1
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Abstract
The cyclic-AMP response element binding protein (CREB) is an important nuclear transcription factor and has been shown to be overexpressed and/or over-activated in many different cancer types, suggesting that targeting CREB is a novel approach for developing cancer therapies. Our lab discovered the first cell-permeable small molecule inhibitor of CREB, from which we further developed a potent CREB inhibitor with in vivo anti-cancer activity. In this article, we detailed our biochemical and cell-based bioassays to assess different small molecule CREB inhibitors.
Collapse
Affiliation(s)
- Bingbing X Li
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States.
| | - Xiangshu Xiao
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
3
|
Austin MJ, Rosales AM. Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater Sci 2019; 7:490-505. [PMID: 30628589 DOI: 10.1039/c8bm01215f] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric biomaterials have many applications including therapeutic delivery vehicles, medical implants and devices, and tissue engineering scaffolds. Both naturally-derived and synthetic materials have successfully been used for these applications in the clinic. However, the increasing complexity of these applications requires materials with advanced properties, especially customizable or tunable materials with bioactivity. To address this issue, there have been recent efforts to better recapitulate the properties of natural materials using synthetic biomaterials composed of sequence-controlled polymers. Sequence control mimics the primary structure found in biopolymers, and in many cases, provides an extra handle for functionality in synthetic polymers. Here, we first review the advances in synthetic methods that have enabled sequence-controlled biomaterials on a relevant scale, and discuss strategies for choosing functional sequences from a biomaterials engineering context. Then, we highlight several recent studies that show strong impact of sequence control on biomaterial properties, including in vitro and in vivo behavior, in the areas of hydrogels, therapeutic materials, and novel applications such as molecular barcodes for medical devices. The role of sequence control in biomaterials properties is an emerging research area, and there remain many opportunities for investigation. Further study of this topic may significantly advance our understanding of bioactive or smart materials, as well as contribute design rules to guide the development of synthetic biomaterials for future applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mariah J Austin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
4
|
Deprey K, Becker L, Kritzer J, Plückthun A. Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjug Chem 2019; 30:1006-1027. [PMID: 30882208 PMCID: PMC6527423 DOI: 10.1021/acs.bioconjchem.9b00112] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecules have many properties that make them promising for intracellular therapeutic applications, but delivery remains a key challenge because large biomolecules cannot easily enter the cytosol. Furthermore, quantification of total intracellular versus cytosolic concentrations remains demanding, and the determination of delivery efficiency is thus not straightforward. In this review, we discuss strategies for delivering biomolecules into the cytosol and briefly summarize the mechanisms of uptake for these systems. We then describe commonly used methods to measure total cellular uptake and, more selectively, cytosolic localization, and discuss the major advantages and drawbacks of each method. We critically evaluate methods of measuring "cell penetration" that do not adequately distinguish total cellular uptake and cytosolic localization, which often lead to inaccurate interpretations of a molecule's cytosolic localization. Finally, we summarize the properties and components of each method, including the main caveats of each, to allow for informed decisions about method selection for specific applications. When applied correctly and interpreted carefully, methods for quantifying cytosolic localization offer valuable insight into the bioactivity of biomolecules and potentially the prospects for their eventual development into therapeutics.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joshua Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Singh J, Lopes D, Gomika Udugamasooriya D. Development of a large peptoid-DOTA combinatorial library. Biopolymers 2016; 106:673-84. [PMID: 27257968 PMCID: PMC5035194 DOI: 10.1002/bip.22883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/15/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023]
Abstract
Conventional one-bead one-compound (OBOC) library synthesis is typically used to identify molecules with therapeutic value. The design and synthesis of OBOC libraries that contain molecules with imaging or even potentially therapeutic and diagnostic capacities (e.g. theranostic agents) has been overlooked. The development of a therapeutically active molecule with a built-in imaging component for a certain target is a daunting task, and structure-based rational design might not be the best approach. We hypothesize to develop a combinatorial library with potentially therapeutic and imaging components fused together in each molecule. Such molecules in the library can be used to screen, identify, and validate as direct theranostic candidates against targets of interest. As the first step in achieving that aim, we developed an on-bead library of 153,600 Peptoid-DOTA compounds in which the peptoids are the target-recognizing and potentially therapeutic components and the DOTA is the imaging component. We attached the DOTA scaffold to TentaGel beads using one of the four arms of DOTA, and we built a diversified 6-mer peptoid library on the remaining three arms. We evaluated both the synthesis and the mass spectrometric sequencing capacities of the test compounds and of the final library. The compounds displayed unique ionization patterns including direct breakages of the DOTA scaffold into two units, allowing clear decoding of the sequences. Our approach provides a facile synthesis method for the complete on-bead development of large peptidomimetic-DOTA libraries for screening against biological targets for the identification of potential theranostic agents in the future. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 673-684, 2016.
Collapse
Affiliation(s)
- Jaspal Singh
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204
| | - Daniel Lopes
- Advanced Imaging Research Center, UT-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390
| | - D Gomika Udugamasooriya
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204.
