs within the core cycle. With mercaptoaldehyde as the linchpin C2 species, and feeding the cycle with CH2O, selected aldol additions and enolizations are kinetically more favorable. Thione formation is thermodynamically less favored compared to aldehydes and ketones, but all these species can be connected by enolization reactions. In some sulfur analogs, the retroaldol transformation of a C4 species back into linchpin species is thermodynamically favorable, and we have found one route incorporating where incorporating sulfur selects for a specific pathway over others. However, as CH2O diminishes, the aldol addition of larger species is less favorable for the sulfur analogs. Our results also suggest that competing Cannizzaro side reactions are kinetically less favored and thermodynamically disfavored when H2S is abundant.
Collapse
Affiliation(s)
- Jeremy Kua
- Department of Chemistry & Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | | | | | | |
Collapse
|
2
|
Izato YI, Koshi M, Miyake A. Computation of rate coefficients in solutions based on transition state theory combined with a heuristically corrected polarizable continuum model: intermolecular Diels-Alder reactions as case studies. Phys Chem Chem Phys 2024; 26:22122-22133. [PMID: 39118558 DOI: 10.1039/d4cp01078g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Transition state theory (TST) based on activation parameters computed using quantum mechanics calculations combined with the polarizable continuum model (QM/PCM) is a fundamental tool for investigating reaction rates in the liquid phase. In conventional QM/PCM methods, thermodynamic data and partition functions for a solute are often derived from a quasi-ideal gas treatment (IGT) widely implemented in commercially available computation packages. This approach tends to overestimate entropy because calculations of thermodynamic parameters in the liquid phase ignore hindered translational and rotational modes in real solutions. The present work formulated partition functions for more realistic solutes hindered by surrounding solvent molecules in conjunction with the basic QM/PCM concept. In addition, a configuration partition function for solute molecules at a standard concentration of 1 mol dm-3 was incorporated using a simple lattice model. The canonical partition function and thermodynamic functions were derived based on statistical thermodynamics for localized systems. Expressions for rate coefficients within TST were also derived with a consistent formalism based on the standard state selected in partition function calculations. The performance of the proposed method was assessed by predicting rate coefficients for three different Diels-Alder reactions and comparing these with experimental results. QM/PCM calculations at the G4//ωB97X-D/6-311++G(d,p)/IEF-PCM level of theory with corrections for the dispersion and repulsion energies were performed to obtain the electronic structures of stationary points on potential energy surfaces as a means of finding activation enthalpy, entropy and Gibbs energy values based on revised partition functions as well as predicting rate coefficients. The activation Gibbs energies obtained from our proposed method were lower than those obtained from the IGT method due to reasonable entropy computations. The proposed method overestimated the rate coefficients by one to two orders of magnitude compared to the experimental values, whereas the IGT method underestimated them by the same amount. This discrepancy arises because the proposed method calculates the partition function from the viewpoint of a localized system, whereas the IGT method calculates it from the viewpoint of a non-localized system. Given that actual liquids exist in a state between non-localized and localized systems, it is essential to formulate the partition function in a way that more accurately represents the liquid state.
Collapse
Affiliation(s)
- Yu-Ichiro Izato
- Graduate School of Information and Environment Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Japan.
| | - Mitsuo Koshi
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Atsumi Miyake
- Graduate School of Information and Environment Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Japan.
| |
Collapse
|
3
|
Kua J, Tripoli LP. Exploring the Core Formose Cycle: Catalysis and Competition. Life (Basel) 2024; 14:933. [PMID: 39202675 PMCID: PMC11355428 DOI: 10.3390/life14080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The core autocatalytic cycle of the formose reaction may be enhanced or eroded by the presence of simple molecules at life's origin. Utilizing quantum chemistry, we calculate the thermodynamics and kinetics of reactions both within the core cycle and those that deplete the reactants and intermediates, such as the Cannizzaro reaction. We find that via disproportionation of aldehydes into carboxylic acids and alcohols, the Cannizzaro reaction furnishes simple catalysts for a variety of reactions. We also find that ammonia can catalyze both in-cycle and Cannizzaro reactions while hydrogen sulfide does not; both, however, play a role in sequestering reactants and intermediates in the web of potential reactions.
Collapse
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | | |
Collapse
|
4
|
Pradhan AK, Shyam A, Dutta A, Mondal P. Quantum Chemical Investigation on Hydrolysis of Orally Active Organometallic Ruthenium(II) and Osmium(II) Anticancer Drugs and Their Interaction with Histidine. J Phys Chem B 2022; 126:9516-9527. [PMID: 36378950 DOI: 10.1021/acs.jpcb.2c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Influence of the metal center on hydrolysis of organometallic anticancer complexes containing an N-phenyl-2-pyridinecarbothioamide (PCA) ligand, [M(η6-p-cymene)(N-phenyl-2-pyridinecarbothioamide)Cl]+ (M = RuII, 1A, and OsII, 2A), as well as their N-fluorophenyl derivatives [M(η6-p-cymene)(N-fluorophenyl-2-pyridinecarbothioamide)Cl]+ (M = RuII, 1B, and OsII, 2B) have been investigated using the DFT method in aqueous medium. The activation energy barriers for the hydrolysis of 1A (21.5 kcal/mol) and 1B (20.7 kcal/mol) are found to be significantly lower than those of their corresponding osmium analogs 2A (28.6 kcal/mol) and 2B (27.5 kcal/mol). DFT evaluated results reveal the inertness of Os(II)-PCA complex toward the hydrolysis that rationalizes the experimental observations. However, the incorporation of fluoride substituent slightly decreases the activation energy for the hydrolysis of Ru(II)- and Os(II)-PCA. In addition, the interaction of hydrolyzed Ru(II)-PCAs (1AH and 1BH) and Os(II)-PCAs (2AH and 2BH) complexes with the histidine (Hist) have also been investigated. The aquated 1BH and 2BH show an enhanced propensity toward the interaction with histidine, and their activation Gibbs free energies are calculated to be 15.9 and 18.9 kcal/mol, respectively. ONIOM (QM/MM) study of the resulting aquated complexes inside histone protein shows the maximum stability of the 2BH complex having a binding energy of -43.6 kcal/mol.
