1
|
Ramos-Soriano J, Holbrow-Wilshaw M, Hunt E, Jiang YJ, Peñalver P, Morales JC, Galan MC. Probing the binding and antiparasitic efficacy of azobenzene G-quadruplex ligands to investigate G4 ligand design. Chem Commun (Camb) 2024; 60:11520-11523. [PMID: 39308448 PMCID: PMC11418008 DOI: 10.1039/d4cc03106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Novel strategies against parasitic infections are of great importance. Here, we describe a G4 DNA ligand with subnanomolar antiparasitic activity against T. brucei and a remarkable selectivity index (IC50 MRC-5/T. brucei) of 2285-fold. We also correlate the impact of small structural changes to G4 binding activity and antiparasitic activity.
Collapse
Affiliation(s)
| | | | - Eliza Hunt
- School of Chemistry, Cantock's Close, University of Bristol, BS8 1TS, UK
| | - Y Jennifer Jiang
- School of Chemistry, Cantock's Close, University of Bristol, BS8 1TS, UK
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| | - M Carmen Galan
- School of Chemistry, Cantock's Close, University of Bristol, BS8 1TS, UK
| |
Collapse
|
2
|
Wang B, Rocca JR, Hoshika S, Chen C, Yang Z, Esmaeeli R, Wang J, Pan X, Lu J, Wang KK, Cao YC, Tan W, Benner SA. A folding motif formed with an expanded genetic alphabet. Nat Chem 2024; 16:1715-1722. [PMID: 38858518 PMCID: PMC11446821 DOI: 10.1038/s41557-024-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
Adding synthetic nucleotides to DNA increases the linear information density of DNA molecules. Here we report that it also can increase the diversity of their three-dimensional folds. Specifically, an additional nucleotide (dZ, with a 5-nitro-6-aminopyridone nucleobase), placed at twelve sites in a 23-nucleotides-long DNA strand, creates a fairly stable unimolecular structure (that is, the folded Z-motif, or fZ-motif) that melts at 66.5 °C at pH 8.5. Spectroscopic, gel and two-dimensional NMR analyses show that the folded Z-motif is held together by six reverse skinny dZ-:dZ base pairs, analogous to the crystal structure of the free heterocycle. Fluorescence tagging shows that the dZ-:dZ pairs join parallel strands in a four-stranded compact down-up-down-up fold. These have two possible structures: one with intercalated dZ-:dZ base pairs, the second without intercalation. The intercalated structure would resemble the i-motif formed by dC:dC+-reversed pairing at pH ≤ 6.5. This fZ-motif may therefore help DNA form compact structures needed for binding and catalysis.
Collapse
Affiliation(s)
- Bang Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - James R Rocca
- AMRIS, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA
| | - Cen Chen
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA.
| | - Reza Esmaeeli
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, China
| | - Xiaoshu Pan
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Y Charles Cao
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Weihong Tan
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA.
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China.
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA.
| |
Collapse
|
3
|
Dudek M, López-Pacios L, Sabouri N, Nogueira JJ, Martinez-Fernandez L, Deiana M. Harnessing Light for G-Quadruplex Modulation: Dual Isomeric Effects of an Ortho-Fluoroazobenzene Derivative. J Phys Chem Lett 2024; 15:9757-9765. [PMID: 39288355 PMCID: PMC11440583 DOI: 10.1021/acs.jpclett.4c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
G-quadruplexes (G4s) are important therapeutic and photopharmacological targets in cancer research. Small-molecule ligands targeting G4s offer a promising strategy to block DNA transactions and induce genetic instability in cancer cells. While numerous G4-ligands have been reported, relatively few examples exist of compounds whose G4-interactive binding properties can be modulated using light. Herein, we report the photophysical characterization of a novel ortho-fluoroazobenzene derivative, Py-Azo4F-3N, that undergoes reversible two-way isomerization upon visible light exposure. Using a combination of biophysical techniques, including affinity and selectivity assays, structural and computational analysis, and cytotoxicity experiments in cancer cell lines, we carefully characterized the G4-interactive binding properties of both isomers. We identify the trans isomer as the most promising form of interacting and stabilizing G4s, enhancing their ablation capability in cancer cells. Our research highlights the importance of light-responsive molecules in achieving precise control over G4 structures, demonstrating their potential in innovative anticancer strategies.
Collapse
Affiliation(s)
- Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Lucía López-Pacios
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Juan J Nogueira
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Lara Martinez-Fernandez
- Departamento de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC, 28006 Madrid, Spain
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
4
|
Reveguk ZV, Khoroshilov EV, Sharkov AV, Pomogaev VA, Buglak AA, Kononov AI. Excited States in Single-Stranded and i-Motif DNA with Silver Ions. J Phys Chem B 2024. [PMID: 38657136 DOI: 10.1021/acs.jpcb.4c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We have studied the excited states and structural properties for the complexes of cytosine (dC)10 chains with silver ions (Ag+) in a wide range of the Ag+ to DNA ratio (r) and pH conditions using circular dichroism, steady-state absorption, and fluorescence spectroscopy along with the ultrafast fluorescence upconversion technique. We also calculated vertical electronic transition energies and determined the nature of the corresponding excited states in some models of the cytosine-Ag+ complexes. We show that (dC)10 chains in the presence of silver ions form a duplex stabilized by C-Ag+-C bonds. It is also shown that the i-motif structure formed by (dC)10 chains is destabilized in the presence of Ag+ ions. The excited-state properties in the studied complexes depend on the amount of binding ions and the binding sites, which is supported by the calculations. In particular, new low-lying excited states appear when the second Ag+ ion interacts with the O atom of cytosine in the C-Ag+-C pairs. A similar picture is observed in the case when one Ag+ ion interacts with one cytosine via the N7 atom.
Collapse
Affiliation(s)
- Zakhar V Reveguk
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya nab. 7/9 , 199034 St. Petersburg, Russia
| | - Evgeny V Khoroshilov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Pr., 119991 Moscow, Russia
| | - Andrey V Sharkov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Pr., 119991 Moscow, Russia
| | - Vladimir A Pomogaev
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya nab. 7/9 , 199034 St. Petersburg, Russia
- Department of Physics, Tomsk State University, Tomsk 634050, Russia
| | - Andrey A Buglak
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya nab. 7/9 , 199034 St. Petersburg, Russia
| | - Alexei I Kononov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya nab. 7/9 , 199034 St. Petersburg, Russia
| |
Collapse
|
5
|
Marzano M, D'Errico S, Greco F, Falanga AP, Terracciano M, Di Prisco D, Piccialli G, Borbone N, Oliviero G. Polymorphism of G-quadruplexes formed by short oligonucleotides containing a 3'-3' inversion of polarity: From G:C:G:C tetrads to π-π stacked G-wires. Int J Biol Macromol 2023; 253:127062. [PMID: 37748594 DOI: 10.1016/j.ijbiomac.2023.127062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
G-wires are supramolecular DNA structures based on the G-quadruplex (G4) structural motif obtained by the self-assembly of interlocked slipped G-rich oligonucleotide (ON) strands, or by end-to-end stacking of G4 units. Despite the increasing interest towards G-wires due to their potential applications in DNA nanotechnologies, the self-assembly process to obtain G-wires having a predefined length and stability is still neither completely understood nor controlled. In our previous studies, we demonstrated that the d(5'CG2-3'-3'-G2C5') ON, characterized by the presence of a 3'-3'-inversion of polarity site self-assembles into a G-wire structure when annealed in the presence of K+ ions. Herein, by using CD, PAGE, HPLC size exclusion chromatography, and NMR investigations we studied the propensity of shorter analogues having sequences 5'CGn-3'-3'-GmC5' (with n = 1 and 1 ≤ m ≤ 3) to form the corresponding G-quadruplexes and stacked G-wires. The results revealed that the formation of G-wires starting from d(5'CGn-3'-3'-GmC5') ONs is possible only for the sequences having n and m > 1 in which both guanosines flanking the 5'-ending cytosines are not involved into the 3'-3' phosphodiester bond.