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX, 77030-4009.
- Advanced Imaging Research Center, UT-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390.
- Department of Biochemistry, UT-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390.
| |
Collapse
|
6
|
Kodadek T, McEnaney PJ. Towards vast libraries of scaffold-diverse, conformationally constrained oligomers. Chem Commun (Camb) 2016; 52:6038-59. [PMID: 26996593 PMCID: PMC4846527 DOI: 10.1039/c6cc00617e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is great interest in the development of probe molecules and drug leads that would bind tightly and selectively to protein surfaces that are difficult to target with traditional molecules, such as those involved in protein-protein interactions. The currently available evidence suggests that this will require molecules that are larger and have quite different chemical properties than typical Lipinski-compliant molecules that target enzyme active sites. We describe here efforts to develop vast libraries of conformationally constrained oligomers as a potentially rich source of these molecules.
Collapse
Affiliation(s)
- Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
7
|
Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem Rev 2015; 116:1753-802. [DOI: 10.1021/acs.chemrev.5b00201] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Niklas Gangloff
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Juliane Ulbricht
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Lorson
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Robert Luxenhofer
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
8
|
Matharage JM, Minna JD, Brekken RA, Udugamasooriya DG. Unbiased Selection of Peptide-Peptoid Hybrids Specific for Lung Cancer Compared to Normal Lung Epithelial Cells. ACS Chem Biol 2015; 10:2891-9. [PMID: 26509598 DOI: 10.1021/acschembio.5b00592] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To develop widely applicable diagnostic and potentially therapeutic approaches overcoming protein heterogeneity in human cancer, we have developed a technology to unbiasedly select high specificity compound(s) that bind any biomolecule (e.g., proteins, lipids, carbohydrates) presented on the cancer cell surface but not on normal cells. We utilized a peptidomimetic based on-bead two-color (OBTC) combinatorial cell screen that can detect differences between two cell surfaces at high accuracy by looking for beads (where each bead in the library had one peptide-peptoid hybrid on the surface) that only bound cancer but not normal cells. We screened a library of 393 216 compounds targeting HCC4017 lung adenocarcinoma cells (labeled in red) in the presence of HBEC30KT normal bronchial epithelial cells (labeled in green) derived from the same tissue of the same patient. This screen identified a peptide-peptoid hybrid called PPS1 which displayed high specific binding for HCC4017 cancer cells over HBEC30KT cells. Specificity was validated through on-bead, ELISA-like and magnetic bead pulldown studies, while a scrambled version of PPS1 did not show any binding. Of interest, the simple dimeric version (PPS1D1) displayed cytotoxic activity on HCC4017 cells, but not on normal HBEC30KT cells. PPS1D1 also strongly accumulated in HCC4017 lung cancer xenografts in mice over control constructs. We conclude that such combinatorial screens using tumor and normal cells from the same patient have significant potential to develop new reagents for cancer biology, diagnosis, and potentially therapy.
Collapse
Affiliation(s)
- Jaya M. Matharage
- Advanced Imaging Research Center, ‡Simmons Comprehensive
Cancer Center, §Hamon Center for Therapeutic
Oncology Research, ∥Departments of Biochemistry, ⊥Pharmacology, #Internal Medicine, and ▽Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - John D. Minna
- Advanced Imaging Research Center, ‡Simmons Comprehensive
Cancer Center, §Hamon Center for Therapeutic
Oncology Research, ∥Departments of Biochemistry, ⊥Pharmacology, #Internal Medicine, and ▽Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Rolf A. Brekken
- Advanced Imaging Research Center, ‡Simmons Comprehensive
Cancer Center, §Hamon Center for Therapeutic
Oncology Research, ∥Departments of Biochemistry, ⊥Pharmacology, #Internal Medicine, and ▽Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - D. Gomika Udugamasooriya
- Advanced Imaging Research Center, ‡Simmons Comprehensive
Cancer Center, §Hamon Center for Therapeutic
Oncology Research, ∥Departments of Biochemistry, ⊥Pharmacology, #Internal Medicine, and ▽Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
9
|
Mándity IM, Fülöp F. An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin Drug Discov 2015; 10:1163-77. [PMID: 26289578 DOI: 10.1517/17460441.2015.1076790] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Foldamers are artificial self-organizing systems with various critical properties: i) a stable and designable secondary structure; ii) a larger molecular surface as compared with ordinary organic drug molecules; iii) appropriate control of the orientation of the side-chain functional groups; iv) resistance against proteolytic degradation, which leads to potentially increased oral bioavailability and a longer serum half-life relative to ordinary α-peptides; and v) the lower conformational freedom may result in increased receptor binding in comparison with the natural analogs. AREAS COVERED This article covers the general properties and types of foldamers. This includes highlighted examples of medicinal chemical applications, including antibacterial and cargo molecules, anti-Alzheimer compounds and protein-protein interaction modifiers. EXPERT OPINION Various new foldamers have been created with a range of structures and biological applications. Membrane-acting antibacterial foldamers have been introduced. A general property of these structures is their amphiphilic nature. The amphiphilicity can be stationary or induced by the membrane binding. Cell-penetrating foldamers have been described which serve as cargo molecules, and foldamers have been used as autophagy inducers. Anti-Alzheimer compounds too have been created and the greatest breakthrough was attained via the modification of protein-protein interactions. This can serve as the chemical and pharmaceutical basis for the relevance of foldamers in the future.