Collapse
Affiliation(s)
| | - Abhijit Shyam
- Department of Chemistry, Assam University, Silchar-788011, Assam, India.,Department of Chemistry, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj-788723, Assam, India
| | - Abhijit Dutta
- Department of Chemistry, Patharkandi College, Karimganj-788724, Assam, India
| | - Paritosh Mondal
- Department of Chemistry, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
5
|
Preliminary Free Energy Map of Prebiotic Compounds Formed from CO2, H2 and H2S. Life (Basel) 2022; 12:life12111763. [DOI: 10.3390/life12111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
What kinds of CHOS compounds might be formed in a prebiotic milieu by reducing CO2 in the presence of H2 and H2S? How might the presence of sulfur influence the chemical composition of the mixture? We explore these questions by using first-principles quantum chemistry to calculate the free energies of CHOS compounds in aqueous solution, by first generating a thermodynamic map of one- and two-carbon species. We find that while thiols are thermodynamically favored, thioesters, thioacids, and thiones are less favorable than their non-sulfur counterparts. We then focus on the key role played by mercaptoacetaldehyde in sulfur analogs of the autocatalytic formose reaction, whereby the thiol group introduces asymmetry and potential thermodynamic selectivity of some compounds over others.
Collapse
|
6
|
Gao J, Guo L, Wu Y, Cheng Y, Hu X, Liu J, Liu Z. 16-Electron Half-Sandwich Rhodium(III), Iridium(III), and Ruthenium(II) Complexes as Lysosome-Targeted Anticancer Agents. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jie Gao
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lihua Guo
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuting Wu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yihan Cheng
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xueyan Hu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinfeng Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
7
|
Thermodynamics of Potential CHO Metabolites in a Reducing Environment. Life (Basel) 2021; 11:life11101025. [PMID: 34685396 PMCID: PMC8537574 DOI: 10.3390/life11101025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
How did metabolism arise and evolve? What chemical compounds might be suitable to support and sustain a proto-metabolism before the advent of more complex co-factors? We explore these questions by using first-principles quantum chemistry to calculate the free energies of CHO compounds in aqueous solution, allowing us to probe the thermodynamics of core extant cycles and their closely related chemical cousins. By framing our analysis in terms of the simplest feasible cycle and its permutations, we analyze potentially favorable thermodynamic cycles for CO2 fixation with H2 as a reductant. We find that paying attention to redox states illuminates which reactions are endergonic or exergonic. Our results highlight the role of acetate in proto-metabolic cycles, and its connection to other prebiotic molecules such as glyoxalate, glycolaldehyde, and glycolic acid.
Collapse
|
8
|
Fu W, Xia GJ, Zhang Y, Hu J, Wang YG, Li J, Li X, Li B. Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: An example of sulfonamide chlorination. WATER RESEARCH 2021; 202:117391. [PMID: 34233248 DOI: 10.1016/j.watres.2021.117391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Increasing number of emerging pollutants in environments requires an effective approach which can facilitate the prediction of reactivity and provide insights into the reaction mechanisms. Computational chemistry is exactly the tool to fulfill this demand with its good performance in theoretical investigation of chemical reactions at molecular level. In this study, chlorination of sulfonamide antibiotics is used as an illustration to present a systematic strategy demonstrating how computational chemistry can be applied to investigate the reaction behavior of emerging pollutants. Sulfonamides is a class of micropollutants that contain the common structure of 4-aminobenzenesulfonmaide while differ in their heterocycles. Based on the calculated conceptual DFT indices, the reactive sites of sulfonamide are successfully predicted, which locate on their common structure of 4-aminobenzenesulfonmaide. Therefore, all sulfonamides follow the similar reaction pathway. Product identification by LTQ-Orbitrap MS further verifies the in silico prediction. Three critical pathways are discovered, i.e., S-N bond cleavage, Cl-substitution onto aniline-N, and the following rearrangement to lose -SO2- group, among which Cl-substitution is the key step due to its lowest free energy barrier. Heterocycles impact the reaction rate by affecting the electronic density of aniline group. In general, the more electron-donating the heterocycle is, the more readily sulfonamides to be chlorinated.
Collapse
Affiliation(s)
- Wenjie Fu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guang-Jie Xia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yixiang Zhang
- Theoretical Chemistry Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang-Gang Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Theoretical Chemistry Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
9
|
Pradhan AK, Shyam A, Mondal P. A detailed quantum chemical investigation on the hydrolysis mechanism of osmium( iii) anticancer drug, (ImH)[ trans-OsCl 4(DMSO)(Im)] (Os-NAMI-A; Im = imidazole). NEW J CHEM 2021. [DOI: 10.1039/d1nj00783a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detailed hydrolysis mechanism of osmium(iii) anticancer drug, (ImH)[trans-OsCl4(DMSO)(Im)] (Os-NAMI-A; Im = imidazole, DMSO = dimethyl sulfoxide) has been investigated using density functional theory (DFT) in combination with CPCM solvation model.
Collapse
Affiliation(s)
| | - Abhijit Shyam
- Department of Chemistry
- Assam University
- Silchar-788011
- India
| | | |
Collapse
|
10
|
Kua J, Paradela TL. Early Steps of Glycolonitrile Oligomerization: A Free-Energy Map. J Phys Chem A 2020; 124:10019-10028. [PMID: 33205651 DOI: 10.1021/acs.jpca.0c09922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Building on our previous free-energy map (J. Phys. Chem. A 2018, 122, 6769-6779) examining the reactions of monomeric glycolonitrile, we explore the formation of its dimers and trimers in aqueous solution under neutral conditions. While 5-membered rings are kinetically favored, open-chain oligomers with ester or amide linkages are thermodynamically favored. Accessing the 5-membered rings also provides a potential route to glyoxal that bypasses preforming glycolamide, the thermodynamic sink for monomers. However, finding a kinetically accessible route to glycine starting from glycolonitrile in the absence of added ammonia at room temperature proved challenging; the best case involved an intramolecular nucleophilic substitution reaction in a dimer containing neighboring imine and amide groups. Our free-energy map also examines routes to experimentally proposed moieties, explaining why some are observed in low yield or not at all.