Collapse
Affiliation(s)
- Maria Marzano
- CESTEV, University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daria Di Prisco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy.
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Xiang X, Bao Y, Zhang Y, Xu G, Zhao B, Guo X. Accurate assembly and direct characterization of DNA nanogels crosslinked by G-quadruplex, i-motif and duplex with surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121161. [PMID: 35306309 DOI: 10.1016/j.saa.2022.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The direct characterization of DNA nanogels at the atomic level is desirable and of great significance, however, has been challenging because of structural complexity and the larger size of nanogels. Herein, we demonstrated a simple, sensitive and reliable SERS (Surface-enhanced Raman spectroscopy)-based approach towards direct monitoring microstructures, such as three types of nanogels crosslinked by DNA G-quadruplex, i-motif and GC duplex. The achievement is attributed to the detection of featured Raman bands corresponding to the formation of Watson-Crick and Hoogsteen hydrogen bonds as well as C·C+ base pairs. Importantly, this work reveals that the silver nanoparticles attaching on the surface of nanogels can form local 'hotspots' and produce high-quality of Raman spectra under the assistance of iodide, aluminum ions and dichloromethane, therefore, shows great potential for wide applications in accurate characterization of various DNA nanostructures.
Collapse
Affiliation(s)
- Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ying Bao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yujing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Guantong Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Ramos-Soriano J, Galan MC. Photoresponsive Control of G-Quadruplex DNA Systems. JACS AU 2021; 1:1516-1526. [PMID: 34723256 PMCID: PMC8549047 DOI: 10.1021/jacsau.1c00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 05/14/2023]
Abstract
G-quadruplex (G4) oligonucleotide secondary structures have recently attracted significant attention as therapeutic targets owing to their occurrence in human oncogene promoter sequences and the genome of pathogenic organisms. G4s also demonstrate interesting catalytic activities in their own right, as well as the ability to act as scaffolds for the development of DNA-based materials and nanodevices. Owing to this diverse range of opportunities to exploit G4 in a variety of applications, several strategies to control G4 structure and function have emerged. Interrogating the role of G4s in biology requires the delivery of small-molecule ligands that promote its formation under physiological conditions, while exploiting G4 in the development of responsive nanodevices is normally achieved by the addition and sequestration of the metal ions required for the stabilization of the folded structure. Although these strategies prove successful, neither allows the system in question to be controlled externally. Meanwhile, light has proven to be an attractive means for the control of DNA-based systems as it is noninvasive, can be delivered with high spatiotemporal precision, and is orthogonal to many chemical and biological processes. A plethora of photoresponsive DNA systems have been reported to date; however, the vast majority deploy photoreactive moieties to control the stability and assembly of duplex DNA hybrids. Despite the unique opportunities afforded by the regulation of G-quadruplex formation in biology, catalysis, and nanotechnology, comparatively little attention has been devoted to the design of photoresponsive G4-based systems. In this Perspective, we consider the potential of photoresponsive G4 assemblies and examine the strategies that may be used to engineer these systems toward a variety of applications. Through an overview of the main developments in the field to date, we highlight recent progress made toward this exciting goal and the emerging opportunities that remain ripe for further exploration in the coming years.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
8
|
Dudek M, Deiana M, Szkaradek K, Janicki MJ, Pokładek Z, Góra RW, Matczyszyn K. Light-Induced Modulation of Chiral Functions in G-Quadruplex-Photochrome Systems. J Phys Chem Lett 2021; 12:9436-9441. [PMID: 34554762 PMCID: PMC8503878 DOI: 10.1021/acs.jpclett.1c02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 05/05/2023]
Abstract
The design of artificially engineered chiral structures has received much attention, but the implementation of dynamic functions to modulate the chiroptical response of the systems is less explored. Here, we present a light-responsive G-quadruplex (G4)-based assembly in which chirality enrichment is induced, tuned, and fueled by molecular switches. In particular, the mirror-image dependence on photoactivated azo molecules, undergoing trans-to-cis isomerization, shows chiral recognition effects on the inherent flexibility and conformational diversity of DNA G4s having distinct handedness (right- and left-handed). Through a detailed experimental and computational analysis, we bring compelling evidence on the binding mode of the photochromes on G4s, and we rationalize the origin of the chirality effect that is associated with the complexation event.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marco Deiana
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Kinga Szkaradek
- Theoretical
Photochemistry and Photophysics Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mikołaj J. Janicki
- Theoretical
Photochemistry and Photophysics Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Ziemowit Pokładek
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Robert W. Góra
- Theoretical
Photochemistry and Photophysics Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
9
|
Jing H, Fu W, Hu W, Xu S, Xu X, He M, Liu Y, Zhang N. NMR structural study on the self-trimerization of d(GTTAGG) into a dynamic trimolecular G-quadruplex assembly preferentially in Na+ solution with a moderate K+ tolerance. Nucleic Acids Res 2021; 49:2306-2316. [PMID: 33524157 PMCID: PMC7913680 DOI: 10.1093/nar/gkab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Vast G-quadruplexes (GQs) are primarily folded by one, two, or four G-rich oligomers, rarely with an exception. Here, we present the first NMR solution structure of a trimolecular GQ (tri-GQ) that is solely assembled by the self-trimerization of d(GTTAGG), preferentially in Na+ solution tolerant to an equal amount of K+ cation. Eight guanines from three asymmetrically folded strands of d(GTTAGG) are organized into a two-tetrad core, which features a broken G-column and two width-irregular grooves. Fast strand exchanges on a timescale of second at 17°C spontaneously occur between folded tri-GQ and unfolded single-strand of d(GTTAGG) that both species coexist in dynamic equilibrium. Thus, this tri-GQ is not just simply a static assembly but rather a dynamic assembly. Moreover, another minor tetra-GQ that has putatively tetrameric (2+2) antiparallel topology becomes noticeable only at an extremely high strand concentration above 18 mM. The major tri-GQ and minor tetra-GQ are considered to be mutually related, and their reversible interconversion pathways are proposed accordingly. The sequence d(GTTAGG) could be regarded as either a reading frame shifted single repeat of human telomeric DNA or a 1.5 repeat of Bombyx mori telomeric DNA. Overall, our findings provide new insight into GQs and expect more functional applications.