Collapse
Affiliation(s)
| | - Ferenc Fülöp
- a University of Szeged Institute of Pharmaceutical Chemistry , H-6720 Szeged, Eötvös u. 6, Hungary +36 62 545 768 ; +36 62 545 564 ; +36 62 545 705 ; ;
| |
Collapse
|
10
|
Larsen MJ, Larsen SD, Fribley A, Grembecka J, Homan K, Mapp A, Haak A, Nikolovska-Coleska Z, Stuckey JA, Sun D, Sherman DH. The role of HTS in drug discovery at the University of Michigan. Comb Chem High Throughput Screen 2015; 17:210-30. [PMID: 24409957 DOI: 10.2174/1386207317666140109121546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022]
Abstract
High throughput screening (HTS) is an integral part of a highly collaborative approach to drug discovery at the University of Michigan. The HTS lab is one of four core centers that provide services to identify, produce, screen and follow-up on biomedical targets for faculty. Key features of this system are: protein cloning and purification, protein crystallography, small molecule and siRNA HTS, medicinal chemistry and pharmacokinetics. Therapeutic areas that have been targeted include anti-bacterial, metabolic, neurodegenerative, cardiovascular, anti-cancer and anti-viral. The centers work in a coordinated, interactive environment to affordably provide academic investigators with the technology, informatics and expertise necessary for successful drug discovery. This review provides an overview of these centers at the University of Michigan, along with case examples of successful collaborations with faculty.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David H Sherman
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Giguère S, Laviolette F, Marchand M, Tremblay D, Moineau S, Liang X, Biron É, Corbeil J. Machine learning assisted design of highly active peptides for drug discovery. PLoS Comput Biol 2015; 11:e1004074. [PMID: 25849257 PMCID: PMC4388847 DOI: 10.1371/journal.pcbi.1004074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 12/05/2014] [Indexed: 01/15/2023] Open
Abstract
The discovery of peptides possessing high biological activity is very challenging due to the enormous diversity for which only a minority have the desired properties. To lower cost and reduce the time to obtain promising peptides, machine learning approaches can greatly assist in the process and even partly replace expensive laboratory experiments by learning a predictor with existing data or with a smaller amount of data generation. Unfortunately, once the model is learned, selecting peptides having the greatest predicted bioactivity often requires a prohibitive amount of computational time. For this combinatorial problem, heuristics and stochastic optimization methods are not guaranteed to find adequate solutions. We focused on recent advances in kernel methods and machine learning to learn a predictive model with proven success. For this type of model, we propose an efficient algorithm based on graph theory, that is guaranteed to find the peptides for which the model predicts maximal bioactivity. We also present a second algorithm capable of sorting the peptides of maximal bioactivity. Extensive analyses demonstrate how these algorithms can be part of an iterative combinatorial chemistry procedure to speed up the discovery and the validation of peptide leads. Moreover, the proposed approach does not require the use of known ligands for the target protein since it can leverage recent multi-target machine learning predictors where ligands for similar targets can serve as initial training data. Finally, we validated the proposed approach in vitro with the discovery of new cationic antimicrobial peptides. Source code freely available at http://graal.ift.ulaval.ca/peptide-design/. Part of the complexity of drug discovery is the sheer chemical diversity to explore combined to all requirements a compound must meet to become a commercial drug. Hence, it makes sense to automate this chemical exploration endeavor in a wise, informed, and efficient fashion. Here, we focused on peptides as they have properties that make them excellent drug starting points. Machine learning techniques may replace expensive in-vitro laboratory experiments by learning an accurate model of it. However, computational models also suffer from the combinatorial explosion due to the enormous chemical diversity. Indeed, applying the model to every peptides would take an astronomical amount of computer time. Therefore, given a model, is it possible to determine, using reasonable computational time, the peptide that has the best properties and chance for success? This exact question is what motivated our work. We focused on recent advances in kernel methods and machine learning to learn a model that already had excellent results. We demonstrate that this class of model has mathematical properties that makes it possible to rapidly identify and sort the best peptides. Finally, in-vitro and in-silico results are provided to support and validate this theoretical discovery.