Collapse
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Teena L Paradela
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
11
|
Carrasco AC, Rodríguez-Fanjul V, Pizarro AM. Activation of the Ir-N(pyridine) Bond in Half-Sandwich Tethered Iridium(III) Complexes. Inorg Chem 2020; 59:16454-16466. [PMID: 33103884 DOI: 10.1021/acs.inorgchem.0c02287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present four new organometallic half-sandwich iridium(III) complexes of formula [Ir(η5:κ1-C5Me4CH2py)(N,N)](PF6)2, bearing a N,N-chelating ligand [ethylenediamine (en), 1; 1,3-diaminopropane (dap), 2; 2,2'-bipyridine (bipy), 3; 1,10-phenanthroline (phen), 4]; and a derivatized cyclopentadienyl ligand, C5Me4CH2C5H4N, which forms an additional five-membered chelate. The latter is hemilabile, and the Ir-N(py) bond can be reversibly cleaved by various stimuli. The four complexes are unreactive toward hydrolysis at pH 7. Interestingly, 1 and 2 react with hydrochloric acid and formate, and speciation between closed and open tether complexes can be followed by 1H NMR spectroscopy. Complex 1 binds to nucleobase guanine (9-ethylguanine, 9-EtG), yet interaction to calf-thymus DNA was not observed. New X-ray structures of closed tether complexes 1-4 and open tether complexes [Ir(η5-C5Me4CH2pyH)(en)Cl](PF6)2 (1·HCl) and [Ir(η5-C5Me4CH2py)(en)H]PF6 (1·hyd) have been determined. Hydride capture is efficient for 1 and 2. The kinetics of Ir-H bond formation and hydride transfer in a model organic molecule have been investigated, revealing a strong dependence on the temperature. Coincubation of complex 1 with nontoxic concentrations of sodium formate decreases the IC50 value in MCF7 breast cancer cells, indicating the possibility of intracellular activation of the Ir-N(py) tether bond to generate cytotoxic activity via iridium-mediated transfer hydrogenation.
Collapse
|
12
|
Abidi N, Bonduelle-Skrzypczak A, Steinmann SN. Revisiting the Active Sites at the MoS 2/H 2O Interface via Grand-Canonical DFT: The Role of Water Dissociation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31401-31410. [PMID: 32551477 DOI: 10.1021/acsami.0c06489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MoS2 is a promising low-cost catalyst for the hydrogen evolution reaction (HER). However, the nature of the active sites remains a subject of debate. By taking the electrochemcal potential explicitly into account using grand-canonical density functional theory (DFT) in combination with the linearized Poisson-Boltzmann equation, we herein revisit the active sites of 2H-MoS2. In addition to the well-known catalytically active edge sites, also specific point defects on the otherwise inert basal plane provide highly active sites for HER. Given that HER takes place in water, we also assess the reactivity of these active sites with respect to H2O. The thermodynamics of proton reduction as a function of the electrochemical potential reveals that four edge sites and three basal plane defects feature thermodynamic overpotentials below 0.2 V. In contrast to current proposals, many of these active sites involve adsorbed OH. The results demonstrate that even though H2O and OH block "active" sites, HER can also occur on these "blocked" sites, reducing protons on surface OH/H2O entities. As a consequence, our results revise the active sites, highlighting the so far overlooked need to take the liquid component (H2O) of the functional interface into account when considering the stability and activity of the various active sites.
Collapse
Affiliation(s)
- Nawras Abidi
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | | | - Stephan N Steinmann
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| |
Collapse
|
13
|
Liu X, Han Y, Ge X, Liu Z. Imidazole and Benzimidazole Modified Half-Sandwich Iridium III N-Heterocyclic Carbene Complexes: Synthesis, Anticancer Application, and Organelle Targeting. Front Chem 2020; 8:182. [PMID: 32257999 PMCID: PMC7090125 DOI: 10.3389/fchem.2020.00182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/27/2020] [Indexed: 01/03/2023] Open
Abstract
Herein, we report the synthesis, characterization and anticancer activity of a series of half-sandwich iridiumIII imidazole and benzimidazole N-heterocyclic carbene (NHC) anticancer complexes, and the general formula of which can be expressed as [(η5-Cpx)Ir(C∧N)Cl]Cl (Cpx: pentamethylcyclopentadienyl (Cp*) or biphenyl derivatives (Cpxbiph); C∧N: imidazole and benzimidazole NHC chelating ligands). Compared with cis-platin, these complexes showed interesting antitumor activity against A549 cells. Complexes could bind to bovine serum albumin (BSA) by means of static quenching mode, catalyze the oxidation of nicotinamide adenine dinucleotide (NADH) and increase the levels of reactive oxygen species (ROS). Meanwhile, these complexes could arrest the cell cycles of A549 cells and influence the mitochondrial membrane potential significantly. Due to the inherent luminescence property, laser confocal test show that complexes could enter cells followed an energy-dependent mechanism and effectively accumulate in lysosome (the value of Pearson's co-localization coefficient is 0.70 after 1 h), further destroy lysosome integrity and induce apoptosis.
Collapse
Affiliation(s)
- Xicheng Liu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, Qufu Normal University, Qufu, China
| | - Yali Han
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, Qufu Normal University, Qufu, China
| | - Xingxing Ge
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, Qufu Normal University, Qufu, China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, Qufu Normal University, Qufu, China
| |
Collapse
|
14
|
Kua J, Miller AS, Wallace CE, Loli H. Role of Acid in the Co-oligomerization of Formaldehyde and Pyrrole. ACS OMEGA 2019; 4:22251-22259. [PMID: 31891109 PMCID: PMC6933802 DOI: 10.1021/acsomega.9b03931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Building on previous work (J. Phys. Chem. A 2017, 121, 8154-8166) under neutral conditions, we examined the co-oligomerization of CH2O and pyrrole to form porphryinogen under acidic conditions using density functional theory (B3LYP//6-311G**). Thermodynamically, we found that azafulvene intermediates were significantly stabilized under highly acidic conditions. Kinetically, energy barriers were lowered for C-C bond formation, discriminating in favor of reactions that lead to porphyrinogen. However, it was challenging to satisfactorily combine our thermodynamic and kinetic profiles into a unified free-energy profile because of difficulties in optimizing transition states of cationic species involving proton hops. Instead, we used neutral carboxylic acids as a proxy to study how energy barriers changed. By combining data from both neutral and acidic conditions, we estimate a free-energy profile for the initial steps of oligomerization under milder acidic conditions more relevant to prebiotic chemistry.
