1
|
Nakanishi K, Li H, Ichino T, Tatsumi K, Osakabe K, Watanabe B, Shimomura K, Yazaki K. Peroxisomal 4-coumaroyl-CoA ligases participate in shikonin production in Lithospermum erythrorhizon. PLANT PHYSIOLOGY 2024; 195:2843-2859. [PMID: 38478427 DOI: 10.1093/plphys/kiae157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 08/02/2024]
Abstract
4-Coumaroyl-CoA ligase (4CL) is a key enzyme in the phenylpropanoid pathway, which is involved in the biosynthesis of various specialized metabolites such as flavonoids, coumarins, lignans, and lignin. Plants have several 4CLs showing divergence in sequence: Class I 4CLs involved in lignin metabolism, Class II 4CLs associated with flavonoid metabolism, and atypical 4CLs and 4CL-like proteins of unknown function. Shikonin, a Boraginaceae-specific specialized metabolite in red gromwell (Lithospermum erythrorhizon), is biosynthesized from p-hydroxybenzoic acid, and the involvement of 4CL in its biosynthesis has long been debated. In this study, we demonstrated the requirement of 4CL for shikonin biosynthesis using a 4CL-specific inhibitor. In silico analysis of the L. erythrorhizon genome revealed the presence of at least 8 4CL genes, among which the expression of 3 (Le4CL3, Le4CL4, and Le4CL5) showed a positive association with shikonin production. Phylogenetic analysis indicated that Le4CL5 belongs to Class I 4CLs, while Le4CL3 and Le4CL4 belong to clades that are distant from Class I and Class II. Interestingly, both Le4CL3 and Le4CL4 have peroxisome targeting signal 1 in their C-terminal region, and subcellular localization analysis revealed that both localize to the peroxisome. We targeted each of the 3 Le4CL genes by CRISPR/Cas9-mediated mutagenesis and observed remarkably lower shikonin production in Le4CL3-ge and Le4CL4-ge genome-edited lines compared with the vector control. We, therefore, conclude that peroxisomal Le4CL3 and Le4CL4 are responsible for shikonin production and propose a model for metabolite-specific 4CL distribution in L. erythrorhizon.
Collapse
Affiliation(s)
- Kohei Nakanishi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hao Li
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Kanade Tatsumi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, Chofu, Tokyo 182-8570, Japan
| | - Koichiro Shimomura
- Graduate School of Life Science, Toyo University, 1-1-1 Izumino, Itakura, Ora, Gunma 374-0193, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Wang L, Li C, Luo K. Biosynthesis and metabolic engineering of isoflavonoids in model plants and crops: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1384091. [PMID: 38984160 PMCID: PMC11231381 DOI: 10.3389/fpls.2024.1384091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Isoflavonoids, the major secondary metabolites within the flavonoid biosynthetic pathway, play important roles in plant defense and exhibit free radical scavenging properties in mammals. Recent advancements in understanding the synthesis, transport, and regulation of isoflavonoids have identified their biosynthetic pathways as promising targets for metabolic engineering, offering potential benefits such as enhanced plant resistance, improved biomass, and restoration of soil fertility. This review provides an overview of recent breakthroughs in isoflavonoid biosynthesis, encompassing key enzymes in the biosynthetic pathway, transporters influencing their subcellular localization, molecular mechanisms regulating the metabolic pathway (including transcriptional and post-transcriptional regulation, as well as epigenetic modifications). Metabolic engineering strategies aimed at boosting isoflavonoid content in both leguminous and non-leguminous plants. Additionally, we discuss emerging technologies and resources for precise isoflavonoid regulation. This comprehensive review primarily focuses on model plants and crops, offering insights for more effective and sustainable metabolic engineering approaches to enhance nutritional quality and stress tolerance.
Collapse
Affiliation(s)
- Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chaofeng Li
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Yang Q, Wang G. Isoflavonoid metabolism in leguminous plants: an update and perspectives. FRONTIERS IN PLANT SCIENCE 2024; 15:1368870. [PMID: 38405585 PMCID: PMC10884283 DOI: 10.3389/fpls.2024.1368870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Isoflavonoids constitute a well-investigated category of phenylpropanoid-derived specialized metabolites primarily found in leguminous plants. They play a crucial role in legume development and interactions with the environment. Isoflavonoids usually function as phytoalexins, acting against pathogenic microbes in nature. Additionally, they serve as signaling molecules in rhizobial symbiosis. Notably, owing to their molecular structure resembling human estrogen, they are recognized as phytoestrogens, imparting positive effects on human health. This review comprehensively outlines recent advancements in research pertaining to isoflavonoid biosynthesis, transcriptional regulation, transport, and physiological functions, with a particular emphasis on soybean plants. Additionally, we pose several questions to encourage exploration into novel contributors to isoflavonoid metabolism and their potential roles in plant-microbe interactions.
Collapse
Affiliation(s)
- Qilin Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Li B, Jiao P, Tang C. Deep eutectic solvent extraction combined with magnetic bead ligand fishing for identification of α-glucosidase inhibitors from Pueraria lobata. J Sep Sci 2024; 47:e2300672. [PMID: 38135874 DOI: 10.1002/jssc.202300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
In this study, a deep eutectic solvent (DES) extraction combined with a magnetic bead ligand affinity analytical method was developed and used for α-glucosidase inhibitor identification from Pueraria lobata. Several critical parameters affecting the analysis performance, including the type of DES, molar ratio, water amount, pH, salt concentration, and volume of DES, were investigated. The selected analytical sample preparation conditions were as follows. The composition of DES is choline chloride-1,4-butanediol (1:3), the water content is 40%, pH is 7.0 and the volume of extraction solution is 2 mL. The obtained sample extraction solution was analyzed directly using α-glucosidase immobilized magnetic beads (GMBs). Three α-glucosidase inhibitors in Pueraria lobata, including puerarin, daidzin, and daidzein, were identified. Luteolin was used as a positive control to evaluate the method's selectivity. Results showed it could selectively bond to the GMBs in the DES. As the affinity analysis was performed directly in a DES, the solution-removing process could be avoided. The intra-day and inter-day precisions of the method are 5.21% and 6.38%, respectively. The solvent amount was 1/50-1/2000 of that used in traditional methods.
Collapse
Affiliation(s)
- Bing Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Natural Medicine, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Pan Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Natural Medicine, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Natural Medicine, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
5
|
Chen M, Li Z, Sun G, Jin S, Hao X, Zhang C, Liu L, Zhang L, Liu H. Theoretical study on the free radical scavenging potency and mechanism of natural coumestans: Roles of substituent, noncovalent interaction and solvent. PHYTOCHEMISTRY 2023; 207:113580. [PMID: 36587886 DOI: 10.1016/j.phytochem.2022.113580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The free radical scavenging potency and mechanisms of seven representative natural coumestans were systematically evaluated using density functional theory (DFT) approach. Thermodynamic feasibility of different mechanisms was assessed by various physio-chemical descriptors involved in the double (2H+/2e‒) radical-trapping processes. Energy diagram and related transition state structures of the reaction between wedelolactone (WEL) and hydroperoxyl radical were constructed to further uncover the radical-trapping details. Results showed that the studied coumestans prefer to scavenge radicals via formal hydrogen atom transfer (fHAT) mechanism in the gas phase and non-polar environment, whereas sequential proton loss electron transfer (SPLET) is favored in polar media. Moreover, the feasibility of second fHAT and SPLET processes was also revealed. Sequential double proton loss double electron transfer (SdPLdET) mechanism represents the preferred pathway in aqueous solution at physiological pH. Our findings highlight the essential role of ortho-dihydroxyl group, noncovalent interaction and solvents on radical-trapping potency. 4'-OH in D-ring was found to be the most favorable site to trap radical for most of the studied coumestans, whereas 3-OH in A-ring for lucernol (LUN).
