1
|
Peterková K, Durník I, Marek R, Plavec J, Podbevšek P. c-kit2 G-quadruplex stabilized via a covalent probe: exploring G-quartet asymmetry. Nucleic Acids Res 2021; 49:8947-8960. [PMID: 34365512 PMCID: PMC8421218 DOI: 10.1093/nar/gkab659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
Several sequences forming G-quadruplex are highly conserved in regulatory regions of genomes of different organisms and affect various biological processes like gene expression. Diverse G-quadruplex properties can be modulated via their interaction with small polyaromatic molecules such as pyrene. To investigate how pyrene interacts with G-rich DNAs, we incorporated deoxyuridine nucleotide(s) with a covalently attached pyrene moiety (Upy) into a model system that forms parallel G-quadruplex structures. We individually substituted terminal positions and positions in the pentaloop of the c-kit2 sequence originating from the KIT proto-oncogene with Upy and performed a detailed NMR structural study accompanied with molecular dynamic simulations. Our results showed that incorporation into the pentaloop leads to structural polymorphism and in some cases also thermal destabilization. In contrast, terminal positions were found to cause a substantial thermodynamic stabilization while preserving topology of the parent c-kit2 G-quadruplex. Thermodynamic stabilization results from π–π stacking between the polyaromatic core of the pyrene moiety and guanine nucleotides of outer G-quartets. Thanks to the prevalent overall conformation, our structures mimic the G-quadruplex found in human KIT proto-oncogene and could potentially have antiproliferative effects on cancer cells.
Collapse
Affiliation(s)
- Kateřina Peterková
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Ivo Durník
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| | - Peter Podbevšek
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Kumar V, Nguyen TJD, Palmfeldt J, Gothelf KV. Formation of i-motifs from acyclic (l)-threoninol nucleic acids. Org Biomol Chem 2019; 17:7655-7659. [PMID: 31360984 DOI: 10.1039/c9ob01220f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acyclic (l)-threoninol nucleic acids ((l)-aTNA) containing poly-cytosines are prepared and investigated at various pH values, revealing the formation of a highly stable structure at lower pH that have the characteristics of an i-motif. Depending on the sequence, the aTNA forms inter-, bi- and intra-molecular i-motif structures. Pyrene was conjugated to aTNA sequences and both monomeric and excimer fluorescence were efficiently quenched by the i-motif structures and thus demonstrated that the aTNA i-motif can serve as a pH switch.
Collapse
Affiliation(s)
- Vipin Kumar
- Center for Multifunctional Biomolecular Drug Design (CEMBID), iNANO and Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
| | - Thuy J D Nguyen
- Center for Multifunctional Biomolecular Drug Design (CEMBID), iNANO and Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
| | - Johan Palmfeldt
- Department of Clinical Medicine - Research Unit for Molecular Medicine Aarhus University, 8200 Aarhus N, Denmark
| | - Kurt V Gothelf
- Center for Multifunctional Biomolecular Drug Design (CEMBID), iNANO and Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017; 22:E2108. [PMID: 29189716 PMCID: PMC6150046 DOI: 10.3390/molecules22122108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
4
|
Abstract
Formation of the so far elusive chrysene excimer in solution is achieved by using DNA as a supramolecular scaffold.
Collapse
Affiliation(s)
- Oleg Khorev
- Department of Chemistry and Biochemistry
- University of Bern
- CH-3012 Bern, Switzerland
| | - Caroline D. Bösch
- Department of Chemistry and Biochemistry
- University of Bern
- CH-3012 Bern, Switzerland
| | - Markus Probst
- Department of Chemistry and Biochemistry
- University of Bern
- CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry
- University of Bern
- CH-3012 Bern, Switzerland
| |
Collapse
|
5
|
Kholodar SA, Novopashina DS, Meschaninova MI, Venyaminova AG. Multipyrene tandem probes for point mutations detection in DNA. J Nucleic Acids 2013; 2013:860457. [PMID: 24455205 PMCID: PMC3886547 DOI: 10.1155/2013/860457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/11/2013] [Indexed: 01/26/2023] Open
Abstract
Here we report design, synthesis and characterization of highly sensitive, specific and stable in biological systems fluorescent probes for point mutation detection in DNA. The tandems of 3'- and 5'-mono- and bis-pyrene conjugated oligo(2'-O-methylribonucleotides), protected by 3'-"inverted" thymidine, were constructed and their potential as new instruments for genetic diagnostics was studied. Novel probes have been shown to exhibit an ability to form stable duplexes with DNA target due to the stabilizing effect of multiple pyrene units at the junction. The relationship between fluorescent properties of developed probes, the number of pyrene residues at the tandem junction, and the location of point mutation has been studied. On the basis of the data obtained, we have chosen the probes possessing the highest fluorescence intensity along with the best mismatch discrimination and deletion and insertion detection ability. Application of developed probes for detection of polymorphism C677T in MTHFR gene has been demonstrated on model systems.