Collapse
Affiliation(s)
- Haitao Jing
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Wenxuan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Suping Xu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaojuan Xu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Miao He
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Yangzhong Liu
- University of Science and Technology of China, Hefei 230026, China
| | - Na Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China.,High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
| |
Collapse
|
10
|
Kliuev PN, Sokolov PA, Ramazanov RR. QM/MM-MD dissociation of Ag+ and H+ mediated cytosine pairs: Monomers and dimers. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Abdelhamid MAS, Waller ZAE. Tricky Topology: Persistence of Folded Human Telomeric i-Motif DNA at Ambient Temperature and Neutral pH. Front Chem 2020; 8:40. [PMID: 32083057 PMCID: PMC7005205 DOI: 10.3389/fchem.2020.00040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
i-Motifs are four-stranded DNA structures formed from sequences rich in cytosine, held together by hemi-protonated cytosine-cytosine base pairs. These structures have been utilized extensively as pH-switches in DNA-based nanotechnology. Recently there has been an increasing interest in i-motif structures in biology, fuelled by examples of when these can form under neutral conditions. Herein we describe a cautionary tale regarding handling of i-motif samples. Using CD and UV spectroscopy we show that it is important to be consistent in annealing i-motif DNA samples as at neutral pH, i-motif unfolding kinetics is dependent on the time allowed for annealing and equilibration. We describe how the quadruplex structure formed by the human telomeric i-motif sequence can be shown to form and persist in the same conditions of neutral pH and ambient temperature in which, once at thermodynamic equilibrium, it exists predominantly as a random coil. This study has implications not only for work with i-motif DNA structures, but also in the uses and applications of these in nanotechnological devices.
Collapse
Affiliation(s)
- Mahmoud A S Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
12
|
Somkuti J, Molnár OR, Smeller L. Revealing unfolding steps and volume changes of human telomeric i-motif DNA. Phys Chem Chem Phys 2020; 22:23816-23823. [DOI: 10.1039/d0cp03894f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The i-motif structure of the human telomeric DNA was destabilized by pressure and unfolded with a negative volume change.
Collapse
Affiliation(s)
- Judit Somkuti
- Department of Biophysics and Radiation Biology
- Semmelweis University
- Tuzolto utca 37-47 1094
- Hungary
| | - Orsolya Réka Molnár
- Department of Biophysics and Radiation Biology
- Semmelweis University
- Tuzolto utca 37-47 1094
- Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology
- Semmelweis University
- Tuzolto utca 37-47 1094
- Hungary
| |
Collapse
|
13
|
Chaudhary S, Kaushik M, Ahmed S, Kukreti S. Exploring potential of i-motif DNA formed in the promoter region of GRIN1 gene for nanotechnological applications. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
14
|
Abdelhamid MA, Fábián L, MacDonald CJ, Cheesman MR, Gates AJ, Waller ZA. Redox-dependent control of i-Motif DNA structure using copper cations. Nucleic Acids Res 2019; 46:5886-5893. [PMID: 29800233 PMCID: PMC6159522 DOI: 10.1093/nar/gky390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
Previous computational studies have shown that Cu+ can act as a substitute for H+ to support formation of cytosine (C) dimers with similar conformation to the hemi-protonated base pair found in i-motif DNA. Through a range of biophysical methods, we provide experimental evidence to support the hypothesis that Cu+ can mediate C–C base pairing in i-motif DNA and preserve i-motif structure. These effects can be reversed using a metal chelator, or exposure to ambient oxygen in the air that drives oxidation of Cu+ to Cu2+, a comparatively weak ligand. Herein, we present a dynamic and redox-sensitive system for conformational control of an i-motif forming DNA sequence in response to copper cations.
Collapse
Affiliation(s)
- Mahmoud As Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - László Fábián
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Colin J MacDonald
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew J Gates
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Zoë Ae Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
15
|
O'Hagan MP, Morales JC, Galan MC. Binding and Beyond: What Else Can G-Quadruplex Ligands Do? European J Org Chem 2019. [DOI: 10.1002/ejoc.201900692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”; Consejo Superior de Investigaciones Científicas (CSIC); PTS Granada; Avenida del Conocimiento 17 18016 Armilla, Granada Spain
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS UK
| |
Collapse
|
16
|
Cheng R, Loire E, Fridgen TD. Hydrogen bonding in alkali metal cation-bound i-motif-like dimers of 1-methyl cytosine: an IRMPD spectroscopic and computational study. Phys Chem Chem Phys 2019; 21:11103-11110. [PMID: 31094375 DOI: 10.1039/c9cp01223k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structures of alkali metal cation bound 1-methylcytosine (1-mCyt) dimers were explored using vibrational spectroscopy in the form of infrared multiple photon dissociation (IRMPD) spectroscopy and by computational methods. For the smaller alkali metal cations, Li+ and Na+, only non-hydrogen bonded symmetric anti-parallel structures were observed in agreement with the lowest energy computed structures. For K+, Rb+, and Cs+ the vibrational spectra in the N-H stretch region showed strong evidence for hydrogen bonding in agreement with the lowest energy structures which contained hydrogen bonding interactions between the amine group of one cytosine and the carbonyl oxygen of the other cytosine. The lowest energy structures for these complexes were compared to previously studied cytosine complexes [(Cyt)2M]+ where M = Li, Na, and K. The calculations are in agreement that only the non-hydrogen bonded structures would be observed for these cytosine complexes.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry, Memorial University, St. John's, NL A1B 3 × 7, Canada.
| | - Estelle Loire
- Laboratoire Chimie Physique - CLIO, Batiment 201, Porte 2, Campus Universite d'Orsay, 91405, France
| | - Travis D Fridgen
- Department of Chemistry, Memorial University, St. John's, NL A1B 3 × 7, Canada.
| |
Collapse
|
17
|
O'Hagan MP, Haldar S, Duchi M, Oliver TAA, Mulholland AJ, Morales JC, Galan MC. A Photoresponsive Stiff-Stilbene Ligand Fuels the Reversible Unfolding of G-Quadruplex DNA. Angew Chem Int Ed Engl 2019; 58:4334-4338. [PMID: 30682233 PMCID: PMC6563076 DOI: 10.1002/anie.201900740] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 11/14/2022]
Abstract
The polymorphic nature of G-quadruplex (G4) DNA structures points to a range of potential applications in nanodevices and an opportunity to control G4 in biological settings. Light is an attractive means for the regulation of oligonucleotide structure as it can be delivered with high spatiotemporal precision. However, surprisingly little attention has been devoted towards the development of ligands for G4 that allow photoregulation of G4 folding. We report a novel G4-binding chemotype derived from stiff-stilbene. Surprisingly however, whilst the ligand induces high stabilization in the potassium form of human telomeric DNA, it causes the unfolding of the same G4 sequence in sodium buffer. This effect can be reversed on demand by irradiation with 400 nm light through deactivation of the ligand by photo-oxidation. By fuelling the system with the photolabile ligand, the conformation of G4 DNA was switched five times.