Collapse
Affiliation(s)
- Mohan Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Gang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Shuang Jin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xiyue Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chi Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Ling Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
6
|
Hermann S, Orlik M, Boevink P, Stein E, Scherf A, Kleeberg I, Schmitt A, Schikora A. Biocontrol of Plant Diseases Using Glycyrrhiza glabra Leaf Extract. PLANT DISEASE 2022; 106:3133-3144. [PMID: 35549324 DOI: 10.1094/pdis-12-21-2813-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The growing concern regarding the potential risks of pesticides and their impact on nontarget organisms stimulates the development and application of alternative, environmentally friendly products. It seems necessary to develop alternatives for conventional products and for those already widely used in organic agriculture, e.g., copper. Very importantly, such alternative products should not limit the productivity and profitability of agriculture. In this study, we examined the efficacy of licorice (Glycyrrhiza glabra) leaf extract as such an alternative. We tested its impact on the virulence of Pseudomonas syringae toward the model plant Arabidopsis thaliana and the crop plant tomato (Solanum lycopersicum) as well as of Clavibacter michiganensis, Xanthomonas campestris, and Phytophthora infestans toward tomato, at multiple levels. We demonstrate that licorice leaf extract acts as a direct fungicide and bactericide. Moreover, it acts against a metalaxyl-resistant P. infestans strain. In addition, the extract from licorice leaves influences the plant immune system, modulating the plant responses to the challenge with pathogen(s); this involves both salicylic acid and ethylene-based responses. Our results show that in addition to the well-known use of licorice root extract in medicine, the leaf extract can be an effective alternative in organic and integrated farming, contributing to copper reduction and resistance management.[Formula: see text] Copyright © 2022 The Author(s). This is an open-access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Marc Orlik
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany
| | - Petra Boevink
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K
| | - Elke Stein
- Justus Liebig University Giessen, Institute for Phytopathology, 35392 Giessen, Germany
| | - Andrea Scherf
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany
| | | | - Annegret Schmitt
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute of Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany
| |
Collapse
|
7
|
Potential inhibitory activity of phytoconstituents against black fungus: In silico ADMET, molecular docking and MD simulation studies. COMPUTATIONAL TOXICOLOGY 2022; 24:100247. [PMID: 36193218 PMCID: PMC9508704 DOI: 10.1016/j.comtox.2022.100247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Mucormycosis or “black fungus” has been currently observed in India, as a secondary infection in COVID-19 infected patients in the post-COVID-stage. Fungus is an uncommon opportunistic infection that affects people who have a weak immune system. In this study, 158 antifungal phytochemicals were screened using molecular docking against glucoamylase enzyme of Rhizopus oryzae to identify potential inhibitors. The docking scores of the selected phytochemicals were compared with Isomaltotriose as a positive control. Most of the compounds showed lower binding energy values than Isomaltotriose (-6.4 kcal/mol). Computational studies also revealed the strongest binding affinity of the screened phytochemicals was Dioscin (-9.4 kcal/mol). Furthermore, the binding interactions of the top ten potential phytochemicals were elucidated and further analyzed. In-silico ADME and toxicity prediction were also evaluated using SwissADME and admetSAR online servers. Compounds Piscisoflavone C, 8-O-methylaverufin and Punicalagin exhibited positive results with the Lipinski filter and drug-likeness and showed mild to moderate of toxicity. Molecular dynamics (MD) simulation (at 300 K for 100 ns) was also employed to the docked ligand-target complex to explore the stability of ligand-target complex, improve docking results, and analyze the molecular mechanisms of protein-target interactions.
Collapse
|
8
|
Sajid M, Stone SR, Kaur P. Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review With Special Reference to Isoflavonoids. Front Bioeng Biotechnol 2021; 9:673270. [PMID: 34277582 PMCID: PMC8282456 DOI: 10.3389/fbioe.2021.673270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavonoids are well-known plant secondary metabolites that have gained importance in recent time due to their multiple nutraceutical and pharmaceutical applications. In plants, isoflavonoids play a role in plant defense and can confer the host plant a competitive advantage to survive and flourish under environmental challenges. In animals, isoflavonoids have been found to interact with multiple signaling pathways and have demonstrated estrogenic, antioxidant and anti-oncologic activities in vivo. The activity of isoflavonoids in the estrogen pathways is such that the class has also been collectively called phytoestrogens. Over 2,400 isoflavonoids, predominantly from legumes, have been identified so far. The biosynthetic pathways of several key isoflavonoids have been established, and the genes and regulatory components involved in the biosynthesis have been characterized. The biosynthesis and accumulation of isoflavonoids in plants are regulated by multiple complex environmental and genetic factors and interactions. Due to this complexity of secondary metabolism regulation, the export and engineering of isoflavonoid biosynthetic pathways into non-endogenous plants are difficult, and instead, the microorganisms Saccharomyces cerevisiae and Escherichia coli have been adapted and engineered for heterologous isoflavonoid synthesis. However, the current ex-planta production approaches have been limited due to slow enzyme kinetics and traditionally laborious genetic engineering methods and require further optimization and development to address the required titers, reaction rates and yield for commercial application. With recent progress in metabolic engineering and the availability of advanced synthetic biology tools, it is envisaged that highly efficient heterologous hosts will soon be engineered to fulfill the growing market demand.