Collapse
|
15
|
Tuguldurova VP, Fateev AV, Poleshchuk OK, Vodyankina OV. Theoretical analysis of glyoxal condensation with ammonia in aqueous solution. Phys Chem Chem Phys 2019; 21:9326-9334. [PMID: 30994119 DOI: 10.1039/c8cp07270a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The reactions of glyoxal with ammonia, ammonium salts, and amines cause the formation of the secondary organic aerosol (SOA) components (imidazole and its derivatives) in the atmosphere. The interaction of glyoxal and ammonia in aqueous solution is a primary reaction for these processes, and the explanation of its mechanism will allow developing the methods to control the formation of the SOA components. A detailed mechanism for the formation of key intermediates, namely, ethanediimine, diaminoethanediol, and aminoethanetriol, required for the imidazole ring cyclization, is proposed, and its potential energy surface (PES) has been constructed. This mechanism includes the experimentally identified intermediate compounds and takes into account the conformational and hydration equilibria of glyoxal. The schemes are proposed for further conversion of the key intermediates to the products of condensation between glyoxal and ammonia in the aqueous solution, C-N cyclic oligomers, that were identified. The products are shown to correspond to low positions on the PES in terms of Gibbs free energy, from -30.8 to -68.3 kcal mol-1, which confirms the high probability of their formation. The preferable thermodynamic pathway for formation of the imidazole products does not comprise the conversion of the diimine intermediate with the participation of the proton, but rather the interaction of either the diaminoalcohol with glyoxal monohydrate or two monoamine derivatives between themeselves (aminoethantriol and aminohydroxyacetaldehyde).
Collapse
Affiliation(s)
- Vera P Tuguldurova
- National Research Tomsk State University, 36, Lenin Avenue, Tomsk, 634050, Russia.
| | | | | | | |
Collapse
|
16
|
Kua J. Exploring Free Energy Profiles of Uracil and Cytosine Reactions with Formaldehyde. J Phys Chem A 2019; 123:3840-3850. [PMID: 30957998 DOI: 10.1021/acs.jpca.9b02105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simple polymers can be potentially formed by the co-oligomerization of pyrimidine nucleobases, uracil and cytosine, with the small molecule formaldehyde. Using density functional calculations, we have constructed a free energy map outlining the thermodynamics and kinetics for (1) the addition of formaldehyde to uracil and cytosine to form hydroxymethylated uracil (HMU) and hydroxymethylated cytosine (HMC), (2) the deamination of cytosine and HMC to uracil and HMU, respectively, and (3) the initial oligomerization of 5-HMU. For the initial formation of monomeric HMU, addition of formaldehyde to the C5 and C6 positions is thermodynamically favored over N1 and N3, but faces higher kinetic barriers, and explains why 5-HMU is the main product observed experimentally. Oligomerization of 5-HMU is thermodynamically favorable although decreasingly so at the tetramer stage. In addition, decreasing concentrations of initial monomer shifts the equilibrium disfavoring oligomer formation.
Collapse
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and Biochemistry , University of San Diego , 5998 Alcala Park , San Diego , California 92110 . United States
| |
Collapse
|
17
|
Izato YI, Matsugi A, Koshi M, Miyake A. A simple heuristic approach to estimate the thermochemistry of condensed-phase molecules based on the polarizable continuum model. Phys Chem Chem Phys 2019; 21:18920-18929. [DOI: 10.1039/c9cp03226f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple model based on a quantum chemical approach with polarizable continuum models (PCMs) to provide reasonable translational and rotational entropies for liquid phase molecules was developed.
Collapse
Affiliation(s)
- Yu-ichiro Izato
- Graduate School of Information and Environment Sciences
- Yokohama National University
- Yokohama
- Japan
| | - Akira Matsugi
- National Institute of Advanced Industrial Sciences and Technology
- Ibaraki
- Japan
| | - Mitsuo Koshi
- Department of Chemical System Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Atsumi Miyake
- Institute of Advanced Sciences
- Yokohama National University
- Yokohama
- Japan
| |
Collapse
|
18
|
Du Q, Guo L, Tian M, Ge X, Yang Y, Jian X, Xu Z, Tian Z, Liu Z. Potent Half-Sandwich Iridium(III) and Ruthenium(II) Anticancer Complexes Containing a P^O-Chelated Ligand. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00402] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qing Du
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Meng Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuliang Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xiyan Jian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhishan Xu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
- Department of Chemistry and Chemical Engineering, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
19
|
Thrush KL, Kua J. Reactions of Glycolonitrile with Ammonia and Water: A Free Energy Map. J Phys Chem A 2018; 122:6769-6779. [PMID: 30063827 DOI: 10.1021/acs.jpca.8b05900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycolonitrile, the product of combining CH2O and HCN, is an intermediate in the Strecker reaction leading to the synthesis of the amino acid glycine. However, besides glycine, a plethora of other compounds are also generated when CH2O and HCN react in the presence of ammonia and water. As a starting point to analyze the possible components of this complex mixture, we have employed density functional theory to construct a free energy map of all two-carbon (C2) species that may be present when glycolonitrile participates in addition or elimination reactions with ammonia and water. By identifying thermodynamic sinks and kinetic barriers, we find that the myriad C2 species can be grouped into three broad regions across the free energy landscape. This allows us to trace possible routes to glycine and other molecules of interest in the reaction mixture. The present map also extends our previous work on one-carbon (C1) species. We had previously found one issue with our computational protocol in the C1 map; however, our present C2 map provides a larger data set that supports using an empirical correction to our original protocol for imidic acid to amide transformations, without increasing the computational cost, while retaining the original protocol for other classes of reactions.