Collapse
Affiliation(s)
- Svetlana A. Kholodar
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Mariya I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Maneelun N, Vilaivan T. Dual pyrene-labeled pyrrolidinyl peptide nucleic acid as an excimer-to-monomer switching probe for DNA sequence detection. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Rattray NJ, Zalloum WA, Mansell D, Latimer J, Jaffar M, Bichenkova EV, Freeman S. Chemical and bacterial reduction of azo-probes: monitoring a conformational change using fluorescence spectroscopy. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.01.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Østergaard ME, Hrdlicka PJ. Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): tools for fundamental research, diagnostics, and nanotechnology. Chem Soc Rev 2011; 40:5771-88. [PMID: 21487621 PMCID: PMC3644995 DOI: 10.1039/c1cs15014f] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrene-functionalized oligonucleotides (PFOs) are increasingly explored as tools in fundamental research, diagnostics and nanotechnology. Their popularity is linked to the ability of pyrenes to function as polarity-sensitive and quenchable fluorophores, excimer-generating units, aromatic stacking moieties and nucleic acid duplex intercalators. These characteristics have enabled development of PFOs for detection of complementary DNA/RNA targets, discrimination of single nucleotide polymorphisms (SNPs), and generation of π-arrays on nucleic acid scaffolds. This critical review will highlight the physical properties and applications of PFOs that are likely to provide high degree of positional control of the chromophore in nucleic acid complexes. Particular emphasis will be placed on pyrene-functionalized Locked Nucleic Acids (LNAs) since these materials display interesting properties such as fluorescence quantum yields approaching unity and recognition of mixed-sequence double stranded DNA (144 references).
Collapse
|
9
|
Bichenkova EV, Lang Z, Yu X, Rogert C, Douglas KT. DNA-mounted self-assembly: New approaches for genomic analysis and SNP detection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:1-23. [PMID: 21111076 DOI: 10.1016/j.bbagrm.2010.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/07/2010] [Accepted: 11/12/2010] [Indexed: 11/25/2022]
|
10
|
Kadirvel M, Rattray NJW, Rajendran R, Zalloum WA, Gbaj A, Demonacos C, Bichenkova EV, Freeman S. Bioreductive molecular probe: fluorescence signalling upon reduction of an azo group. NEW J CHEM 2011. [DOI: 10.1039/c0nj00849d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
|
12
|
|
13
|
The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging. J Fluoresc 2010; 20:1099-128. [DOI: 10.1007/s10895-010-0644-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 11/25/2022]
|
14
|
Gbaj A, Bichenkova E, Walsh L, Savage H, Sardarian A, Etchells L, Gulati A, Hawisa S, Douglas K. New concepts of fluorescent probes for specific detection of DNA sequences: bis-modified oligonucleotides in excimer and exciplex detection. Libyan J Med 2009; 4:152-9. [PMID: 21483539 PMCID: PMC3066750 DOI: 10.4176/090801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
Collapse
Affiliation(s)
- A Gbaj
- Wolfson Centre for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Walsh L, Gbaj A, Etchells LL, Douglas KT, Bichenkova EV. SNP detection for cytochrome P450 alleles by target-assembled tandem oligonucleotide systems based on exciplexes. J Biomol Struct Dyn 2008; 25:629-40. [PMID: 18399696 DOI: 10.1080/07391102.2008.10507209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We report the first use of exciplex-based split-probes for detection of the wild type and *3 mutant alleles of human cytochrome P450 2C9. A tandem 8-mer split DNA oligonucleotide probe system was designed that allows detection of the complementary target DNA sequence. This exciplex-based fluorescence detector system operates by means of a contiguous hybridization of two oligonucleotide exciplex split-probes to a complementary target nucleic acid target. Each probe oligonucleotide is chemically modified at one of its termini by a potential exciplex-forming partner, each of which is fluorescently silent at the wavelength of detection. Under conditions that ensure correct three-dimensional assembly, the chemical moieties on suitable photoexcitation form an exciplex that fluoresces with a large Stokes shift (in this case 130 nm). Preliminary proof-of-concept studies used two 8-mer probe oligonucleotides, but in order to give better specificity for genomic applications, probe length was extended to give coverage of 24 bases. Eight pairs of tandem 12-mer oligonucleotide probes spanning the 2C9*3 region were designed and tested to find the best set of probes. Target sequences tested were in the form of (i) synthetic oligonucleotides, (ii) embedded in short PCR products (150 bp), or (iii) inserted into plasmid DNA (approximately 3 Kbp). The exciplex system was able to differentiate wild type and human cytochrome P450 2C9 *3 SNP (1075 A-->C) alleles, based on fluorescence emission spectra and DNA melting curves, indicating promise for future applications in genetic testing and molecular diagnostics.