Collapse
Affiliation(s)
| | | | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Facile synthesis of coumaronochromones through palladium-catalyzed intramolecular cross dehydrogenative coupling. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
García-Calderón M, Pérez-Delgado CM, Palove-Balang P, Betti M, Márquez AJ. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration. PLANTS 2020; 9:plants9060774. [PMID: 32575698 PMCID: PMC7357106 DOI: 10.3390/plants9060774] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase. The results provide different types of evidence showing that an enhancement of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the use of co-expression networks, particularly MYB transcription factors, is also described. The results obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and human health.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Carmen M. Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Peter Palove-Balang
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia;
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Antonio J. Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
- Correspondence: ; Tel.: +34-954557145
| |
Collapse
|
11
|
Smeriglio A, Calderaro A, Denaro M, Laganà G, Bellocco E. Effects of Isolated Isoflavones Intake on Health. Curr Med Chem 2019; 26:5094-5107. [PMID: 28990503 DOI: 10.2174/0929867324666171006143047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Isoflavones are naturally occurring flavonoids, commonly found in the food consumed for centuries in the East-Asian population, characterized by a structure able to exert nonsteroidal estrogen-like activity on human cells. They have attracted researcher interest all around the word, following the results obtained in epidemiological and clinical studies. The involvement of isoflavones and their metabolites in various biological processes suggests that they can influence several metabolic pathways and can influence the gene expression at epigenetic level, involving effects that probably are due to early life exposure. They show positive health effects on several diseases, especially in the prevention of coronary heart and neurological diseases, hormone-related cancers, osteoporosis, and postmenopausal symptoms. METHODS We have performed a critical evaluation of available literature trough a structured search of bibliographic databases about isoflavones health promoting properties, risk assessment and mechanisms of action. In addition, we supplied useful information on their biochemical properties, sources and bioavailability. RESULTS Although these molecules have been the subjects of numerous researches, their role for the wellness of the human organism remains controversial. Moreover, there are substantial inconsistencies between the results obtained by epidemiologic studies conducted on Eastern population, which found high health promoting properties, and Western clinical trials, which found much less positive effects. CONCLUSION Further epidemiologic studies and well-designed prospective human studies are to determine the beneficial effects of isoflavones exposure, as well as establishing its safe therapeutic.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Marcella Denaro
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Ersilia Bellocco
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| |
Collapse
|
12
|
Tarbeeva DV, Fedoreyev SA, Veselova MV, Blagodatski AS, Klimenko AM, Kalinovskiy AI, Grigorchuk VP, Berdyshev DV, Gorovoy PG. Cytotoxic polyphenolic compounds from Lespedeza bicolor stem bark. Fitoterapia 2019; 135:64-72. [PMID: 31004693 DOI: 10.1016/j.fitote.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 01/03/2023]
Abstract
Four new pterocarpans (6aR,11aR)-6a,11a-dihydrolespedezol A2 (2), (6aR,11aR)-2-isoprenyl-6a,11a-dihydrolespedezol A2 (3), (6aR,11aR,3'R)-6a,11a-dihydrolespedezol A3 (4), (6aR,11aR,3'S)-6a,11a-dihydrolespedezol A3 (5) and one new stilbenoid with 1,2-diketone fragment named bicoloketone (6) along with one previously known pterocarpen lespedezol A2 (1) have been isolated from Lespedeza bicolor stem bark using multistage column chromatography on polyamide and silica gel. The structures of the isolated polyphenolic compounds were determined by spectroscopic methods. The absolute configurations of 4 and 5 were determined by comparison of their electronic circular dichroism (ECD) spectra obtained experimentally and the spectra calculated using time-dependent density functional theory (TDDFT). The isolated compounds exhibited a moderate DPPH scavenging effect and ferric reducing power compared to the reference antioxidant quercetin. The cytotoxicity of compounds against three human cancer cell lines, HTB-19, Kyse-30, and HEPG-2, and two normal cell lines, RPE-1 and HEK-293, was tested using the MTT assay. Compound 3 showed the strongest cytotoxic activity against all cell lines (IC50 6.0-19.1 μM) compared with the positive control cisplatin. The other tested compounds possessed moderate cytotoxic activity against cancer cells.
Collapse
Affiliation(s)
- Darya V Tarbeeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok, 690022, Russia.
| | - Sergey A Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok, 690022, Russia
| | - Marina V Veselova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok, 690022, Russia
| | - Artem S Blagodatski
- Far Eastern Federal University, School of Biomedicine, 10 Ajax Bay, Russky Island, Vladivostok 690920, Russia
| | - Antonina M Klimenko
- Far Eastern Federal University, School of Biomedicine, 10 Ajax Bay, Russky Island, Vladivostok 690920, Russia
| | - Anatoliy I Kalinovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok, 690022, Russia
| | - Valeria P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| | - Dmitrii V Berdyshev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok, 690022, Russia
| | - Petr G Gorovoy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-let Vladivostoku 159, Vladivostok, 690022, Russia
| |
Collapse
|
13
|
Izquierdo J, Jain AD, Abdulkadir SA, Schiltz GE. Palladium-catalyzed coupling reactions on functionalized 2-trifluoromethyl-4-chromenone scaffolds. Synthesis of highly functionalized trifluoromethyl-heterocycles. SYNTHESIS-STUTTGART 2019; 51:1342-1352. [PMID: 31274934 PMCID: PMC6605783 DOI: 10.1055/s-0037-1610669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chromenone core is a ubiquitous group in biologically-active natural products and has been extensively used in organic synthesis. Fluorine derived compounds, including those with a trifluoromethyl group (-CF3), have shown enhanced biological activities in numerous pharmaceuticals compared with their non-fluorinated analogs. We have found that 2-trifluoromethyl chromenones can be readily functionalized in the 8- and 7-positions, providing chromenones cores of high structural complexity which are excellent precursors for numerous trifluoromethyl-heterocycles.
Collapse
Affiliation(s)
- Javier Izquierdo
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Atul D Jain
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
14
|
Zingue S, Ntsa DM, Magne Nde CB, Michel T, Ndinteh DT, Clyne C, Njamen D. Lupeol, the major compound of the dichloromethane extract of
Millettia macrophylla
Benth (Fabaceae), displays estrogenic effects in ovariectomized rats. Phytother Res 2019; 33:949-957. [DOI: 10.1002/ptr.6288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Stéphane Zingue
- Department of Life and Earth SciencesHigher Teachers' Training College, University of Maroua Maroua Cameroon
- Department of Animal Biology and Physiology, Faculty of SciencesUniversity of Yaoundé I Yaoundé Cameroon
- Department of Applied Chemistry, Faculty of SciencesUniversity of Johannesburg Doornfontein South Africa
| | - Dieudonnée Mireille Ntsa
- Department of Animal Biology and Physiology, Faculty of SciencesUniversity of Yaoundé I Yaoundé Cameroon
| | - Chantal Beatrice Magne Nde
- Centre of Endocrinology and MetabolismHudson Institute of Medical Research, Monash University Clayton Victoria Australia
| | - Thomas Michel
- Université Côte d'Azur, CNRSInstitut de Chimie de Nice UMR 7272 06108 Nice France
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry, Faculty of SciencesUniversity of Johannesburg Doornfontein South Africa
| | - Colin Clyne
- Centre of Endocrinology and MetabolismHudson Institute of Medical Research, Monash University Clayton Victoria Australia
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Faculty of SciencesUniversity of Yaoundé I Yaoundé Cameroon
- Department of Applied Chemistry, Faculty of SciencesUniversity of Johannesburg Doornfontein South Africa
| |
Collapse
|
15
|
Al-Maharik N. Isolation of naturally occurring novel isoflavonoids: an update. Nat Prod Rep 2019; 36:1156-1195. [DOI: 10.1039/c8np00069g] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review covers the literature concerning the isolation and identification of new naturally occurring isoflavonoids from Leguminosae and non-Leguminous species between 2012–2017.