Collapse
Affiliation(s)
- Kyra L Thrush
- Department of Chemistry and Biochemistry , University of San Diego , 5998 Alcala Park , San Diego , California 92110 , United States
| | - Jeremy Kua
- Department of Chemistry and Biochemistry , University of San Diego , 5998 Alcala Park , San Diego , California 92110 , United States
| |
Collapse
|
20
|
Gupta G, Das A, Lee SW, Ryu JY, Lee J, Nagesh N, Mandal N, Lee CY. BODIPY-based Ir(III) rectangles containing bis-benzimidazole ligands with highly selective toxicity obtained through self-assembly. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Exploration of selected electronic characteristics of half-sandwich organoruthenium(II) β-diketonate complexes. J Mol Model 2018; 24:98. [DOI: 10.1007/s00894-018-3598-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
|
22
|
Quantum chemical modeling of superbase-catalyzed reactions of acetophenone and methyl mesityl ketone with acetylene. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-2006-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Besora M, Vidossich P, Lledós A, Ujaque G, Maseras F. Calculation of Reaction Free Energies in Solution: A Comparison of Current Approaches. J Phys Chem A 2018; 122:1392-1399. [DOI: 10.1021/acs.jpca.7b11580] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Besora
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Catalonia, Spain
| | - Pietro Vidossich
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Valles, Catalonia, Spain
- COBO
Computational Bio-Organic Chemistry Bogotá, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A 10, 111711 Bogotá, Colombia
| | - Agustí Lledós
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Valles, Catalonia, Spain
| | - Gregori Ujaque
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Valles, Catalonia, Spain
| | - Feliu Maseras
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Catalonia, Spain
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Valles, Catalonia, Spain
| |
Collapse
|
24
|
Muñoz-Osses M, Siegmund D, Gómez A, Godoy F, Fierro A, Llanos L, Aravena D, Metzler-Nolte N. Influence of the substituent on the phosphine ligand in novel rhenium(i) aldehydes. Synthesis, computational studies and first insights into the antiproliferative activity. Dalton Trans 2018; 47:13861-13869. [DOI: 10.1039/c8dt03160f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyrhetrenyl phosphine derivatives were synthesized and evaluated as potential anticancer agents. Electrochemical and computational studies were carried out.
Collapse
Affiliation(s)
- Michelle Muñoz-Osses
- Laboratory of Organometallic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Daniel Siegmund
- Inorganic Chemistry I – Bioinorganic Chemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Alejandra Gómez
- Laboratory of Organometallic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Fernando Godoy
- Laboratory of Organometallic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Angélica Fierro
- Laboratory of Bioorganic and Molecular Simulation
- Department of Organic Chemistry
- Faculty of Chemistry
- Pontificia Universidad Católica de Chile
- Santiago
| | - Leonel Llanos
- Laboratory of Computational Inorganic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Daniel Aravena
- Laboratory of Computational Inorganic Chemistry
- Faculty of Chemistry and Biology
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Nils Metzler-Nolte
- Inorganic Chemistry I – Bioinorganic Chemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
25
|
Guo L, Zhang H, Tian M, Tian Z, Xu Y, Yang Y, Peng H, Liu P, Liu Z. Electronic effects on reactivity and anticancer activity by half-sandwich N,N-chelated iridium(iii) complexes. NEW J CHEM 2018. [DOI: 10.1039/c8nj03360a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work demonstrated how the chemical reactivity and anticancer activity as well as the selectivity of these half-sandwich N,N-chelated iridium(iii) complexes can be controlled and fine-tuned by the modification of the ligand electronic perturbations.
Collapse
Affiliation(s)
- Lihua Guo
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Hairong Zhang
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Meng Tian
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Zhenzhen Tian
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Yanjian Xu
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Yuliang Yang
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Hongwei Peng
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Peng Liu
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Zhe Liu
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| |
Collapse
|
26
|
Vitkovskaya NM, Kobychev VB, Bobkov AS, Orel VB, Schmidt EY, Trofimov BA. Nucleophilic Addition of Ketones To Acetylenes and Allenes: A Quantum-Chemical Insight. J Org Chem 2017; 82:12467-12476. [PMID: 29058894 DOI: 10.1021/acs.joc.7b02263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A CBS-Q//B3 based study has been carried out to elucidate the mechanism of the KOH/DMSO superbase catalyzed ketones nucleophilic addition to alkyl propargyl and alkyl allenyl ethers yielding, along with (Z)-monoadducts, up to 26% of unexpected (E)-diadducts. The impact of different substrates (alkynes versus allenes) on the reaction mechanism has been discussed in detail. Along with the model reaction of acetone addition to propyne and allene, the addition of acetone and acetophenone to methyl propargyl and methyl allenyl ethers is considered. The limiting reaction stage of the starting ketone carbanion addition to propargyl and allenyl systems occurs with activation energies typical for vinylation of ketones. In contrast, the addition of intermediate α-carbanions to the terminal position of methyl allenyl ether is associated with unusually low activation barriers. The results obtained explain the composition of the reaction products and indicate the participation of mainly the allene form in the reaction.
Collapse
Affiliation(s)
- Nadezhda M Vitkovskaya
- Laboratory of Quantum Chemistry, Irkutsk State University , 1 K. Marks St., 664003 Irkutsk, Russian Federation
| | - Vladimir B Kobychev
- Laboratory of Quantum Chemistry, Irkutsk State University , 1 K. Marks St., 664003 Irkutsk, Russian Federation
| | - Alexander S Bobkov
- Laboratory of Quantum Chemistry, Irkutsk State University , 1 K. Marks St., 664003 Irkutsk, Russian Federation
| | - Vladimir B Orel
- Laboratory of Quantum Chemistry, Irkutsk State University , 1 K. Marks St., 664003 Irkutsk, Russian Federation
| | - Elena Yu Schmidt
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences , 1 Favorsky St., 664033 Irkutsk, Russian Federation
| | - Boris A Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences , 1 Favorsky St., 664033 Irkutsk, Russian Federation
| |
Collapse
|
27
|
Kua J, Loli H. Porphinogen Formation from the Co-Oligomerization of Formaldehyde and Pyrrole: Free Energy Pathways. J Phys Chem A 2017; 121:8154-8165. [DOI: 10.1021/acs.jpca.7b08685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Helen Loli
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
28
|
Wang C, Liu J, Tian Z, Tian M, Tian L, Zhao W, Liu Z. Half-sandwich iridium N-heterocyclic carbene anticancer complexes. Dalton Trans 2017; 46:6870-6883. [DOI: 10.1039/c7dt00575j] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Half-sandwich iridium N-heterocyclic carbene complexes display potent anticancer activities and are attractive for development as new anticancer agents.