Collapse
Affiliation(s)
| | - Susanta Haldar
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSUK
| | - Marta Duchi
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSUK
| | | | | | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”Consejo Superior de Investigaciones Científicas (CSIC)PTS GranadaAvenida del Conocimiento 1718016ArmillaGranadaSpain
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantock's CloseBS8 1TSUK
| |
Collapse
|
18
|
O'Hagan MP, Haldar S, Duchi M, Oliver TAA, Mulholland AJ, Morales JC, Galan MC. A Photoresponsive Stiff‐Stilbene Ligand Fuels the Reversible Unfolding of G‐Quadruplex DNA. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Susanta Haldar
- School of ChemistryUniversity of Bristol Cantock's Close BS8 1TS UK
| | - Marta Duchi
- School of ChemistryUniversity of Bristol Cantock's Close BS8 1TS UK
| | | | | | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”Consejo Superior de Investigaciones Científicas (CSIC)PTS Granada Avenida del Conocimiento 17 18016 Armilla Granada Spain
| | - M. Carmen Galan
- School of ChemistryUniversity of Bristol Cantock's Close BS8 1TS UK
| |
Collapse
|
19
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
20
|
Sedghi Masoud S, Nagasawa K. i-Motif-Binding Ligands and Their Effects on the Structure and Biological Functions of i-Motif. Chem Pharm Bull (Tokyo) 2018; 66:1091-1103. [DOI: 10.1248/cpb.c18-00720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shadi Sedghi Masoud
- Department of Life Science and Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology
| | - Kazuo Nagasawa
- Department of Life Science and Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology
| |
Collapse
|
21
|
Marchand A, Rosu F, Zenobi R, Gabelica V. Thermal Denaturation of DNA G-Quadruplexes and Their Complexes with Ligands: Thermodynamic Analysis of the Multiple States Revealed by Mass Spectrometry. J Am Chem Soc 2018; 140:12553-12565. [PMID: 30183275 DOI: 10.1021/jacs.8b07302] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Designing ligands targeting G-quadruplex nucleic acid structures and affecting cellular processes is complicated because there are multiple target sequences and some are polymorphic. Further, structure alone does not reveal the driving forces for ligand binding. To know why a ligand binds, the thermodynamics of binding must be characterized. Electrospray mass spectrometry enables one to detect and quantify each specific stoichiometry (number of strands, cations, and ligands) and thus to simultaneously determine the equilibrium constants for each complex. Using a temperature-controlled nanoelectrospray source, we determined the temperature dependence of the equilibrium constants, and thus the enthalpic and entropic contributions to the formation of each stoichiometry. Enthalpy drives the formation of each quartet-K+-quartet unit, whereas entropy drives the formation of quartet-K+-triplet units. Consequently, slip-stranded structures can become more abundant as the temperature increases. In the presence of ligands (Phen-DC3, TrisQ, TMPyP4, Cu-ttpy), we observed that, even when only a 1:1 (ligand/quadruplex) complex is observed at room temperature, new states are populated at intermediate temperatures, including 2:1 complexes. In most cases, ligand-G4-quadruplex binding is entropically driven, and we discuss that this may have resulted from biases when ranking ligand potency using melting experiments. Other thermodynamic profiles could be linked to topology changes in terms of number of G-quartets (reflected in the number of specific K+ ions in the complex). The thermodynamics of ligand binding to each form, one ligand at a time, provides unprecedented detail on the interplay between ligand binding and topology changes in terms of number of G-quartets.
Collapse
Affiliation(s)
- Adrien Marchand
- Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Frédéric Rosu
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac , France
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Valérie Gabelica
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac , France
| |
Collapse
|
22
|
Yan Y, Cao Y, Xiao C, Li Y, Xiang X, Guo X. 5'-(CGA) n sequence-assisted pH-controlled assembly of supramolecular DNA nanostructure. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180123. [PMID: 30225006 PMCID: PMC6124056 DOI: 10.1098/rsos.180123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Herein, the DNA strands containing 5'-(CGA) n and consecutive guanines are used to construct supramolecular DNA nanostructures that are size-controlled by pH values. Additionally, the introduction of thymine linkers within DNA nanostructures is necessary to maintain the stability of long-sized nanostructures. This work also demonstrates a method for accurately building DNA nanostructures.
Collapse
Affiliation(s)
- Yuting Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yanwei Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
23
|
Zhu J, Kim Y, Lin H, Wang S, Mirkin CA. pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds. J Am Chem Soc 2018; 140:5061-5064. [DOI: 10.1021/jacs.8b02793] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Gouda AS, Amine MS, Pedersen EB. Improved i-motif thermal stability by insertion of anthraquinone monomers. Org Biomol Chem 2018; 15:6613-6621. [PMID: 28752173 DOI: 10.1039/c7ob01393k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends on the substitution pattern of the anthraquinone. The insertion of anthraquinone was found to stabilize the i-motif structure when replacing any one of the positions of the central TAA loop and the thermal stabilities were typically higher than those previously found for i-motifs containing pyrene-modified uracilyl unlocked nucleic acid monomers or twisted intercalating nucleic acid. The 2,6-disubstituted anthraquinone linker replacing T10 enabled a significant increase of i-motif thermal melting by 8.2 °C. A substantial increase of 5.0 °C in i-motif thermal melting was recorded when both A6 and T16 were modified with a double replacement by the 2,6-isomer into the TAA loops in the outer regions. The largest destabilization is observed for the 1,5-disubstituted anthraquinone linker upon the replacement of A18. CD curves of anthraquinone-modified variants imply no structural changes in all cases under potassium buffer conditions compared with those of the native i-motif. Molecular modeling studies explained the increased thermal stabilities of anthraquinone-modified i-motifs.
Collapse
Affiliation(s)
- Alaa S Gouda
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | |
Collapse
|
25
|
Cao Y, Xiang X, Pei R, Li Y, Yan Y, Guo X. Construction of a junction DNA nanostructure and modulation of the junction switching to quadruplexes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171337. [PMID: 29308258 PMCID: PMC5750025 DOI: 10.1098/rsos.171337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/10/2017] [Indexed: 05/11/2023]
Abstract
A junction DNA nanostructure has been successfully built in lithium acetate buffer solution at a near-neutral pH value through the connection of two slipped junction structures that are formed by G-rich and C-rich strands. The GC-rich duplex junctions in the nanostructure can be switched to G-quadruplexes and i-motifs in weakly acidic potassium acetate solution, which leads to the assembly of DNA nanostructures composed of alternating quadruplex and duplex DNA structures. The transformation between different DNA nanoarchitectures may be applied to the operation of 'DNA nanomachines'.