Collapse
Affiliation(s)
- Nawaf Al-Maharik
- Department of Forensic Sciences
- Al Istilal University
- Jericho
- Palestinian Authority
| |
Collapse
|
16
|
Wang X, Li C, Zhou Z, Zhang Y. Identification of Three (Iso)flavonoid Glucosyltransferases From Pueraria lobata. FRONTIERS IN PLANT SCIENCE 2019; 10:28. [PMID: 30761172 PMCID: PMC6362427 DOI: 10.3389/fpls.2019.00028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/09/2019] [Indexed: 05/08/2023]
Abstract
(Iso)flavonoids are one of the largest groups of natural phenolic products conferring great value to the health of plants and humans. Pueraria lobata, a legume, has long been used in Chinese traditional medicine. (Iso)flavonoids mainly present as glycosyl-conjugates and accumulate in P. lobata roots. However, the molecular mechanism underlying the glycosylation processes in (iso)flavonoid biosynthesis are not fully understood. In the current study, three novel UDP-glycosyltransferases (PlUGT4, PlUGT15, and PlUGT57) were identified in P. lobata from RNA-seq data. Biochemical assays of these three recombinant PlUGTs showed all of them were able to glycosylate isoflavones (genistein and daidzein) at the 7-hydroxyl position in vitro. In comparison with the strict substrate specificity for PlUGT15 and PlUGT57, PlUGT4 displayed utilization of a broad range of sugar acceptors. Particularly, PlUGT15 exhibited a much higher catalytic efficiency toward isoflavones (genistein and daidzein) than any other identified 7-O-UGT from P. lobata. Moreover, the transcriptional expression patterns of these PlUGTs correlated with the accumulation of isoflavone glucosides in MeJA-treated P. lobata, suggesting their possible in vivo roles in the glycosylation process.
Collapse
Affiliation(s)
- Xin Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zilin Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Yansheng Zhang,
| |
Collapse
|
17
|
Chen H, Liu RH. Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3260-3276. [PMID: 29498272 DOI: 10.1021/acs.jafc.7b04975] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
- Institute of Edible Fungi , Shanghai Academy of Agriculture Science , Shanghai 201403 , China
| | - Rui Hai Liu
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
| |
Collapse
|
18
|
Vinokur AI, White PB, Fotsing MT, Arderne C, Ndinteh DT, Vestling MM, Guzei IA. Deciphering composition and connectivity of a natural product with the assistance of MS and 2D NMR. Acta Crystallogr C Struct Chem 2017; 73:994-1002. [PMID: 29111532 PMCID: PMC5674227 DOI: 10.1107/s2053229617014966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/16/2017] [Indexed: 11/11/2022] Open
Abstract
A complementary application of three analytical techniques, viz. multidimensional nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS), and single-crystal X-ray diffractometry was required to identify and refine two natural products isolated from Millettia versicolor and solvent of crystallization. The two compounds, namely 3-(2H-1,3-benzodioxol-5-yl)-6-methoxy-8,8-dimethyl-4H,8H-pyrano[2,3-h]chromen-4-one, or durmillone, (I), and (2E)-1-(4-{[(2E)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-2-hydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one, (II), could not be separated by routine column chromatography and cocrystallized in a 2:1 ratio with 0.13 molecules of ethanol solvent. Compound (II) and ethanol could not be initially identified by single-crystal X-ray analysis due to complex disorder in the aliphatic chain region of (II). Mass spectrometry ensured that (II) represented only one species disordered over several positions in the solid state, rather than several species cohabitating on the same crystallographic site. The atomic identification and connectivity in (II) were established by several 2D (two-dimensional) NMR techniques, which in turn relied on a knowledge of its exact mass. The derived connectivity was then used in the single-crystal analysis to model the disorder of the aliphatic chain in (II) over three positions and allowed identification of a partially occupied ethanol solvent molecule that was disordered over an inversion center. The disordered moieties were refined with restraints and constraints.
Collapse
Affiliation(s)
- Anastasiya I. Vinokur
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ, The Netherlands
| | | | - Charmaine Arderne
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Martha M. Vestling
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, WI 53706, USA
- Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
19
|
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4013-4028. [PMID: 28922752 DOI: 10.1093/jxb/erx177] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Flavonoids are a signature class of secondary metabolites formed from a relatively simple collection of scaffolds. They are extensively decorated by chemical reactions including glycosylation, methylation, and acylation. They are present in a wide variety of fruits and vegetables and as such in Western populations it is estimated that 20-50 mg of flavonoids are consumed daily per person. In planta they have demonstrated to contribute to both flower color and UV protection. Their consumption has been suggested to presenta wide range of health benefits. Recent technical advances allowing affordable whole genome sequencing, as well as a better inventory of species-by-species chemical diversity, have greatly advanced our understanding as to how flavonoid biosynthesis pathways vary across species. In parallel, reverse genetics combined with detailed molecular phenotyping is currently allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. Here we provide an inventory of current knowledge of pathways of flavonoid biosynthesis in both the model plant Arabidopsis thaliana and a range of crop species, including tomato, maize, rice, and bean.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| |
Collapse
|
20
|
Hussain H, Green IR. A patent review of the therapeutic potential of isoflavones (2012-2016). Expert Opin Ther Pat 2017; 27:1135-1146. [DOI: 10.1080/13543776.2017.1339791] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa, Sultanate of Oman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
21
|
Qin T, Metz P. Enantioselective Synthesis of Isoflavanones by Catalytic Dynamic Kinetic Resolution. Org Lett 2017; 19:2981-2984. [DOI: 10.1021/acs.orglett.7b01218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tao Qin
- Fachrichtung Chemie und Lebensmittelchemie,
Organische Chemie I, Technische Universität Dresden, Bergstrasse
66, 01069 Dresden, Germany
| | - Peter Metz
- Fachrichtung Chemie und Lebensmittelchemie,
Organische Chemie I, Technische Universität Dresden, Bergstrasse
66, 01069 Dresden, Germany
| |
Collapse
|
22
|
Kakuda S, Ninomiya M, Tanaka K, Koketsu M. Synthesis of Pterocarpan Derivatives and their Inhibitory Effects against Microbial Growth and Biofilms. ChemistrySelect 2016. [DOI: 10.1002/slct.201600834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Syuko Kakuda
- Department of Materials Science and Technology, Faculty of Engineering; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Masayuki Ninomiya
- Department of Materials Science and Technology, Faculty of Engineering; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Kaori Tanaka
- Division of Anaerobe Research, Life Science Research Center; Gifu University; 1-1 Yanagido Gifu 501-1194 Japan
- United Graduate School of Drug Discovery and Medicinal Information Sciences; Gifu University; 1-1 Yanagido Gifu 501-1194 Japan
| | - Mamoru Koketsu
- Department of Materials Science and Technology, Faculty of Engineering; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
23
|
Lee JI. An Efficient and Versatile Synthesis of Isoflavones from 2-Methoxybenzoic Acids. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jae In Lee
- Department of Chemistry, College of Natural Science; Duksung Women's University; Seoul 132-714 Korea
| |
Collapse
|
24
|
Using LC and Hierarchical Cluster Analysis as Tools to Distinguish Timbó Collections into Two Deguelia Species: A Contribution to Chemotaxonomy. Molecules 2016; 21:molecules21050569. [PMID: 27144548 PMCID: PMC6273376 DOI: 10.3390/molecules21050569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 12/02/2022] Open
Abstract
The species Deguelia utilis and Deguelia rufescens var. urucu, popularly known as “timbó,” have been used for many years as rotenone sources in insecticide formulations. In this work, a method was developed and validated using a high-performance liquid chromatography-photodiode array (HPLC-PDA) system, and results were analyzed using hierarchical cluster analysis (HCA). By quantifying the major rotenoids of these species, it was possible to establish a linear relation between them. The ratio between the concentrations of rotenone and deguelin for D. utilis is approximately 1:0.8, respectively, while for D. rufescens var. urucu it is 2:1. These results may help to distinguish these species contributing to their taxonomic identification.