Collapse
Affiliation(s)
- Chuanlan Wang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Jinfeng Liu
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Meng Tian
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Laijin Tian
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Wenqian Zhao
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|
29
|
Kua J, Sweet LM. Preliminary Oligomerization in a Glycolic Acid–Glycine Mixture: A Free Energy Map. J Phys Chem A 2016; 120:7577-88. [DOI: 10.1021/acs.jpca.6b08076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and
Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Lauren M. Sweet
- Department of Chemistry and
Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
30
|
Han LL, Li SJ, Fang DC. Theoretical estimation of kinetic parameters for nucleophilic substitution reactions in solution: an application of a solution translational entropy model. Phys Chem Chem Phys 2016; 18:6182-90. [PMID: 26847838 DOI: 10.1039/c5cp07803b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetic parameters, such as activation entropy, activation enthalpy, activation free-energy, and reaction rate constant, for a series of nucleophilic substitution (SN) reactions in solution, are investigated using both a solution-phase translational entropy model and an ideal gas-phase translational entropy model. The results obtained from the solution translational entropy model are in excellent agreement with the experimental values, while the overestimation of activation free-energy from the ideal gas-phase translational entropy model is as large as 6.9 kcal mol(-1). For some of the reactions studied, such as and in methanol, and and in aqueous solution, the explicit + implicit model, namely, a cluster-continuum type model, should be employed to account for the strong solvent-solute interactions. In addition, the explicit + implicit models have also been applied to the DMSO-H2O mixtures, which would open up a door to investigate the reactions in a mixed solvent using density functional theory (DFT) methods.
Collapse
Affiliation(s)
- Ling-Li Han
- College of Chemistry, Beijing Normal University, Beijing, 100875, China. and Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, Shandong, China
| | - Shi-Jun Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
31
|
Zábojníková T, Cajzl R, Kljun J, Chval Z, Turel I, Burda JV. Interactions of the "piano-stool" [ruthenium(II)(η(6) -arene)(quinolone)Cl](+) complexes with water; DFT computational study. J Comput Chem 2016; 37:1766-80. [PMID: 27185047 DOI: 10.1002/jcc.24373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Full optimizations of stationary points along the reaction coordinate for the hydration of several quinolone Ru(II) half-sandwich complexes were performed in water environment using the B3PW91/6-31+G(d)/PCM/UAKS method. The role of diffuse functions (especially on oxygen) was found crucial for correct geometries along the reaction coordinate. Single-point (SP) calculations were performed at the B3LYP/6-311++G(2df,2pd)/DPCM/saled-UAKS level. In the first part, two possible reaction mechanisms-associative and dissociative were compared. It was found that the dissociative mechanism of the hydration process is kinetically slightly preferred. Another important conclusion concerns the reaction channels. It was found that substitution of chloride ligand (abbreviated in the text as dechlorination reaction) represents energetically and kinetically the most feasible pathway. In the second part the same hydration reaction was explored for reactivity comparison of the Ru(II)-complexes with several derivatives of nalidixic acid: cinoxacin, ofloxacin, and (thio)nalidixic acid. The hydration process is about four orders of magnitude faster in a basic solution compared to neutral/acidic environment with cinoxacin and nalidixic acid as the most reactive complexes in the former and latter environments, respectively. The explored hydration reaction is in all cases endergonic; nevertheless the endergonicity is substantially lower (by ∼6 kcal/mol) in basic environment. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tereza Zábojníková
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, 121 16, Czech Republic
| | - Radim Cajzl
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, 121 16, Czech Republic
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technologyn University of Ljubljana, Večna pot 113, Ljubljana, 1000, Slovenia
| | - Zdeněk Chval
- Department of Laboratory Methods and Information Systems, Faculty of Health and Social Studies, University of South Bohemia, J. Boreckého 27, České Budějovice, 370 11, Czech Republic
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technologyn University of Ljubljana, Večna pot 113, Ljubljana, 1000, Slovenia
| | - Jaroslav V Burda
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, 121 16, Czech Republic
| |
Collapse
|
32
|
Kua J, Thrush KL. HCN, Formamidic Acid, and Formamide in Aqueous Solution: A Free-Energy Map. J Phys Chem B 2016; 120:8175-85. [DOI: 10.1021/acs.jpcb.6b01690] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and
Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Kyra L. Thrush
- Department of Chemistry and
Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
33
|
Liu T, Bi S. Impact of Ligand and Silane on the Regioselectivity in Catalytic Aldehyde–Alkyne Reductive Couplings: A Theoretical Study. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Liu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong
Province, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong Province, People’s Republic of China
| |
Collapse
|
34
|
Li SJ, Fang DC. A DFT kinetic study on 1,3-dipolar cycloaddition reactions in solution. Phys Chem Chem Phys 2016; 18:30815-30823. [DOI: 10.1039/c6cp05190a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several popular density functional theory (DFT) methods have been employed to characterize a series of 1,3-dipolar cycloaddition reactions, including the exploration of reaction mechanisms and the calculations of kinetic parameters.
Collapse
Affiliation(s)
- Shi-Jun Li
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - De-Cai Fang
- College of Chemistry
- Beijing Normal University
- Beijing
- China
| |
Collapse
|
35
|
Mukhopadhyay S, Gupta RK, Paitandi RP, Rana NK, Sharma G, Koch B, Rana LK, Hundal MS, Pandey DS. Synthesis, Structure, DNA/Protein Binding, and Anticancer Activity of Some Half-Sandwich Cyclometalated Rh(III) and Ir(III) Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00475] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Love Karan Rana
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | | | | |
Collapse
|
36
|
Das D, Mondal P. Quantum Chemical Studies on Detail Mechanism of Nitrosylation of NAMI-A-HSA Adduct. J Phys Chem B 2015; 119:10456-65. [PMID: 26151453 DOI: 10.1021/acs.jpcb.5b05071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrolysis of NAMI-A in NAMI-A-HSA (HSA = human serum albumin) and nitrosylation of hydrolyzed NAMI-A-HSA adduct have been studied in detail using density functional theory method. It has been observed that the chloride exchange reaction with water in the NAMI-A-HSA adduct follows an interchange dissociative mechanism passing through an unstable heptacoordinated activated complex. The computed free energy of activation (ΔG) and rate constant (k) for the hydrolysis process in aqueous medium are observed to be 24.85 kcal mol(-1) and 3.81 × 10(-6) s(-1), respectively. Nitrosylation of hydrolyzed NAMI-A-HSA adduct with nitric oxide is found to be thermodynamically more favorable with the incorporation of solvent effect and provides a detailed understanding related to the antimetastatic activity of the NAMI-A drug. This investigation shows that nitric oxide coordinates linearly to NAMI-A-HSA adduct leading to the reduction of ruthenium(III) to more active ruthenium(II), with the reduction potential of -2.32 V. Negative relative solvation and relative binding free energies suggest that the hydrolysis and nitrosylation reactions are found to be thermodynamically favorable and faster. Our computed results provide a detailed thermodynamics and kinetics which may be highly beneficial for understanding antimetastatic activity as well as the nitric oxide scavenging ability of NAMI-A.