Collapse
Affiliation(s)
- Sébastien Giguère
- Department of Computer Science and Software Engineering, Université Laval, Québec, Canada
- * E-mail:
| | - François Laviolette
- Department of Computer Science and Software Engineering, Université Laval, Québec, Canada
| | - Mario Marchand
- Department of Computer Science and Software Engineering, Université Laval, Québec, Canada
| | - Denise Tremblay
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada
| | - Sylvain Moineau
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada
| | - Xinxia Liang
- Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Éric Biron
- Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Jacques Corbeil
- Department of Molecular Medicine, Université Laval, Québec, Canada
| |
Collapse
|
12
|
N-Substituted arylsulfonamide building blocks as alternative submonomers for peptoid synthesis. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Liang X, Girard A, Biron E. Practical ring-opening strategy for the sequence determination of cyclic peptides from one-bead-one-compound libraries. ACS COMBINATORIAL SCIENCE 2013; 15:535-40. [PMID: 24016186 DOI: 10.1021/co4000979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of cyclic peptides in one-bead-one-compound libraries is limited by difficulties in sequencing hit compounds. Lacking a free N-terminal amine, such peptides cannot be sequenced by the Edman degradation approach, and complex fragmentation patterns are obtained by tandem mass spectrometry. To overcome this problem, we designed an alternative approach introducing a methionine residue within the macrocycle and as a linker to allow simultaneous ring-opening and release from the resin upon treatment with cyanogen bromide. The methionine linker was inverted relative to the peptide chain to allow the synthesis of cyclic peptides anchored by a lysine side chain and to avoid the presence of two C-terminal homoserine lactones on the released linear peptides. After MALDI-TOF MS/MS analysis, the peptides released from a single bead were sequenced manually and with a de novo sequencing software. The strategy described herein is compatible with commonly used amino acids and allows sequencing of cyclic peptides in one-bead-one-compound libraries, thus reducing the need for encoding.
Collapse
Affiliation(s)
- Xinxia Liang
- Faculty of Pharmacy, Université Laval, Pavillon Ferdinand-Vandry, Québec, Québec, G1 V 0A6, Canada
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center (CHUL Section), 2705 Boulevard Laurier, Québec, Québec, G1V 4G2, Canada
| | - Anick Girard
- Faculty of Pharmacy, Université Laval, Pavillon Ferdinand-Vandry, Québec, Québec, G1 V 0A6, Canada
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center (CHUL Section), 2705 Boulevard Laurier, Québec, Québec, G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy, Université Laval, Pavillon Ferdinand-Vandry, Québec, Québec, G1 V 0A6, Canada
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center (CHUL Section), 2705 Boulevard Laurier, Québec, Québec, G1V 4G2, Canada
| |
Collapse
|
14
|
Cardenal C, Vollrath SBL, Schepers U, Bräse S. Synthesis of Functionalized Glutamine- and Asparagine-Type Peptoids - Scope and Limitations. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201200451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Majmudar CY, Højfeldt JW, Arevang CJ, Pomerantz WC, Gagnon JK, Schultz PJ, Cesa LC, Doss CH, Rowe SP, Vásquez V, Tamayo-Castillo G, Cierpicki T, Brooks CL, Sherman DH, Mapp AK. Sekikaic Acid and Lobaric Acid Target a Dynamic Interface of the Coactivator CBP/p300. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Majmudar CY, Højfeldt JW, Arevang CJ, Pomerantz WC, Gagnon JK, Schultz PJ, Cesa LC, Doss CH, Rowe SP, Vásquez V, Tamayo-Castillo G, Cierpicki T, Brooks CL, Sherman DH, Mapp AK. Sekikaic acid and lobaric acid target a dynamic interface of the coactivator CBP/p300. Angew Chem Int Ed Engl 2012; 51:11258-62. [PMID: 23042634 DOI: 10.1002/anie.201206815] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 12/25/2022]
Abstract
Capturing a coactivator, naturally: the natural products sekikaic acid and lobaric acid, isolated after a high-throughput screen of a structurally diverse extract collection, effectively target the dynamic binding interfaces of the GACKIX domain of the coactivator CBP/p300. These molecules are the most effective inhibitors of the GACKIX domain yet described and are uniquely selective for this domain.
Collapse
|
17
|
Pomerantz WC, Wang N, Lipinski AK, Wang R, Cierpicki T, Mapp AK. Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization. ACS Chem Biol 2012; 7:1345-50. [PMID: 22725662 DOI: 10.1021/cb3002733] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The conformationally dynamic binding surfaces of transcription complexes present a particular challenge for ligand discovery and characterization. In the case of the KIX domain of the master coactivator CBP/p300, few small molecules have been reported that target its two allosterically regulated binding sites despite the important roles that KIX plays in processes ranging from memory formation to hematopoiesis. Taking advantage of the enrichment of aromatic amino acids at protein interfaces, here we show that the incorporation of six (19)F-labeled aromatic side chains within the KIX domain enables recapitulation of the differential binding footprints of three natural activator peptides (MLL, c-Myb, and pKID) in complex with KIX and effectively reports on allosteric changes upon binding using 1D NMR spectroscopy. Additionally, the examination of both the previously described KIX protein-protein interaction inhibitor Napthol-ASE-phosphate and newly discovered ligand 1-10 rapidly revealed both the binding sites and the affinities of these small molecules. Significantly, the utility of using fluorinated transcription factors for ligand discovery was demonstrated through a fragment screen leading to a new low molecular weight fragment ligand for CBP/p300, 1G7. Aromatic amino acids are enriched at protein-biomolecule interfaces; therefore, this quantitative and facile approach will be broadly useful for studying dynamic transcription complexes and screening campaigns complementing existing biophysical methods for studying these dynamic interfaces.