Collapse
|
25
|
Wang X, Fan R, Li J, Li C, Zhang Y. Molecular Cloning and Functional Characterization of a Novel (Iso)flavone 4',7-O-diglucoside Glucosyltransferase from Pueraria lobata. FRONTIERS IN PLANT SCIENCE 2016; 7:387. [PMID: 27066037 PMCID: PMC4814453 DOI: 10.3389/fpls.2016.00387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/14/2016] [Indexed: 05/28/2023]
Abstract
Pueraria lobata roots accumulate a rich source of isoflavonoid glycosides, including 7-O- and 4'-O-mono-glucosides, and 4',7-O-diglucosides, which have numerous human health benefits. Although, isoflavonoid 7-O-glucosyltranferases (7-O-UGTs) have been well-characterized at molecular levels in legume plants, genes, or enzymes that are required for isoflavonoid 4'-O- and 4',7-O-glucosylation have not been identified in P. lobata to date. Especially for the 4',7-O-di-glucosylations, the genetic control for this tailing process has never been elucidated from any plant species. Through transcriptome mining, we describe here the identification and characterization of a novel UGT (designated PlUGT2) governing the isoflavonoid 4',7-O-di-glucosylations in P. lobata. Biochemical roles of PlUGT2 were assessed by in vitro assays with PlUGT2 protein produced in Escherichia coli and analyzed for its qualitative substrate specificity. PlUGT2 was active with various (iso)flavonoid acceptors, catalyzing consecutive glucosylation activities at their O-4' and O-7 positions. PlUGT2 was most active with genistein, a general isoflavone in legume plants. Real-time PCR analysis showed that PlUGT2 is preferentially transcribed in roots relative to other organs of P. lobata, which is coincident with the accumulation pattern of 4'-O-glucosides and 4',7-O-diglucosides in P. lobata. The identification of PlUGT2 would help to decipher the P. lobata isoflavonoid glucosylations in vivo and may provide a useful enzyme catalyst for an efficient biotransformation of isoflavones or other natural products for food or pharmacological purposes.
Collapse
|
26
|
Zielińska S, Kolniak-Ostek J, Dziadas M, Oszmiański J, Matkowski A. Characterization of polyphenols in Agastache rugosa leaves and inflorescences by UPLC–qTOF–MS following FCPC separation. J LIQ CHROMATOGR R T 2016. [DOI: 10.1080/10826076.2016.1147461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sylwia Zielińska
- Department of Pharmaceutical Biology and Botany, Medical University of Wroclaw, Wroclaw, Poland
| | - Joanna Kolniak-Ostek
- Department of Fruit and Vegetable Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Mariusz Dziadas
- Department of Food Science and Dietetics, Medical University of Wroclaw, Wroclaw, Poland
- Department of Food Chemistry and Instrumental Analysis, Institute of Food Technology, University of Life Sciences, Poznan, Poland
| | - Jan Oszmiański
- Department of Fruit and Vegetable Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Medical University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
27
|
Aisyah S, Vincken JP, Andini S, Mardiah Z, Gruppen H. Compositional changes in (iso)flavonoids and estrogenic activity of three edible Lupinus species by germination and Rhizopus-elicitation. PHYTOCHEMISTRY 2016; 122:65-75. [PMID: 26749476 DOI: 10.1016/j.phytochem.2015.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/16/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
The effects of germination and elicitation on (iso)flavonoid composition of extracts from three edible lupine species (Lupinus luteus, Lupinus albus, Lupinus angustifolius) were determined by RP-UHPLC-MS(n). The total (iso)flavonoid content of lupine increased over 10-fold upon germination, with the total content and composition of isoflavonoids more affected than those of flavonoids. Glycosylated isoflavones were the most predominant compounds found in lupine seedlings. Lesser amounts of isoflavone aglycones, including prenylated ones, were also accumulated. Elicitation with Rhizopus oryzae, in addition to germination, raised the content of isoflavonoids further: the total content of 2'-hydroxygenistein derivatives was increased considerably, without increasing that of genistein derivatives. Elicitation by fungus triggered prenylation of isoflavonoids, especially of the 2'-hydroxygenistein derivatives. The preferred positions of prenylation differed among the three lupine species. The change in isoflavone composition increased the agonistic activity of the extracts towards the human estrogen receptors, whereas no antagonistic activity was observed.
Collapse
Affiliation(s)
- Siti Aisyah
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Department of Chemistry Education, Indonesia University of Education, Setiabudi 229, Bandung 40154, Indonesia
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Silvia Andini
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Department of Chemistry, Satya Wacana Christian University, Diponegoro 52-60, Salatiga 50211, Indonesia
| | - Zahara Mardiah
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Indonesian Agency for Agricultural Research and Development, Indonesian Ministry of Agriculture, Ragunan 29, Jakarta Selatan 12540, Indonesia
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
28
|
Kowalski K, Szczupak Ł, Oehninger L, Ott I, Hikisz P, Koceva-Chyła A, Therrien B. Ferrocenyl derivatives of pterocarpene and coumestan: Synthesis, structure and anticancer activity studies. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Doran R, Carroll MP, Akula R, Hogan BF, Martins M, Fanning S, Guiry PJ. A Stereoselective Switch: Enantiodivergent Approach to the Synthesis of Isoflavanones. Chemistry 2014; 20:15354-9. [DOI: 10.1002/chem.201405246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 12/23/2022]
|
30
|
Gholami A, De Geyter N, Pollier J, Goormachtig S, Goossens A. Natural product biosynthesis in Medicago species. Nat Prod Rep 2014; 31:356-80. [PMID: 24481477 DOI: 10.1039/c3np70104b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The genus Medicago, a member of the legume (Fabaceae) family, comprises 87 species of flowering plants, including the forage crop M. sativa (alfalfa) and the model legume M. truncatula (barrel medic). Medicago species synthesize a variety of bioactive natural products that are used to engage into symbiotic interactions but also serve to deter pathogens and herbivores. For humans, these bioactive natural products often possess promising pharmaceutical properties. In this review, we focus on the two most interesting and well characterized secondary metabolite classes found in Medicago species, the triterpene saponins and the flavonoids, with a detailed overview of their biosynthesis, regulation, and profiling methods. Furthermore, their biological role within the plant as well as their potential utility for human health or other applications is discussed. Finally, we give an overview of the advances made in metabolic engineering in Medicago species and how the development of novel molecular and omics toolkits can influence a better understanding of this genus in terms of specialized metabolism and chemistry. Throughout, we critically analyze the current bottlenecks and speculate on future directions and opportunities for research and exploitation of Medicago metabolism.