Collapse
Affiliation(s)
- Dharitri Das
- Department of Chemistry, Assam University, Silchar 788011, Assam, India
| | - Paritosh Mondal
- Department of Chemistry, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
37
|
Plata RE, Singleton DA. A case study of the mechanism of alcohol-mediated Morita Baylis-Hillman reactions. The importance of experimental observations. J Am Chem Soc 2015; 137:3811-26. [PMID: 25714789 PMCID: PMC4379969 DOI: 10.1021/ja5111392] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 12/12/2022]
Abstract
The mechanism of the Morita Baylis-Hillman reaction has been heavily studied in the literature, and a long series of computational studies have defined complete theoretical energy profiles in these reactions. We employ here a combination of mechanistic probes, including the observation of intermediates, the independent generation and partitioning of intermediates, thermodynamic and kinetic measurements on the main reaction and side reactions, isotopic incorporation from solvent, and kinetic isotope effects, to define the mechanism and an experimental mechanistic free-energy profile for a prototypical Morita Baylis-Hillman reaction in methanol. The results are then used to critically evaluate the ability of computations to predict the mechanism. The most notable prediction of the many computational studies, that of a proton-shuttle pathway, is refuted in favor of a simple but computationally intractable acid-base mechanism. Computational predictions vary vastly, and it is not clear that any significant accurate information that was not already apparent from experiment could have been garnered from computations. With care, entropy calculations are only a minor contributor to the larger computational error, while literature entropy-correction processes lead to absurd free-energy predictions. The computations aid in interpreting observations but fail utterly as a replacement for experiment.
Collapse
Affiliation(s)
- R. Erik Plata
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Daniel A. Singleton
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
38
|
Kua J, Rodriguez AA, Marucci LA, Galloway MM, De Haan DO. Free Energy Map for the Co-Oligomerization of Formaldehyde and Ammonia. J Phys Chem A 2015; 119:2122-31. [DOI: 10.1021/jp512396d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
- Yale-NUS College, 6 College Avenue East #B1-01, Singapore 138614
| | - Alyssa A. Rodriguez
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Lily A. Marucci
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Melissa M. Galloway
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - David O. De Haan
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
39
|
Wei JH, Chen ZF, Qin JL, Liu YC, Li ZQ, Khan TM, Wang M, Jiang YH, Shen WY, Liang H. Water-soluble oxoglaucine-Y(iii), Dy(iii) complexes: in vitro and in vivo anticancer activities by triggering DNA damage, leading to S phase arrest and apoptosis. Dalton Trans 2015; 44:11408-19. [DOI: 10.1039/c5dt00926j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexes exhibited considerable in vitro and in vivo anticancer activity, and higher safety than ciplatin.
Collapse
|
40
|
Liu Z, Romero-Canelón I, Habtemariam A, Clarkson GJ, Sadler PJ. Potent Half-Sandwich Iridium(III) Anticancer Complexes Containing C ∧N-Chelated and Pyridine Ligands. Organometallics 2014; 33:5324-5333. [PMID: 25328266 PMCID: PMC4195516 DOI: 10.1021/om500644f] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 12/17/2022]
Abstract
We report the synthesis and characterization of eight half-sandwich cyclopentadienyl IrIII pyridine complexes of the type [(η5-Cpxph)Ir(phpy)Z]PF6, in which Cpxph = C5Me4C6H5 (tetramethyl(phenyl)cyclopentadienyl), phpy = 2-phenylpyridine as C∧N-chelating ligand, and Z = pyridine (py) or a pyridine derivative. Three X-ray crystal structures have been determined. The monodentate py ligands blocked hydrolysis; however, antiproliferative studies showed that all the Ir compounds are highly active toward A2780, A549, and MCF-7 human cancer cells. In general the introduction of an electron-donating group (e.g., Me, NMe2) at specific positions on the pyridine ring resulted in increased antiproliferative activity, whereas electron-withdrawing groups (e.g., COMe, COOMe, CONEt2) decreased anticancer activity. Complex 5 displayed the highest anticancer activity, exhibiting submicromolar potency toward a range of cancer cell lines in the National Cancer Institute NCI-60 screen, ca. 5 times more potent than the clinical platinum(II) drug cisplatin. DNA binding appears not to be the major mechanism of action. Although complexes [(η5-Cpxph)Ir(phpy)(py)]+ (1) and [(η5-Cpxph)Ir(phpy)(4-NMe2-py)]+ (5) did not cause cell apoptosis or cell cycle arrest after 24 h drug exposure in A2780 human ovarian cancer cells at IC50 concentrations, they increased the level of reactive oxygen species (ROS) dramatically and led to a loss of mitochondrial membrane potential (ΔΨm), which appears to contribute to the anticancer activity. This class of organometallic Ir complexes has unusual features worthy of further exploration in the design of novel anticancer drugs.