Collapse
Affiliation(s)
- William C. Pomerantz
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Ningkun Wang
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Ashley K. Lipinski
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Rurun Wang
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Anna K. Mapp
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| |
Collapse
|
18
|
Bédard F, Girard A, Biron É. A Convenient Approach to Prepare Topologically Segregated Bilayer Beads for One-Bead Two-Compound Combinatorial Peptide Libraries. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Tran H, Gael SL, Connolly MD, Zuckermann RN. Solid-phase submonomer synthesis of peptoid polymers and their self-assembly into highly-ordered nanosheets. J Vis Exp 2011:e3373. [PMID: 22083233 PMCID: PMC3308608 DOI: 10.3791/3373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids ( up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N,N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs.
Collapse
Affiliation(s)
- Helen Tran
- Molecular Foundry, Lawrence Berkeley National Laboratory
| | | | | | | |
Collapse
|
20
|
Chen X, Wu J, Luo Y, Liang X, Supnet C, Kim MW, Lotz GP, Yang G, Muchowski PJ, Kodadek T, Bezprozvanny I. Expanded polyglutamine-binding peptoid as a novel therapeutic agent for treatment of Huntington's disease. CHEMISTRY & BIOLOGY 2011; 18:1113-25. [PMID: 21944750 PMCID: PMC3183433 DOI: 10.1016/j.chembiol.2011.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/26/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
Polyglutamine(polyQ)-expanded proteins are potential therapeutic targets for the treatment of polyQ expansion disorders such as Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3). Here, we used an amino-terminal fragment of a mutant Huntingtin protein (Htt-N-82Q) as bait in an unbiased screen of a 60,000 peptoid library. Peptoid HQP09 was selected from the isolated hits and confirmed as a specific ligand of Htt-N-82Q and Atxn3-77Q mutant proteins in biochemical experiments. We identified three critical residues in the HQP09 sequence that are important for its activity and generated a minimal derivative, HQP09_9, which maintains the specific polyQ-binding activity. We demonstrated that HQP09 and HQP09_9 inhibited aggregation of Htt-N-53Q in vitro and exerted Ca(2+)-stabilizing and neuroprotective effects in experiments with primary striatal neuronal cultures derived from HD mice. We further demonstrated that intracerebroventricular delivery of HQP09 to an HD mouse model resulted in reduced accumulation of mutant Huntingtin aggregates and improved motor behavioral outcomes. These results suggest that HQP09 and similar peptoids hold promise as novel therapeutics for developing treatments for HD, SCA3, and other polyglutamine expansion disorders.
Collapse
Affiliation(s)
- Xuesong Chen
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Jun Wu
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Yuan Luo
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Xia Liang
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Charlene Supnet
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Mee Whi Kim
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| | - Gregor P. Lotz
- Gladstone Institute of Neurological Diseases, University of California, San Francisco
| | - Guocheng Yang
- Gladstone Institute of Neurological Diseases, University of California, San Francisco
| | - Paul J. Muchowski
- Gladstone Institute of Neurological Diseases, University of California, San Francisco
- Department of Biochemistry and Biophysics, and of Neurology, University of California, San Francisco
| | | | - Ilya Bezprozvanny
- Dept of Physiology, University of Texas Southwestern Medical Center at Dallas
| |
Collapse
|
21
|
Cai D, Lee AY, Chiang CM, Kodadek T. Peptoid ligands that bind selectively to phosphoproteins. Bioorg Med Chem Lett 2011; 21:4960-4. [PMID: 21742492 PMCID: PMC3591469 DOI: 10.1016/j.bmcl.2011.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 01/12/2023]
Abstract
Synthetic equivalents of phosphoprotein-specific antibodies would be valuable reagents for biological research, since these antibodies can often be difficult to produce. Protein phosphorylation is thought to result in significant conformational changes in most substrate proteins. Therefore, one approach might be to simply screen combinatorial libraries for ligands to the phosphorylated state in the hope of isolating a ligand that binds to a pocket created by the conformational shift. In this study, we probe this strategy by screening a peptoid library for ligands to the phosphorylated form of the Brd4 chromatin adaptor and transcriptional coactivator protein. We find that peptoids with high selectivity for binding to the phosphorylation form of Brd4 can indeed be isolated in this screen. Moreover, these ligands do not bind promiscuously to other phospho-proteins. However, attempts to employ these reagents as antibody substitutes in an immunoaffinity purification-like application showed that they do not perform as well as bona fide antibodies and that significant optimization will be required. This study highlights the potential and current limitations of a naïve library screening strategy for phosphoprotein-specific antibody surrogates.