Collapse
Affiliation(s)
- Yanwei Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yuting Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
26
|
Shi L, Peng P, Du Y, Li T. Programmable i-motif DNA folding topology for a pH-switched reversible molecular sensing device. Nucleic Acids Res 2017; 45:4306-4314. [PMID: 28369541 PMCID: PMC5416763 DOI: 10.1093/nar/gkx202] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/18/2017] [Indexed: 01/24/2023] Open
Abstract
Four-stranded DNAs including G-quadruplexes and i-motifs are formed from four stretches of identical bases (G or C). A challenge remains in controlling the intermolecular folding of different G-rich or C-rich strands due to the self-association of each component. Here, we introduce a well-designed bimolecular i-motif that does not allow the dimerization of the same strand, and illustrate its usefulness in a pH-switched ATP-sensing DNA molecular device. We analyze two groups of i-motif DNAs containing two stretches of different C-residues (Cn-1TmCn and CnTmCn-1; n = 3−6, m = 1, 3) and show that their bimolecular folding patterns (L- and H-form) noticeably differs in the thermal stability. The L-form structures generally display a relatively low stability, with a bigger difference from that of conventional i-motifs formed by CnTmCn. It inspires us to at utmost improving the structural stability by extending the core of L-form bimolecular i-motifs with a few flanking noncanonical base pairs, and therefore to avoid the dimeric association of each component. This meaningful bimolecular i-motif is then incorporated into a three-way junction (3WJ) and a four-way junction (4WJ) functionalized with two components of a ATP-binding split DNA aptamer, allowing the pH-triggered directional assembly of 3WJ and 4WJ into the desired (3+4)WJ structure that is verified by gel electrophoresis. It therefore enables the ATP-induced association of the split aptamer within the (3+4)WJ structure, as monitored by fluorescence quenching. In this way, the designed DNA system behaves as a pH-switched reversible molecular device, showing a high sensitivity and selectivity for fluorescent ATP analysis. The i-motif folding topology-programmed DNA nanoassembly may find more applications in the context of larger 2D/3D DNA nanostructures like lattices and polyhedra.
Collapse
Affiliation(s)
- Lili Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Bhartiya D, Chawla V, Ghosh S, Shankar R, Kumar N. Genome-wide regulatory dynamics of G-quadruplexes in human malaria parasite Plasmodium falciparum. Genomics 2016; 108:224-231. [PMID: 27789319 DOI: 10.1016/j.ygeno.2016.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022]
Abstract
The AT-rich genome of P. falciparum has uniquely localized G-rich stretches that have propensity to form G-quadruplexes. However, their global occurrence and potential biological roles in the parasite are poorly explored. Our genome-wide analysis revealed unique enrichment of quadruplexes in P. falciparum genome which was remarkably different from other Plasmodium species. A distinct predominance of quadruplexes was observed in nuclear and organellar genes that participate in antigenic variation, pathogenesis, DNA/RNA regulation, metabolic and protein quality control processes. Data also suggested association of quadruplexes with SNPs and DNA methylation. Furthermore, analysis of steady state mRNA (RNA-seq) and polysome-associated mRNA (Ribosome profiling) data revealed stage-specific differences in translational efficiency of quadruplex harboring genes. Taken together, our findings hint towards existence of regulatory dynamics associated with quadruplexes that may modulate translational efficiency of quadruplex harboring genes to provide survival advantage to the parasite against host immune response and antimalarial drug pressure.
Collapse
Affiliation(s)
- Deeksha Bhartiya
- ICMR-Institute of Cytology and Preventive Oncology, Noida 201301, Uttar Pradesh, India
| | - Vandna Chawla
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Sourav Ghosh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road Campus, Delhi 110020, India
| | - Ravi Shankar
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Delhi, India.
| |
Collapse
|
28
|
Kumar V, Gothelf KV. Synthesis and biophysical properties of (L)-aTNA based G-quadruplexes. Org Biomol Chem 2016; 14:1540-4. [PMID: 26731694 DOI: 10.1039/c5ob02525g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Novel G-quadruplex structures are constructed by acyclic (L)-threninol nucleic acid and their synthesis and biophysical properties are described. Pyrene excimer fluorescence and circular dichroism (CD) data revealed that four strands of aTNA are oriented in antiparallel direction.
Collapse
Affiliation(s)
- Vipin Kumar
- Danish National Research Foundation Center for DNA Nanotechnology, iNANO and Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
| | - Kurt V Gothelf
- Danish National Research Foundation Center for DNA Nanotechnology, iNANO and Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
29
|
Distinct differences in metal ion specificity of RNA and DNA G-quadruplexes. J Biol Inorg Chem 2016; 21:975-986. [PMID: 27704222 DOI: 10.1007/s00775-016-1393-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/02/2016] [Indexed: 01/21/2023]
Abstract
RNA G-quadruplexes, as their well-studied DNA analogs, require the presence of cations to fold and remain stable. This is the first comprehensive study on the interaction of RNA quadruplexes with metal ions. We investigated the formation and stability of two highly conserved and biologically relevant RNA quadruplex-forming sequences (24nt-TERRA and 18nt-NRAS) in the presence of several monovalent and divalent metal ions, namely Li+, Na+, K+, Rb+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, and Ba2+. Circular dichroism was used to probe the influence of these metal ions on the folded fraction of the parallel G-quadruplexes, and UV thermal melting experiments allowed to assess the relative stability of the structures in each cationic condition. Our results show that the RNA quadruplexes are more stable than their DNA counterparts under the same buffer conditions. We have observed that the addition of mainly Na+, K+, Rb+, NH4+, as well as Sr2+ and Ba2+ in water, shifts the equilibrium to the folded quadruplex form, whereby the NRAS sequence responds stronger than TERRA. However, only K+ and Sr2+ lead to a significant increase in the stability of the folded structures, which is consistent with their coordination to the O6 atoms from the G-quartet guanosines. Compared to the respective DNA motives, dNRAS and htelo, the RNA sequences are not stabilized by Na+ ions. Finally, the difference in response between NRAS and TERRA, as well as to the corresponding DNA sequences with respect to different metal ions, could potentially be exploited for selective targeting purposes.
Collapse
|
30
|
Day HA, Wright EP, MacDonald CJ, Gates AJ, Waller ZAE. Reversible DNA i-motif to hairpin switching induced by copper(II) cations. Chem Commun (Camb) 2016; 51:14099-102. [PMID: 26252811 PMCID: PMC4563791 DOI: 10.1039/c5cc05111h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(II) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA.