Collapse
Affiliation(s)
| | - Isolda Romero-Canelón
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Abraha Habtemariam
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Guy J. Clarkson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
41
|
Futera Z, Burda JV. Reaction mechanism of Ru(II) piano‐stool complexes: Umbrella sampling QM/MM MD study. J Comput Chem 2014; 35:1446-56. [DOI: 10.1002/jcc.23639] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/23/2014] [Accepted: 05/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Zdeněk Futera
- Department of ChemistryFaculty of Science and TechnologyKeio University, 3‐14‐1 HiyoshiKohoku‐ku Yokohama223‐8522 Japan
| | - Jaroslav V. Burda
- Faculty of Mathematics and PhysicsCharles University in PragueKe Karlovu 3, 121 16 Prague 2 Czech Republic
| |
Collapse
|
42
|
Nazarov AA, Hartinger CG, Dyson PJ. Opening the lid on piano-stool complexes: An account of ruthenium(II)–arene complexes with medicinal applications. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.09.016] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Singh SK, Pandey DS. Multifaceted half-sandwich arene–ruthenium complexes: interactions with biomolecules, photoactivation, and multinuclearity approach. RSC Adv 2014. [DOI: 10.1039/c3ra44131h] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
44
|
Kua J, Avila JE, Lee CG, Smith WD. Mapping the Kinetic and Thermodynamic Landscape of Formaldehyde Oligomerization under Neutral Conditions. J Phys Chem A 2013; 117:12658-67. [DOI: 10.1021/jp4098292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy Kua
- Department
of Chemistry and Biochemistry, University of San Diego, 5998 Alcala
Park, San Diego, California 92110, United States
- Yale-NUS
College, 6 College Avenue East #B1-01, Singapore 138614
| | - Joseph E. Avila
- Department
of Chemistry and Biochemistry, University of San Diego, 5998 Alcala
Park, San Diego, California 92110, United States
| | - Christopher G. Lee
- Department
of Chemistry and Biochemistry, University of San Diego, 5998 Alcala
Park, San Diego, California 92110, United States
| | - William D. Smith
- Christian High School, 2100 Greenfield Drive, El
Cajon, California 92019, United States
| |
Collapse
|
45
|
Adeniyi AA, Ajibade PA. Computational studies of the electronic, conductivities, and spectroscopic properties of hydrolysed Ru(II) anticancer complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:426-436. [PMID: 23867645 DOI: 10.1016/j.saa.2013.06.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/13/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
The mechanism of activation of metal-based anticancer agents was reported to be through hydrolysis. In this study, computational method was used to gain insight to the correlation between the chemistry of the hydrolysis and the anticancer activities of selected Ru(II)-based complexes. Interestingly, we observed that the mechanism of activation by hydrolysis and their consequential anticancer activities is associated with favourable thermodynamic changes, higher hyperpolarizability (β), lower band-gap and higher first-order net current. The Fermi contact (FC) and spin dipole (SD) are found to be the two most significant Ramsey terms that determine the spin-spin couplings (J(HZ)) of most of the existing bonds in the complexes. Many of the computed properties give insights into the change in the chemistry of the complexes due to hydrolysis. Besides strong correlations of the computed properties to the anticancer activities of the complexes, using the quantum theory of atoms in a molecule (QTAIM) to analyse the spectroscopic properties shows a stronger correlation between the spectroscopic properties of Ru atom to the reported anticancer activities than the sum over of the spectroscopic properties of all atoms in the complexes.
Collapse
Affiliation(s)
- Adebayo A Adeniyi
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | | |
Collapse
|
46
|
Exploration of various electronic properties along the reaction coordinate for hydration of Pt(II) and Ru(II) complexes; the CCSD, MPx, and DFT computational study. J Mol Model 2013; 19:5245-55. [PMID: 24126826 DOI: 10.1007/s00894-013-1994-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
In the study behavior of molecular electrostatic potential, averaged local ionization energy, and reaction electronic flux along the reaction coordinate of hydration process of three representative Ru(II) and Pt(II) complexes were explored using both post-HF and DFT quantum chemical approximations. Previously determined reaction mechanisms were explored by more detailed insight into changes of electronic properties using ωB97XD functional and MP2 method with 6-311++G(2df,2pd) basis set and CCSD/6-31(+)G(d,p) approach. The dependences of all examined properties on reaction coordinate give more detailed understanding of the hydration process.
Collapse
|
47
|
Wang H, Zeng X, Zhou R, Zhao C. A comparative DFT study on aquation and nucleobase binding of ruthenium (II) and osmium (II) arene complexes. J Mol Model 2013; 19:4849-56. [PMID: 24037457 DOI: 10.1007/s00894-013-1987-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/27/2013] [Indexed: 11/27/2022]
Abstract
The potential energy surfaces of the reactions of organometallic arene complexes of the type [(η (6)-arene)M(II)(pic)Cl] (where pic = 2-picolinic acid, M = Ru or Os) were examined by a DFT computational study. Among the seven density functional methods, hybrid exchange functional B3LYP outperforms the others to explain the aquation of the complexes. The reactions and binding energies of Ru(II) and Os(II) arene complexes with both 9EtG and 9EtA were studied to gain insight into the reactivity of these types of organometallic complexes with DNA. The obtained data rationalize experimental observation, contributing to partly understanding the potential biological and medical applications of organometallic complexes.
Collapse
Affiliation(s)
- Hanlu Wang
- College of Chemistry and Life Science, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China,
| | | | | | | |
Collapse
|
48
|
Gomes AJ, Espreafico EM, Tfouni E. trans-[Ru(NO)Cl(cyclam)](PF6)2 and [Ru(NO)(Hedta)] Incorporated in PLGA Nanoparticles for the Delivery of Nitric Oxide to B16–F10 Cells: Cytotoxicity and Phototoxicity. Mol Pharm 2013; 10:3544-54. [DOI: 10.1021/mp3005534] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anderson J. Gomes
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF,
Brazil
| | - Enilza M. Espreafico
- Departamento de
Biologia Celular
e Molecular e Bioagentes Patogênicos, Faculdade de Medicina
de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elia Tfouni
- Departamento de Química,
Faculdade de Filosofia Ciências e Letras de Ribeirão
Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
49
|
Adeniyi AA, Ajibade PA. Computational properties of η6-toluene and η6-trifluorotoluene half-sandwich Ru(II) anticancer complexes. J Biomol Struct Dyn 2013; 32:1351-65. [DOI: 10.1080/07391102.2013.819299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Kua J, Galloway MM, Millage KD, Avila JE, De Haan DO. Glycolaldehyde Monomer and Oligomer Equilibria in Aqueous Solution: Comparing Computational Chemistry and NMR Data. J Phys Chem A 2013; 117:2997-3008. [DOI: 10.1021/jp312202j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeremy Kua
- Department of Chemistry and
Biochemistry, University of San Diego,
5998 Alcala Park, San Diego, California 92110, United States
| | - Melissa M. Galloway
- Department of Chemistry and
Biochemistry, University of San Diego,
5998 Alcala Park, San Diego, California 92110, United States
| | - Katherine D. Millage
- Department of Chemistry and
Biochemistry, University of San Diego,
5998 Alcala Park, San Diego, California 92110, United States
| | - Joseph E. Avila
- Department of Chemistry and
Biochemistry, University of San Diego,
5998 Alcala Park, San Diego, California 92110, United States
| | - David O. De Haan
- Department of Chemistry and
Biochemistry, University of San Diego,
5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|