Collapse
Affiliation(s)
- Azra Gholami
- Department of Plant Systems Biology, VIB, Ghent University, Technologiepark 927, B-9052 Gent, Belgium.
| | | | | | | | | |
Collapse
|
31
|
Simmler C, Pauli GF, Chen SN. Phytochemistry and biological properties of glabridin. Fitoterapia 2013; 90:160-84. [PMID: 23850540 PMCID: PMC3795865 DOI: 10.1016/j.fitote.2013.07.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 02/07/2023]
Abstract
Glabridin, a prenylated isoflavonoid of G. glabra L. roots (European licorice, Fabaceae), has been associated with a wide range of biological properties such as antioxidant, anti-inflammatory, anti-atherogenic, regulation of energy metabolism, estrogenic, neuroprotective, anti-osteoporotic, and skin-whitening. While glabridin is one of the most studied licorice flavonoids, a comprehensive literature survey linked to its numerous bioactivities is unavailable. The present review provides a comprehensive description of glabridin as a key chemical and biological marker of G. glabra, by covering both its phytochemical characterization and reported biological activities. Both glabridin and standardized licorice extracts have significant impact on food, dietary supplements (DSs) and cosmetic markets, as evidenced by the amount of available patents and scientific articles since 1976, when glabridin was first described. Nevertheless, a thorough literature survey also reveals that information about the isolation and chemical characterization of this important marker is scattered and less detailed than expected. Accordingly, the first part of this review gathers and provides all analytical and spectroscopic data required for the comprehensive phytochemical characterization of glabridin. The four most frequently described and most relevant bioactivities of glabridin are its anti-inflammatory, anti-atherogenic, estrogenic-like effects, and its capacity to regulate energy metabolism. While all bioactivities reported for glabridin belong to a wide array of targets, its principal biological properties are likely interconnected. To this end, the current state of the literature suggests that the biological activity of glabridin mainly results from its capacity to down-regulate intracellular reactive oxygen species, bind to antioxidant effectors, and act on estrogen receptors, potentially as a plant-based Selective Estrogen Receptor Modulator (phytoSERM).
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, USA.
| | | | | |
Collapse
|
32
|
Wojakowska A, Muth D, Narożna D, Mądrzak C, Stobiecki M, Kachlicki P. Changes of phenolic secondary metabolite profiles in the reaction of narrow leaf lupin ( Lupinus angustifolius) plants to infections with Colletotrichum lupini fungus or treatment with its toxin. Metabolomics 2013; 9:575-589. [PMID: 23678343 PMCID: PMC3651525 DOI: 10.1007/s11306-012-0475-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/15/2012] [Indexed: 12/16/2022]
Abstract
Plant interactions with environmental factors cause changes in the metabolism and regulation of biochemical and physiological processes. Plant defense against pathogenic microorganisms depends on an innate immunity system that is activated as a result of infection. There are two mechanisms of triggering this system: basal immunity activated as a result of a perception of microbe-associated molecular patterns through pattern recognition receptors situated on the cell surface and effector-triggered immunity (ETI). An induced biosynthesis of bioactive secondary metabolites, in particular phytoalexins, is one of the mechanisms of plant defense to fungal infection. Results of the study on narrow leaf lupin (Lupinus angustifolius L.) plants infected with the anthracnose fungus Colletotrichum lupini and treated with fungal phytotoxic metabolites are described in the paper. The C. lupini phytotoxins were isolated from liquid cultures, purified and partially characterized with physicochemical methods. Accumulation of secondary metabolites on leaf surface and within the tissues of plants either infected, treated with the fungal phytotoxin or submitted to both treatments was studied using GC-MS and LC-MS, respectively. Substantial differences in isoflavone aglycones and glycoconjugate profiles occurred in response to different ways of plant treatment.
Collapse
Affiliation(s)
- Anna Wojakowska
- Institute of Bioorganic Chemistry PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Dorota Muth
- Institute of Bioorganic Chemistry PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Poznań University of Life Science, ul. Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Cezary Mądrzak
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Poznań University of Life Science, ul. Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Piotr Kachlicki
- Institute of Plant Genetics PAS, Strzeszyńska 34, 60-479 Poznań, Poland
| |
Collapse
|
33
|
Bohni N, Cordero-Maldonado ML, Maes J, Siverio-Mota D, Marcourt L, Munck S, Kamuhabwa AR, Moshi MJ, Esguerra CV, de Witte PAM, Crawford AD, Wolfender JL. Integration of Microfractionation, qNMR and zebrafish screening for the in vivo bioassay-guided isolation and quantitative bioactivity analysis of natural products. PLoS One 2013; 8:e64006. [PMID: 23700445 PMCID: PMC3660303 DOI: 10.1371/journal.pone.0064006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/09/2013] [Indexed: 12/17/2022] Open
Abstract
Natural products (NPs) are an attractive source of chemical diversity for small-molecule drug discovery. Several challenges nevertheless persist with respect to NP discovery, including the time and effort required for bioassay-guided isolation of bioactive NPs, and the limited biomedical relevance to date of in vitro bioassays used in this context. With regard to bioassays, zebrafish have recently emerged as an effective model system for chemical biology, allowing in vivo high-content screens that are compatible with microgram amounts of compound. For the deconvolution of the complex extracts into their individual constituents, recent progress has been achieved on several fronts as analytical techniques now enable the rapid microfractionation of extracts, and microflow NMR methods have developed to the point of allowing the identification of microgram amounts of NPs. Here we combine advanced analytical methods with high-content screening in zebrafish to create an integrated platform for microgram-scale, in vivo NP discovery. We use this platform for the bioassay-guided fractionation of an East African medicinal plant, Rhynchosia viscosa, resulting in the identification of both known and novel isoflavone derivatives with anti-angiogenic and anti-inflammatory activity. Quantitative microflow NMR is used both to determine the structure of bioactive compounds and to quantify them for direct dose-response experiments at the microgram scale. The key advantages of this approach are (1) the microgram scale at which both biological and analytical experiments can be performed, (2) the speed and the rationality of the bioassay-guided fractionation – generic for NP extracts of diverse origin – that requires only limited sample-specific optimization and (3) the use of microflow NMR for quantification, enabling the identification and dose-response experiments with only tens of micrograms of each compound. This study demonstrates that a complete in vivo bioassay-guided fractionation can be performed with only 20 mg of NP extract within a few days.