Collapse
Affiliation(s)
- Lindsey Walsh
- Wolfson Center for Rational Structure-Based Design of Molecular Diagnostics, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, M13 9PL, U.K
| | | | | | | | | |
Collapse
|
16
|
Molecular probes: insights into design and analysis from computational and physical chemistry. Biochem Soc Trans 2008; 36:46-50. [PMID: 18208383 DOI: 10.1042/bst0360046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The application of new molecular diagnostics to probe cellular process in vivo is leading to a greater understanding of molecular cytology at a sub-nanoscale level and is opening the way to individualized medicines. We review here three distinct fluorescence-based molecular probes, HyBeacons, split-probe exciplexes and GFP (green fluorescent protein)-based FRET (fluorescence resonance energy transfer) systems. Through this, we highlight the insights into the mechanism and design that a combined computational and experimental approach can yield.
Collapse
|
17
|
Abstract
Scorpion probes, specific DNA probe sequences maintained in a hairpin–loop, can be modified to carry the components of an exciplex for use as a novel fluorescence-based method for specific detection of DNA. The exciplex partners (5′-pyrenyl and 3′-naphthalenyl) were attached to oligonucleotides via phosphoramidate links to terminal phosphate groups. Hybridization of the probe to a complementary target in a buffer containing trifluoroethanol produced an obvious fluorescence change from blue (pyrene locally excited state emission) to green (exciplex emission).
Collapse
|
18
|
Kadirvel M, Arsic B, Freeman S, Bichenkova EV. Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair. Org Biomol Chem 2008; 6:1966-72. [DOI: 10.1039/b800710a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Bouquin N, Malinovskii VL, Häner R. Highly efficient quenching of excimer fluorescence by perylene diimide in DNA. Chem Commun (Camb) 2008:1974-6. [DOI: 10.1039/b802193g] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Walsh L, Gbaj A, Savage HE, Rogert Bacigalupo MC, Bichenkova EV, Douglas KT. Target-assembled ExciProbes: Application to DNA Detection at the Level of PCR Product and Plasmid DNA. J Biomol Struct Dyn 2007; 25:219-30. [DOI: 10.1080/07391102.2007.10507171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Astakhova IV, Malakhov AD, Stepanova IA, Ustinov AV, Bondarev SL, Paramonov AS, Korshun VA. 1-Phenylethynylpyrene (1-PEPy) as Refined Excimer Forming Alternative to Pyrene: Case of DNA Major Groove Excimer. Bioconjug Chem 2007; 18:1972-80. [PMID: 17896811 DOI: 10.1021/bc700280h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1-Phenylethynylpyrene fluorochrome was studied as meta- and para-derivatives of arabino-uridine-2'-carbamates in ss and dsDNA. 1-PEPy showed red-shifted emission and increased fluorescence quantum yield compared to pyrene. Although 1-PEPy has very short excited lifetime (<2.5 ns), it is able to form inter- and intrastrand excimers on DNA, probably resulting from spatial preorganization of two dye molecules.
Collapse
Affiliation(s)
- Irina V Astakhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|