Collapse
Affiliation(s)
- Henry Albert Day
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | | | | | | | | |
Collapse
|
31
|
Xu L, Hong S, Shen X, Zhou L, Wang J, Zhang J, Pei R. DNA Triplexes-Guided Assembly of G-Quadruplexes for Constructing Label-free Fluorescent Logic Gates. Chem Asian J 2016; 11:1892-5. [DOI: 10.1002/asia.201600626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Lijun Xu
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Shanni Hong
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaoqiang Shen
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
- School of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 China
| | - Lu Zhou
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Jine Wang
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Jianye Zhang
- School of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| |
Collapse
|
32
|
Largy E, Marchand A, Amrane S, Gabelica V, Mergny JL. Quadruplex Turncoats: Cation-Dependent Folding and Stability of Quadruplex-DNA Double Switches. J Am Chem Soc 2016; 138:2780-92. [PMID: 26837276 DOI: 10.1021/jacs.5b13130] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Quadruplex (G4) nucleic acids, a family of secondary structures formed by guanine-rich sequences, exhibit an important structural polymorphism. We demonstrate here that G-rich DNA sequences may function as a double switch based on different triggers, provided that their quadruplex structures and stability display a high dependence on cation nature and concentration. A first switch is based on a remarkable antiparallel-to-parallel conversion, taking place in a few seconds at room temperature by addition of low KCl amounts to a sodium-rich sample. The second switch involves the conversion of alternative antiparallel quadruplex structures binding only one cation, formed in the presence of sub-millimolar potassium or strontium concentrations, to parallel structures by increasing the cation concentration. Incidentally, extremely low K(+) or Sr(2+) concentrations (≤5 equiv) are sufficient to induce G4 formation in a buffer devoid of other G4-promoting cations, and we suggest that the alternative structures observed contain only two tetrads. Such DNA systems are biological relevant targets, can be used in nanotechnology applications, and are valuable methodological tools for understanding DNA quadruplex folding, notably at low cation concentrations. We demonstrate that this behavior is not restricted to a narrow set of sequences but can also be found for other G-quadruplex-forming motifs, arguing for widespread applications.
Collapse
Affiliation(s)
- Eric Largy
- U1212, ARNA Laboratory, Inserm , F-33000 Bordeaux, France.,IECB, ARNA Laboratory, Université de Bordeaux , F-33600 Pessac, France.,UMR 5320, ARNA Laboratory, CNRS , F-33600 Pessac, France
| | - Adrien Marchand
- U1212, ARNA Laboratory, Inserm , F-33000 Bordeaux, France.,IECB, ARNA Laboratory, Université de Bordeaux , F-33600 Pessac, France.,UMR 5320, ARNA Laboratory, CNRS , F-33600 Pessac, France
| | - Samir Amrane
- U1212, ARNA Laboratory, Inserm , F-33000 Bordeaux, France.,IECB, ARNA Laboratory, Université de Bordeaux , F-33600 Pessac, France.,UMR 5320, ARNA Laboratory, CNRS , F-33600 Pessac, France
| | - Valérie Gabelica
- U1212, ARNA Laboratory, Inserm , F-33000 Bordeaux, France.,IECB, ARNA Laboratory, Université de Bordeaux , F-33600 Pessac, France.,UMR 5320, ARNA Laboratory, CNRS , F-33600 Pessac, France
| | - Jean-Louis Mergny
- U1212, ARNA Laboratory, Inserm , F-33000 Bordeaux, France.,IECB, ARNA Laboratory, Université de Bordeaux , F-33600 Pessac, France.,UMR 5320, ARNA Laboratory, CNRS , F-33600 Pessac, France
| |
Collapse
|
33
|
Wu J, Yu F, Zhang Z, Chen Y, Du J. Highly sensitive self-complementary DNA nanoswitches triggered by polyelectrolytes. NANOSCALE 2016; 8:464-470. [PMID: 26627445 DOI: 10.1039/c5nr05193b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dimerization of two homologous strands of genomic DNA/RNA is an essential feature of retroviral replication. Herein we show that a cationic comb-type copolymer (CCC), poly(L-lysine)-graft-dextran, accelerates the dimerization of self-complementary stem-loop DNA, frequently found in functional DNA/RNA molecules, such as aptamers. Furthermore, an anionic polymer poly(sodium vinylsulfonate) (PVS) dissociates CCC from the duplex shortly within a few seconds. Then single stem-loop DNA spontaneously transforms from its dimer. Thus we can easily control the dimer and stem-loop DNA by switching on/off CCC activity. Both polyelectrolytes and DNA concentrations are in the nanomole per liter range. The polyelectrolyte-assisted transconformation and sequences design strategy ensures the reversible state control with rapid response and effective switching under physiologically relevant conditions. A further application of this sensitive assembly is to construct an aptamer-type drug delivery system, bind or release functional molecules responding to its transconformation.
Collapse
Affiliation(s)
- Jincai Wu
- College of Materials and Chemistry Engineering, Hainan University, Haikou 570228, China.
| | - Feng Yu
- College of Materials and Chemistry Engineering, Hainan University, Haikou 570228, China.
| | - Zheng Zhang
- College of Materials and Chemistry Engineering, Hainan University, Haikou 570228, China.
| | - Yong Chen
- College of Materials and Chemistry Engineering, Hainan University, Haikou 570228, China.
| | - Jie Du
- College of Materials and Chemistry Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
34
|
Grijalvo S, Alagia A, Gargallo R, Eritja R. Cellular uptake studies of antisense oligonucleotides using G-quadruplex-nanostructures. The effect of cationic residue on the biophysical and biological properties. RSC Adv 2016. [DOI: 10.1039/c6ra15336d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cellular uptake studies of G-quadruplex constructs having the Tetrahymena telomeric repeat sequence d(TGGGGT) modified with amino and guanidinium residues at the 3′-termini and an antisense oligonucleotide at 5′-termini were studied.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- E-08034 Barcelona
- Spain
- Networking Centre on Bioengineering
- Biomaterials and Nanomedicine (CIBER-BBN)
| | - Adele Alagia
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- E-08034 Barcelona
- Spain
| | - Raimundo Gargallo
- University of Barcelona
- Department of Chemical Engineering and Analytical Chemistry
- E-08028 Barcelona
- Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- E-08034 Barcelona
- Spain
- Networking Centre on Bioengineering
- Biomaterials and Nanomedicine (CIBER-BBN)
| |
Collapse
|
35
|
Mondal S, Bhat J, Jana J, Mukherjee M, Chatterjee S. Reverse Watson–Crick G–G base pair in G-quadruplex formation. MOLECULAR BIOSYSTEMS 2016; 12:18-22. [DOI: 10.1039/c5mb00611b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cisplatin binds to N7 of guanine in a reverse Watson–Crick G–G pair.
Collapse
Affiliation(s)
- Soma Mondal
- Bose Institute
- Centenary Campus
- Department of Biophysics
- Kolkata-54
- India
| | - Jyotsna Bhat
- Bose Institute
- Centenary Campus
- Department of Biophysics
- Kolkata-54
- India
| | - Jagannath Jana
- Bose Institute
- Centenary Campus
- Department of Biophysics
- Kolkata-54
- India
| | | | | |
Collapse
|
36
|
Chauhan A, Paladhi S, Debnath M, Dash J. Selective recognition of c-MYC G-quadruplex DNA using prolinamide derivatives. Org Biomol Chem 2016; 14:5761-7. [DOI: 10.1039/c6ob00177g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the design, synthesis, biophysical and biological evaluation of triazole containing prolinamide derivatives as selectivec-MYCG-quadruplex binding ligands.