Collapse
Affiliation(s)
- Di Cai
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
22
|
Liskamp RMJ, Rijkers DTS, Kruijtzer JAW, Kemmink J. Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics. Chembiochem 2011; 12:1626-53. [PMID: 21751324 DOI: 10.1002/cbic.201000717] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Indexed: 12/17/2022]
Abstract
Despite their enormous diversity in biological function and structure, peptides and proteins are endowed with properties that have induced and stimulated the development of peptidomimetics. Clearly, peptides can be considered as the "stem" of a phylogenetic molecular development tree from which branches of oligomeric peptidomimetics such as peptoids, peptidosulfonamides, urea peptidomimetics, as well as β-peptides have sprouted. It is still a challenge to efficiently synthesize these oligomeric species, and study their structural and biological properties. Combining peptides and peptidomimetics led to the emergence of peptide-peptidomimetic hybrids in which one or more (proteinogenic) amino acid residues have been replaced with these mimetic residues. In scan-like approaches, the influence of these replacements on biological activity can then be studied, to evaluate to what extent a peptide can be transformed into a peptidomimetic structure while maintaining, or even improving, its biological properties. A central issue, especially with the smaller peptides, is the lack of secondary structure. Important approaches to control secondary structure include the introduction of α,α-disubstituted amino acids, or (di)peptidomimetic structures such as the Freidinger lactam. Apart from intra-amino acid constraints, inter-amino acid constraints for formation of a diversity of cyclic peptides have shaped a thick branch. Apart from the classical disulfide bridges, the repertoire has been extended to include sulfide and triazole bridges as well as the single-, double- and even triple-bond replacements, accessible by the extremely versatile ring-closing alkene/alkyne metathesis approaches. The latter approach is now the method of choice for the secondary structure that presents the greatest challenge for structural stabilization: the α-helix.
Collapse
Affiliation(s)
- Rob M J Liskamp
- Medicinal Chemistry and Chemical Biology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Hooks JC, Matharage JP, Udugamasooriya DG. Development of homomultimers and heteromultimers of lung cancer-specific peptoids. Biopolymers 2011; 96:567-77. [DOI: 10.1002/bip.21596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Culf AS, Ouellette RJ. Solid-phase synthesis of N-substituted glycine oligomers (alpha-peptoids) and derivatives. Molecules 2010; 15:5282-335. [PMID: 20714299 PMCID: PMC6257730 DOI: 10.3390/molecules15085282] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/14/2010] [Accepted: 08/02/2010] [Indexed: 12/02/2022] Open
Abstract
Peptoids (N-substituted polyglycines and extended peptoids with variant backbone amino-acid monomer units) are oligomeric synthetic polymers that are becoming a valuable molecular tool in the biosciences. Of particular interest are their applications to the exploration of peptoid secondary structures and drug design. Major advantages of peptoids as research and pharmaceutical tools include the ease and economy of synthesis, highly variable backbone and side-chain chemistry possibilities. At the same time, peptoids have been demonstrated as highly active in biological systems while resistant to proteolytic decay. This review with 227 references considers the solid-phase synthetic aspects of peptoid preparation and utilization up to 2010 from the instigation, by R. N. Zuckermann et al., of peptoid chemistry in 1992.
Collapse
Affiliation(s)
- Adrian S Culf
- Atlantic Cancer Research Institute, Moncton, NB, Canada.
| | | |
Collapse
|
25
|
Lee J, Reddy MM, Kodadek T. Discovery Of An Orexin Receptor Positive Potentiator. Chem Sci 2010; 1:10.1039/C0SC00197J. [PMID: 24409338 PMCID: PMC3883070 DOI: 10.1039/c0sc00197j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The orexin neurohormones control a variety of important physiological processes by signaling through two related G protein-coupled receptors, including appetite and feeding, wakefulness and energy homeostasis. Pharmacological manipulation of orexin signaling is an important goal. Here we describe the isolation of orexin receptor ligands from a library of microarray-displayed peptoids via a novel two-color, cell-based screen. Functional analysis of derivatives of these "hits" resulted in the development of moderate potency, low molecular weight receptor antagonists. Moreover, further optimization efforts resulted in the fortuitous discovery of a compound that positively potentiates the activity of the receptor. This compound is the first small molecule reported to up-regulate orexin signaling.
Collapse
Affiliation(s)
- Jiyong Lee
- Division of Translational Research, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390 (USA)
| | | | - Thomas Kodadek
- Departments of Chemistry & Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458 (USA). Tel: 561-228-2461
| |
Collapse
|
26
|
Buhrlage SJ, Bates CA, Rowe SP, Minter AR, Brennan BB, Majmudar CY, Wemmer DE, Al-Hashimi H, Mapp AK. Amphipathic small molecules mimic the binding mode and function of endogenous transcription factors. ACS Chem Biol 2009; 4:335-44. [PMID: 19348463 PMCID: PMC2744096 DOI: 10.1021/cb900028j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small molecules that reconstitute the binding mode(s) of a protein and in doing so elicit a programmed functional response offer considerable advantages in the control of complex biological processes. The development challenges of such molecules are significant, however. Many protein-protein interactions require multiple points of contact over relatively large surface areas. More significantly, several binding modes can be superimposed upon a single sequence within a protein, and a true small molecule replacement must be preprogrammed for such multimodal binding. This is the case for the transcriptional activation domain or TAD of transcriptional activators as these motifs utilize a poorly characterized multipartner binding profile in order to stimulate gene expression. Here we describe a unique class of small molecules that exhibit both function and a binding profile analogous to natural transcriptional activation domains. Of particular note, the small molecules are the first reported to bind to the KIX domain within the CREB binding protein (CBP) at a site that is utilized by natural activators. Further, a comparison of functional and nonfunctional small molecules indicates that an interaction with CBP is a key contributor to transcriptional activity. Taken together, the evidence suggests that the small molecule TADs mimic both the function and mechanism of their natural counterparts and thus present a framework for the broader development of small molecule transcriptional switches.