Collapse
Affiliation(s)
- Nadine Bohni
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - María Lorena Cordero-Maldonado
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
- Faculty of Chemistry Sciences, School of Biochemistry and Pharmacy, University of Cuenca, Cuenca, Ecuador
| | - Jan Maes
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Dany Siverio-Mota
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Sebastian Munck
- VIB Center for the Biology of Disease, University of Leuven, Leuven, Belgium
| | - Appolinary R. Kamuhabwa
- Faculty of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mainen J. Moshi
- Faculty of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
- * E-mail:
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
34
|
Selepe MA, Van Heerden FR. Application of the Suzuki-Miyaura reaction in the synthesis of flavonoids. Molecules 2013; 18:4739-65. [PMID: 23609624 PMCID: PMC6269869 DOI: 10.3390/molecules18044739] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 11/16/2022] Open
Abstract
The application of the Suzuki-Miyaura reaction in the synthesis of flavonoids, an important class of natural products, is reviewed. This reaction has not only been employed to provide access to flavonoid nuclei, but has also been applied to the synthesis of dimeric flavonoids and in the synthesis of libraries of flavonoid derivatives for biological activity studies. The classes of flavonoids that are discussed are the chalcones, flavones, isoflavones, neoflavones, biflavones and derivatives of flavonoids obtained by C-C bond formation via the Suzuki-Miyaura reaction.
Collapse
Affiliation(s)
| | - Fanie R. Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa; E-Mail:
| |
Collapse
|
35
|
|
36
|
Kamto ELD, Atchadé ADT, Marston A, Pegnyemb DE, van der Westhuizen JH. Chemical constituents from bark of Millettia mannii Baker (Papilionoideae−Leguminosae). BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Abdulmanea K, Prokudina EA, Lanková P, Vaníčková L, Koblovská R, Zelený V, Lapčík O. Immunochemical and HPLC identification of isoflavonoids in the Apiaceae family. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Ndemangou B, Tedjon Sielinou V, Vardamides JC, Shaiq Ali M, Lateef M, Iqbal L, Afza N, Nkengfack AE. Urease inhibitory isoflavonoids from different parts of Calopogonium mucunoides (Fabaceae). J Enzyme Inhib Med Chem 2012; 28:1156-61. [DOI: 10.3109/14756366.2012.719025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brigitte Ndemangou
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I,
Yaoundé, Cameroon
| | - Valerie Tedjon Sielinou
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I,
Yaoundé, Cameroon
- International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | | | - Muhammad Shaiq Ali
- International Center for Chemical and Biological Sciences, University of Karachi,
Karachi, Pakistan
| | - Mehreen Lateef
- Pakistan Council of Scientific and Industrial Research Laboratories Complex,
Karachi, Pakistan
| | - Lubna Iqbal
- Pakistan Council of Scientific and Industrial Research Laboratories Complex,
Karachi, Pakistan
| | - Nigaht Afza
- Pakistan Council of Scientific and Industrial Research Laboratories Complex,
Karachi, Pakistan
| | | |
Collapse
|
39
|
Wu Z, Song L, Feng S, Liu Y, He G, Yioe Y, Liu SQ, Huang D. Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8606-15. [PMID: 22816801 DOI: 10.1021/jf3021514] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effect of germination on bioactive components in legume seeds was investigated in terms of the antioxidant capacity and total phenolic contents. Germination increased the total phenolic content and antioxidant capacity of most seeds. Particularly in chickpea seeds, the isoflavone contents increased by over 100 fold, mainly due to the increase of formononetin and biochanin A level. As a result, these two compounds were conveniently isolated from the germinated seeds in preparative scale and structurally confirmed by UV-vis, ESI-MS, and (1)H NMR spectroscopies. Isoflavonoid fingerprints analyzed by HPLC-PDA and LC-ESI-MS demonstrated that germination could significantly increase isoflavonoids diversity. Twenty-five isoflavonoids were detected and identified tentatively. These include 20 isoflavones, 2 isoflavanones, and 3 pterocarpan phytoalexins. Total isoflavonoid content of germinated chickpea was approximately 5-fold of that of germinated soybean. Our findings suggest that the germinated chickpea seeds could serve as a promising functional food rich in isoflavonoids.
Collapse
Affiliation(s)
- Ziyun Wu
- Food Science and Technology Programme, Department of Chemistry, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin LZ, Harnly JM. Quantitation of flavanols, proanthocyanidins, isoflavones, flavanones, dihydrochalcones, stilbenes, benzoic acid derivatives using ultraviolet absorbance after identification by liquid chromatography-mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5832-40. [PMID: 22577798 PMCID: PMC3706559 DOI: 10.1021/jf3006905] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A general method was developed for the systematic quantitation of flavanols, proanthocyanidins, isoflavones, flavanones, dihydrochalcones, stilbenes, and hydroxybenzoic acid derivatives (mainly hydrolyzable tannins) based on UV band II absorbance arising from the benzoyl structure. The compound structures and the wavelength maximum were well correlated and were divided into four groups: the flavanols and proanthocyanidins at 278 nm, hydrolyzable tannins at 274 nm, flavanones at 288 nm, and isoflavones at 260 nm. Within each group, molar relative response factors (MRRFs) were computed for each compound based on the absorbance ratio of the compound and the group reference standard. Response factors were computed for the compounds as purchased (MRRF), after drying (MRRFD), and as the best predicted value (MRRFP). Concentrations for each compound were computed based on calibration with the group reference standard and the MRRFP. The quantitation of catechins, proanthocyanidins, and gallic acid derivatives in white tea was used as an example.
Collapse
Affiliation(s)
- Long-Ze Lin
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, Maryland 20705-3000, United States
| | - James M. Harnly
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, Maryland 20705-3000, United States
| |
Collapse
|
41
|
Simons R, Gruppen H, Bovee TFH, Verbruggen MA, Vincken JP. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food Funct 2012; 3:810-27. [PMID: 22684228 DOI: 10.1039/c2fo10290k] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Isoflavonoids are a class of secondary metabolites, which comprise amongst others the subclasses of isoflavones, isoflavans, pterocarpans and coumestans. Isoflavonoids are abundant in Leguminosae, and many of them can bind to the human estrogen receptor (hER) with affinities similar to or lower than that of estradiol. Dietary intake of these so-called phytoestrogens has been associated with positive effects on menopausal complaints, hormone-related cancers, and osteoporosis. Therefore, phytoestrogens are used as nutraceuticals in functional foods or food supplements. Most of the isoflavonoids show agonistic activity towards both hERα and hERβ, the extent of which is modulated by the substitution pattern of their skeleton (i.e.-OH, -OCH(3)). Interestingly, substitutions consisting of a five-carbon prenyl group often seem to result in an antiestrogenic activity. There is growing evidence that the action of some of these prenylated isoflavonoids is tissue-specific, suggesting that they act like selective estrogen receptor modulators (SERMs), such as the well-known chemically synthesized raloxifene and tamoxifen. These so-called phytoSERMS might have high potential for realizing new food and pharma applications. In this review, the structural features of isoflavonoids (i.e. the kind of skeleton and prenylation (e.g. chain or pyran), position of the prenyl group on the skeleton, and the extent of prenylation (single, double)) are discussed in relation to their estrogenic activity. Anti-estrogenic and SERM activity of isoflavonoids was always associated with prenylation, but these activities did not seem to be confined to one particular kind/position of prenylation or isoflavonoid subclass. Few estrogens with agonistic activity were prenylated, but these were not tested for antagonistic activity; possibly, these molecules will turn out to be phytoSERMs as well. Furthermore, the data on the dietary occurrence, bioavailability and metabolism of prenylated isoflavonoids are discussed.