Collapse
Affiliation(s)
- Ajay Chauhan
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Sushovan Paladhi
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
- Department of Organic Chemistry
| | - Manish Debnath
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Jyotirmayee Dash
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
- Department of Organic Chemistry
| |
Collapse
|
37
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
38
|
Novotný J, Yurenko YP, Kulhánek P, Marek R. Tailoring the properties of quadruplex nucleobases for biological and nanomaterial applications. Phys Chem Chem Phys 2015; 16:15241-8. [PMID: 24939211 DOI: 10.1039/c4cp00541d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guanine DNA quadruplexes are interesting and important biological objects because they represent potential targets for regulatory drugs. Their use as building blocks for biomaterial applications is also being investigated. This contribution reports the in silico design of artificial building blocks derived from xanthine. Methods of quantum chemistry were used to evaluate the properties of xanthine structures relative to those containing guanine, the natural reference used. Tailoring the xanthine core showed that the base stacking and the ion coordination were significantly enhanced in the designed systems, while the ion-transport properties were not affected. Our study suggests that the 9-deaza-8-haloxanthine bases (where the halogen is fluorine or chlorine) are highly promising candidates for the development of artificial quadruplexes and quadruplex-active ligands.
Collapse
Affiliation(s)
- Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, Brno, CZ-625 00, Czech Republic.
| | | | | | | |
Collapse
|
39
|
Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines. Sci Rep 2015; 5:14402. [PMID: 26395968 PMCID: PMC4585782 DOI: 10.1038/srep14402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/30/2015] [Indexed: 02/08/2023] Open
Abstract
Reversible catalysis regulation has gained much attention and traditional strategies utilized reversible ligand coordination for switching catalyst's conformations. However, it remains challenging to regulate the catalytic activity of metal nanoparticle-based catalysts. Herein, we report a new DNA nanomachine-driven reversible nano-shield strategy for circumventing this problem. The basic idea is based on the fact that the conformational change of surface-attached DNA nanomachines will cause the variation of the exposed surface active area on metal nanoparticles. As a proof-of-concept study, we immobilized G-rich DNA strands on gold nanoparticles (AuNPs) which have glucose oxidase (GOx) like activity. Through the reversible conformational change of the G-rich DNA between a flexible single-stranded form and a compact G-quadruplex form, the catalytic activity of AuNPs has been regulated reversibly for several cycles. This strategy is reliable and robust, which demonstrated the possibility of reversibly adjusting catalytic activity with external surface coverage switching, rather than coordination interactions.
Collapse
|
40
|
Yang M, Zhang X, Liu H, Kang H, Zhu Z, Yang W, Tan W. Stable DNA Nanomachine Based on Duplex-Triplex Transition for Ratiometric Imaging Instantaneous pH Changes in Living Cells. Anal Chem 2015; 87:5854-9. [PMID: 26016566 PMCID: PMC4928482 DOI: 10.1021/acs.analchem.5b01233] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
DNA nanomachines are becoming useful tools for molecular recognition, imaging, and diagnostics and have drawn gradual attention. Unfortunately, the present application of most DNA nanomachines is limited in vitro, so expanding their application in organism has become a primary focus. Hence, a novel DNA nanomachine named t-switch, based on the DNA duplex-triplex transition, is developed for monitoring the intracellular pH gradient. Our strategy is based on the DNA triplex structure containing C(+)-G-C triplets and pH-dependent Förster resonance energy transfer (FRET). Our results indicate that the t-switch is an efficient reporter of pH from pH 5.3 to 6.0 with a fast response of a few seconds. Also the uptake of the t-switch is speedy. In order to protect the t-switch from enzymatic degradation, PEI is used for modification of our DNA nanomachine. At the same time, the dynamic range could be extended to pH 4.6-7.8. The successful application of this pH-depended DNA nanomachine and motoring spatiotemporal pH changes associated with endocytosis is strong evidence of the possibility of self-assembly DNA nanomachine for imaging, targeted therapies, and controllable drug delivery.
Collapse
Affiliation(s)
- Mengqi Yang
- Key
Laboratory of Cluster Science of Ministry of Education, Beijing Key
Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
School of Chemistry, Beijing Institute of
Technology, 5 Zhongguancun
Road, Beijing 100081, P. R. China
| | - Xiaoling Zhang
- Key
Laboratory of Cluster Science of Ministry of Education, Beijing Key
Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
School of Chemistry, Beijing Institute of
Technology, 5 Zhongguancun
Road, Beijing 100081, P. R. China
| | - Haipeng Liu
- College
of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Huaizhi Kang
- College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, P.
R. China
| | - Zhi Zhu
- College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, P.
R. China
| | - Wen Yang
- Key
Laboratory of Cluster Science of Ministry of Education, Beijing Key
Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
School of Chemistry, Beijing Institute of
Technology, 5 Zhongguancun
Road, Beijing 100081, P. R. China
| | - Weihong Tan
- Center
for Research at Bio/nano Interface, Department
of Chemistry, Department of Physiology and
Functional Genomics, Shands Cancer Center, UF Genetics Institute, and McKnight Brain Institute, University of
Florida, Gainesville, Florida 32611-7200, United States
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
41
|
Zhang X, Gao R, Li D, Yin H, Zhang J, Cao H, Zheng X. Study on Interaction between 5-Bromo-4-thio-2'-deoxyuridine and human serum albumin by spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt C:1775-1781. [PMID: 25467669 DOI: 10.1016/j.saa.2014.10.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 10/18/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
The interaction between 5-Bromo-4-thio-2'-deoxyuridine (4-SBrdU) and human serum albumin (HSA) was investigated by the methods of UV-vis absorbance, fluorescence and circular dichroism (CD) spectroscopy and molecular docking under simulative physiological conditions. The results showed that the quenching mechanism of HAS by 4-SBrdU was dynamic fluorescence quenching, hydrophobic interaction was the main intermolecular force based on thermodynamic data, the fluorescence experimental results were in agreement with results obtained by the molecular docking study.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Environment and Chemical Engineering, Dalian University, Dalian, Liaoning 116622, China.
| | - Ruiqi Gao
- College of Environment and Chemical Engineering, Dalian University, Dalian, Liaoning 116622, China
| | - Depeng Li
- College of Environment and Chemical Engineering, Dalian University, Dalian, Liaoning 116622, China
| | - Hongyan Yin
- College of Environment and Chemical Engineering, Dalian University, Dalian, Liaoning 116622, China
| | - Juling Zhang
- MOE Key laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Hongyu Cao
- College of Bioengineering, Dalian University, Dalian, Liaoning 116622, China
| | - Xuefang Zheng
- College of Bioengineering, Dalian University, Dalian, Liaoning 116622, China
| |
Collapse
|
42
|
|
43
|
Davis KJ, Richardson C, Beck JL, Knowles BM, Guédin A, Mergny JL, Willis AC, Ralph SF. Synthesis and characterisation of nickel Schiff base complexes containing the meso-1,2-diphenylethylenediamine moiety: selective interactions with a tetramolecular DNA quadruplex. Dalton Trans 2015; 44:3136-50. [DOI: 10.1039/c4dt02926g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two nickel(ii) Schiff base complexes exhibit binding selectivity for a tetramolecular DNA quadruplex.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anthony C. Willis
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | | |
Collapse
|
44
|
Zhang D, Huang T, Lukeman PS, Paukstelis PJ. Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad. Nucleic Acids Res 2014; 42:13422-9. [PMID: 25389267 PMCID: PMC4245957 DOI: 10.1093/nar/gku1122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have determined the 1.50 Å crystal structure of the DNA decamer, d(CCA(CNV)KGCGTGG) ((CNV)K, 3-cyanovinylcarbazole), which forms a G-quadruplex structure in the presence of Ba(2+). The structure contains several unique features including a bulged nucleotide and the first crystal structure observation of a C-tetrad. The structure reveals that water molecules mediate contacts between the divalent cations and the C-tetrad, allowing Ba(2+) ions to occupy adjacent steps in the central ion channel. One ordered Mg(2+) facilitates 3'-3' stacking of two quadruplexes in the asymmetric unit, while the bulged nucleotide mediates crystal contacts. Despite the high diffraction limit, the first four nucleotides including the (CNV)K nucleoside are disordered though they are still involved in crystal packing. This work suggests that the bulky hydrophobic groups may locally influence the formation of non-Watson-Crick structures from otherwise complementary sequences. These observations lead to the intriguing possibility that certain types of DNA damage may act as modulators of G-quadruplex formation.