Collapse
Affiliation(s)
| | - Caleb A. Bates
- Department of Medicinal Chemistry, University of Michigan
| | | | | | | | | | | | - Hashim Al-Hashimi
- Department of Chemistry, University of Michigan
- Department of Biophysics, University of Michigan
| | - Anna K. Mapp
- Department of Chemistry, University of Michigan
- Department of Medicinal Chemistry, University of Michigan
- Program in Chemical Biology, University of Michigan
| |
Collapse
|
27
|
Fowler SA, Blackwell HE. Structure-function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org Biomol Chem 2009; 7:1508-24. [PMID: 19343235 DOI: 10.1039/b817980h] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligomers of N-substituted glycine, or peptoids, are versatile tools to probe biological processes and hold promise as therapeutic agents. An underlying theme in the majority of recent peptoid research is the connection between peptoid function and peptoid structure. For certain applications, well-folded peptoids are essential for activity, while unstructured peptoids appear to suffice, or even are superior, for other applications. Currently, these structure-function connections are largely made after the design, synthesis, and characterization process. However, as guidelines for peptoid folding are elucidated and the known biological activities are expanded, we anticipate these connections will provide a pathway toward the de novo design of functional peptoids. In this perspective, we review several of the peptoid structure-function relationships that have been delineated over the past five years.
Collapse
Affiliation(s)
- Sarah A Fowler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | | |
Collapse
|
28
|
Kwon YU, Kodadek T. Encoded combinatorial libraries for the construction of cyclic peptoid microarrays. Chem Commun (Camb) 2008:5704-6. [PMID: 19009054 PMCID: PMC4467580 DOI: 10.1039/b812735b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A "one bead two compound" approach to the synthesis of encoded cyclic peptoid libraries is reported.
Collapse
Affiliation(s)
- Yong-Uk Kwon
- Division of Translational Research, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9185, USA
- Department of Chemistry and Nano Science, Ewha Womans University, 120-750 Seoul, South Korea
| | - Thomas Kodadek
- Division of Translational Research, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9185, USA
| |
Collapse
|
29
|
Tan NC, Yu P, Kwon YU, Kodadek T. High-throughput evaluation of relative cell permeability between peptoids and peptides. Bioorg Med Chem 2008; 16:5853-61. [PMID: 18490170 PMCID: PMC2490712 DOI: 10.1016/j.bmc.2008.04.074] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 11/26/2022]
Abstract
Peptides are limited in their use as drugs due to low cell permeability and vulnerability to proteases. In contrast, peptoids are immune to enzymatic degradation and some peptoids have been shown to be relatively cell permeable. In order to facilitate future design of peptoid libraries for screening experiments, it would be useful to have a high-throughput method to estimate the cell permeability of peptoids containing different residues. In this paper, we report the strengths and limitations of a high-throughput cell-based permeability assay that registers the relative ability of steroid-conjugated peptides and peptoids to enter a cell. A comparative investigation of the physicochemical properties and side chain composition of peptoids and peptides is described to explain the observed higher cell permeability of peptoids over peptides. These data suggest that the conversion of the monomeric residues in peptides to an N-alkylglycine moiety in peptoids reduced the hydrogen-bonding potential of the molecules and is the main contributor to the observed permeability improvement.
Collapse
Affiliation(s)
- Niclas C. Tan
- Division of Translational Research, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Peng Yu
- Division of Translational Research, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yong-Uk Kwon
- Division of Translational Research, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Thomas Kodadek
- Division of Translational Research, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| |
Collapse
|
30
|
Simon P, Cannata F, Concordet JP, Giovannangeli C. Targeting DNA with triplex-forming oligonucleotides to modify gene sequence. Biochimie 2008; 90:1109-16. [PMID: 18460344 DOI: 10.1016/j.biochi.2008.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 04/14/2008] [Indexed: 12/19/2022]
Abstract
Molecules that interact with DNA in a sequence-specific manner are attractive tools for manipulating gene sequence and expression. For example, triplex-forming oligonucleotides (TFOs), which bind to oligopyrimidine.oligopurine sequences via Hoogsteen hydrogen bonds, have been used to inhibit gene expression at the DNA level as well as to induce targeted mutagenesis in model systems. Recent advances in using oligonucleotides and analogs to target DNA in a sequence-specific manner will be discussed. In particular, chemical modification of TFOs has been used to improve binding to chromosomal target sequences in living cells. Various oligonucleotide analogs have also been found to expand the range of sequences amenable to manipulation, including so-called "Zorro" locked nucleic acids (LNAs) and pseudo-complementary peptide nucleic acids (pcPNAs). Finally, we will examine the potential of TFOs for directing targeted gene sequence modification and propose that synthetic nucleases, based on conjugation of sequence-specific DNA ligands to DNA damaging molecules, are a promising alternative to protein-based endonucleases for targeted gene sequence modification.