Collapse
Affiliation(s)
- Rudy Simons
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
42
|
Ivanova BB, Spiteller M. On the chemical identification and determination of flavonoids in solid-state. Talanta 2012; 94:9-21. [PMID: 22608408 DOI: 10.1016/j.talanta.2011.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 11/26/2022]
|
43
|
Nibbs AE, Scheidt KA. Asymmetric Methods for the Synthesis of Flavanones, Chromanones, and Azaflavanones. European J Org Chem 2012; 2012:449-462. [PMID: 22876166 PMCID: PMC3412359 DOI: 10.1002/ejoc.201101228] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Indexed: 01/29/2023]
Abstract
Flavanones, chromanones, and related structures are privileged natural products that display a wide variety of biological activities. Although flavanoids are abundant in nature, there are a limited number of available general and efficient synthetic methods for accessing molecules of this class in a stereoselective manner. Their structurally simple architectures belie the difficulties involved in installation and maintenance of the stereogenic configuration at the C2 position, which can be sensitive and can undergo epimerization under mildly acidic, basic, and thermal reaction conditions. This review presents the methods currently used to access these related structures. The synthetic methods include manipulation of the flavone/flavanone core, carbon-carbon bond formation, and carbon-heteroatom bond formation.
Collapse
Affiliation(s)
- Antoinette E. Nibbs
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Silverman Hall, Northwestern University, Evanston, IL 60208, USA, Fax: +1-847-467-2184, http://chemgroups.northwestern.edu/scheidt
| | - Karl A. Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Silverman Hall, Northwestern University, Evanston, IL 60208, USA, Fax: +1-847-467-2184, http://chemgroups.northwestern.edu/scheidt
| |
Collapse
|
44
|
Staszków A, Swarcewicz B, Banasiak J, Muth D, Jasiński M, Stobiecki M. LC/MS profiling of flavonoid glycoconjugates isolated from hairy roots, suspension root cell cultures and seedling roots of Medicago truncatula. Metabolomics 2011; 7:604-613. [PMID: 22039365 PMCID: PMC3193514 DOI: 10.1007/s11306-011-0287-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/28/2011] [Indexed: 10/27/2022]
Abstract
Hairy roots and suspension cell cultures are commonly used in deciphering different problems related to the biochemistry and physiology of plant secondary metabolites. Here, we address about the issue of possible differences in the profiles of flavonoid compounds and their glycoconjugates derived from various plant materials grown in a standard culture media. We compared profiles of flavonoids isolated from seedling roots, hairy roots, and suspension root cell cultures of a model legume plant, Medicago truncatula. The analyses were conducted with plant isolates as well as the media. The LC/MS profiles of target natural products obtained from M. truncatula seedling roots, hairy roots, and suspension root cell cultures differed substantially. The most abundant compounds in seedlings roots were mono- and diglucuronides of isoflavones and/or flavones. This type of glycosylation was not observed in hairy roots or suspension root cell cultures. The only recognized glycoconjugates in the latter samples were glucose derivatives of isoflavones. Application of a high-resolution mass spectrometer helped evaluate the elemental composition of protonated molecules, such as [M + H](+). Comparison of collision-induced dissociation MS/MS spectra registered with a quadrupole time-of-flight analyzer for tissue extracts and standards allowed us to estimate the aglycone structure on the basis of the pseudo-MS(3) experiment. Structures of these natural products were described according to the registered mass spectra and literature data. The analyses conducted represent an overview of flavonoids and their conjugates in different types of plant material representing the model legume, M. truncatula. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0287-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Staszków
- Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Barbara Swarcewicz
- Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Joanna Banasiak
- Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Dorota Muth
- Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Michał Jasiński
- Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
- Faculty of Agronomy, University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry, PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
45
|
Selepe MA, Drewes SE, van Heerden FR. Total synthesis of the pyranocoumaronochromone lupinalbin H. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Simons R, Vincken JP, Roidos N, Bovee TFH, van Iersel M, Verbruggen MA, Gruppen H. Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6748-58. [PMID: 21561073 DOI: 10.1021/jf2010707] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soybeans were germinated on a kilogram-scale, by the application of malting technology used in the brewing industry, and concomitantly challenged with Rhizopus microsporus var. oryzae. In a time-course experiment, samples were taken every 24 h for 10 days, and the isoflavonoid profile was analyzed by RP-UHPLC-MS. Upon induction with R. microsporus, the isoflavonoid composition changed drastically with the formation of phytoalexins belonging to the subclasses of the pterocarpans and coumestans and by prenylation of the various isoflavonoids. The pterocarpan content stabilized at 2.24 mg of daidzein equivalents (DE) per g after ∼9 days. The levels of the less common glyceofuran, glyceollin IV, and V/VI ranged from 0.18 to 0.35 mg DE/g and were comparable to those of the more commonly reported glyceollins I, II, and III (0.22-0.32 mg DE/g) and glycinol (0.42 mg DE/g). The content of prenylated isoflavones after the induction process was 0.30 mg DE/g. The total isoflavonoid content increased by a factor of 10-12 on DW basis after 9 days, which was suggested to be ascribable to de novo synthesis. These changes were accompanied by a gradual increase in agonistic activity of the extracts toward both the estrogen receptor α (ERα) and ERβ during the 10-day induction, with a more pronounced activity toward ERβ. Thus, the induction process yielded a completely different spectrum of isoflavonoids, with a much higher bioactivity toward the estrogen receptors. This, together with the over 10-fold increase in potential bioactives, offers promising perspectives for producing more, novel, and higher potency nutraceuticals by malting under stressed conditions.
Collapse
Affiliation(s)
- Rudy Simons
- Laboratory of Food Chemistry, Wageningen University , P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Nigel C Veitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW93AB, UK.
| | | |
Collapse
|
48
|
Ablajan K. A study of characteristic fragmentation of isoflavonoids by using negative ion ESI-MSn. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:77-84. [PMID: 21182215 DOI: 10.1002/jms.1867] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Isoflavone mono-O-glycosides were investigated by electrospray ionization tandem mass spectrometry with a quadrupole linear ion trap mass spectrometer in negative ion mode. Isoflavonoids having different positions of glycosylation or methylation were differentiated according to the relative abundances of Y(0)(-) and [Y(0)-H](-•) ions generated from the [M-H](-) ion. It is found that the site of glycosyl or methyl group significantly affects relative abundances of the Y(0)(-) and [Y(0)-H](-•) ions. In addition, the characteristic ion [Y(0)-2H](-) was observed in the product ion spectrum of genistein 7-O-β-D-glucoside and was also detected, together with the [Y(0)-CH(3)](-•) and [Y(0)-H-CH(3)](-) ions in the product ion spectra of glycitin and 6-methoxy genistein 7-O-β-D-glucoside. The structures of isoflavonoids can be characterized and identified according to the formation of these diagnostic ions. The results obtained from this investigation can promote the rapid identification of isoflavonoids in crude plant extracts.
Collapse
Affiliation(s)
- Keyume Ablajan
- College of Chemistry and Chemical Engineering, Xinjiang University, 830046 Urumqi, PR China.
| |
Collapse
|
49
|
|
50
|
|