Collapse
Affiliation(s)
- Diana Zhang
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | - Terry Huang
- Chemistry and Biochemistry Department, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Philip S. Lukeman
- Chemistry Department, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Paul J. Paukstelis
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA,To whom correspondence should be addressed. Tel: 301.405.9933; Fax: 301.314.0386;
| |
Collapse
|
45
|
Das RN, Debnath M, Gaurav A, Dash J. Environment-Sensitive Probes Containing a 2,6-Diethynylpyridine Motif for Fluorescence Turn-On Detection and Induction of Nanoarchitectures of Human Telomeric Quadruplex. Chemistry 2014; 20:16688-93. [DOI: 10.1002/chem.201404795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/24/2022]
|
46
|
Zhou J, Rosu F, Amrane S, Korkut DN, Gabelica V, Mergny JL. Assembly of chemically modified G-rich sequences into tetramolecular DNA G-quadruplexes and higher order structures. Methods 2014; 67:159-68. [DOI: 10.1016/j.ymeth.2014.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022] Open
|
47
|
Zhang XY, Luo HQ, Li NB. Crystal violet as an i-motif structure probe for reversible and label-free pH-driven electrochemical switch. Anal Biochem 2014; 455:55-9. [PMID: 24699211 DOI: 10.1016/j.ab.2014.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 03/16/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
Abstract
A simple pH-induced electrochemical switch based on an i-motif structure is developed by using crystal violet as a selective electrochemical probe for the i-motif structure. Thiol-modified cytosine-rich single-strand oligonucleotide (C-rich ssDNA) can be self-assembled on the gold electrode surface via gold-sulfur interaction. Crystal violet is employed as an electrochemical probe for the i-motif structure because of its capability of binding with the i-motif structure through an end-stacking mode. In acidic aqueous solution, crystal violet may approach the electrode surface owing to the formation of the i-motif structure, resulting in an obvious signal, so-called "ON" state. Whereas in neutral or basic aqueous solution, the i-motif structure unfolds to dissociative single strand, which causes crystal violet to leave from the electrode surface, and a weak signal is obtained, so-called "OFF" state. In addition, in the range of pH 4.6-7.3, the increase in current has a good linear relationship (R=0.989) with pH value in the testing solutions. This pH-driven electrochemical switch has the advantages of simplicity, sensitivity, high selectivity, and good reversibility. Furthermore, it provides a possible platform for pH measurement.
Collapse
Affiliation(s)
- Xi Yuan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
48
|
Ma'ani Hessari N, Spindler L, Troha T, Lam WC, Drevenšek-Olenik I, Webba da Silva M. Programmed Self-Assembly of a Quadruplex DNA Nanowire. Chemistry 2014; 20:3626-30. [DOI: 10.1002/chem.201300692] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 12/02/2013] [Indexed: 12/30/2022]
|
49
|
Cheng CCW, Ma C, Chan CTL, Ho KYF, Kwok WM. The solvent effect and identification of a weakly emissive state in nonradiative dynamics of guanine nucleosides and nucleotides--a combined femtosecond broadband time-resolved fluorescence and transient absorption study. Photochem Photobiol Sci 2014; 12:1351-65. [PMID: 23538894 DOI: 10.1039/c3pp25450j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined method of femtosecond broadband time-resolved fluorescence (fs-TRF) and transient absorption (fs-TA) was employed to investigate the excited state dynamics of 2'-deoxyguanosine (dG) and 2'-deoxyguanosine 5'-monophosphate (dGMP). Comparative fs-TRF and fs-TA measurements were conducted on dG and dGMP in neutral water, deuterated water, and methanol with excitation wavelengths of 245, 267 and 285 nm. Very similar results were observed with dG and dGMP. The data provide compelling evidence for the co-existence of two nonradiative pathways. One is the generally recognized Laππ* mediated channel, the other involves an unprecedented weakly emissive state which plays a significant role in the overall deactivation processes. The Laππ* channel features biphasic dynamics with time constants (τ1/τ2) of ~0.2/0.8 ps in water and ~0.25/1.0 ps in methanol. The biphasic decay arises due to a partial transfer with τ1 of the Laππ* population to the newly identified state followed by conversion in τ2 of the remaining Laππ* molecules into the electronic ground state. The channel mediated by the weakly emissive species shows solvent-dependent dynamics with time constants (τ3) of ~2.0 ps in water, ~2.3 ps in deuterated water, and ~4.1 ps in methanol. The species features absorption at UV wavelengths (~300-400 nm) and exhibits deeply red-shifted fluorescence (λmax ~ 520 nm) with polarization direction varied markedly from that of the Laππ* but close to the Lbππ*. This species acts as an effective quenching state to the radiative decay of the brightly emissive Laππ* and Lbππ*. It sets in promptly (<~50 fs) after the photoexcitation and is further populated through nonadiabatic coupling with the Laππ*. The overall involvement of this state is facilitated with excitation at high energy and is favoured in methanol over water. According to the spectral character and the solvent effect in particular the kinetic isotope effect, the species is tentatively associated to the πσ* state with charge transfer (CT) character which is considered to be preferentially stabilized by hydrogen-bonding between the guanine amino and surrounding solvent molecules. The result of this study leads to a dramatically different picture of guanine deactivation. It demonstrates a crucial role of the solvent in shaping the nonradiative dynamics of guanine nucleosides and nucleotides. The data presented are important for understanding the detailed photophysics of not only the monomeric guanine but also DNA assemblies that contain guanine in base pairs or have a guanine tetrad as the structural motif.
Collapse
Affiliation(s)
- Chopen Chan-Wut Cheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
50
|
Ngo VA, Di Felice R, Haas S. Is the G-Quadruplex an Effective Nanoconductor for Ions? J Phys Chem B 2014; 118:864-72. [DOI: 10.1021/jp408071h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Van A. Ngo
- Department
of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Rosa Di Felice
- Department
of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Center
S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Stephan Haas
- Department
of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|