Collapse
Affiliation(s)
- Philippe Simon
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, USM 503, 43 rue Cuvier, 75005 Paris, France
| | | | | | | |
Collapse
|
31
|
Udugamasooriya DG, Dineen SP, Brekken RA, Kodadek T. A peptoid "antibody surrogate" that antagonizes VEGF receptor 2 activity. J Am Chem Soc 2008; 130:5744-52. [PMID: 18386897 DOI: 10.1021/ja711193x] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a two-color, cell-based screen to identify specific receptor-binding compounds in a combinatorial library of peptoids displayed on beads. We apply this strategy to the isolation of vascular endothelial growth factor receptor 2 (VEGFR2)-binding peptoids. A dimeric derivative of one of these lead compounds is shown to be an antagonist of VEGFR2 activity both in vitro and in vivo. This methodology provides a potentially general route to synthetic molecules that bind integral membrane receptors with affinities and specificities similar to those of antibodies, but which are far smaller and easier to make and manipulate.
Collapse
Affiliation(s)
- D Gomika Udugamasooriya
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185, USA
| | | | | | | |
Collapse
|
32
|
Lee J, Yu P, Xiao X, Kodadek T. A general system for evaluating the efficiency of chromophore-assisted light inactivation (CALI) of proteins reveals Ru(ii) tris-bipyridyl as an unusually efficient “warhead”. ACTA ACUST UNITED AC 2008; 4:59-65. [DOI: 10.1039/b712307h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Vercillo OE, Andrade CKZ, Wessjohann LA. Design and synthesis of cyclic RGD pentapeptoids by consecutive Ugi reactions. Org Lett 2007; 10:205-8. [PMID: 18088132 DOI: 10.1021/ol702521g] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new strategy for the synthesis of cyclic peptoids was developed. The approach is based on the use of consecutive Ugi reactions for the assembly of the acyclic peptoid and for the ring closure. Cyclopentapeptoid analogues of the RGD peptides were designed and synthesized using this methodology. The results confirm the versatility and efficiency of the method for the preparation of cyclic oligopeptoids.
Collapse
Affiliation(s)
- Otilie E Vercillo
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | |
Collapse
|
34
|
Xiao X, Yu P, Lim HS, Sikder D, Kodadek T. A cell-permeable synthetic transcription factor mimic. Angew Chem Int Ed Engl 2007; 46:2865-8. [PMID: 17351994 DOI: 10.1002/anie.200604485] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiangshu Xiao
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, USA
| | | | | | | | | |
Collapse
|
35
|
Xiao X, Yu P, Lim HS, Sikder D, Kodadek T. Design and synthesis of a cell-permeable synthetic transcription factor mimic. ACTA ACUST UNITED AC 2007; 9:592-600. [PMID: 17530904 PMCID: PMC2518654 DOI: 10.1021/cc070023a] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic molecules capable of activating the expression of specific genes are of great interest as tools for biological research and, potentially, as a novel class of pharmaceutical agents. It has been demonstrated previously that such synthetic transcription factor mimics (STFMs) can be constructed by connecting a sequence-specific DNA-binding module to a molecule capable of binding to the transcriptional machinery via a suitable linker. These chimeras mimic the two basic properties of native transcription factors, which are able to recognize a promoter sequence specifically and to recruit the transcriptional machinery to that promoter. However, none of the compounds of this type reported to date have been shown to function in living cells. We report here the first example of a cell-permeable STFM that activates the transcription of a reporter gene in mammalian cells. The compound is composed of a cell-permeable coactivator-binding peptoid fused to a DNA-binding hairpin polyamide. The peptoid was identified by screening a combinatorial library of approximately 50,000 compounds for binding to the KIX domain of the CREB-binding protein (CBP), a mammalian transcription coactivator. When incubated with cultured HeLa cells carrying a luciferase reporter plasmid bearing several hairpin polyamide-binding sites, a 5-fold increase in luciferase expression was observed. These experiments set the stage for the identification of hairpin polyamide-peptoid conjugates that are targeted to native genes.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Kodadek
- To whom correspondence should be addressed. Phone: 214-648-1239. FAX: 214-648-4156. E-mail:
| |
Collapse
|
36
|
Xiao X, Yu P, Lim HS, Sikder D, Kodadek T. A Cell-Permeable Synthetic Transcription Factor Mimic. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|