1
|
Pham TV, Nguyen NT, Huong TT. A kinetic and mechanistic study of the self-reaction between two propargyl radicals. J Mol Model 2024; 30:394. [PMID: 39499352 DOI: 10.1007/s00894-024-06191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
CONTEXT The propargyl radical plays a critical role in various chemical processes, including hydrocarbon combustion, flame synthesis, and interstellar chemistry. Its unique stability arises from the delocalization of π-electrons, allowing it to participate in a wide range of reactions despite being a radical. The self-reaction of propargyl radicals is a fundamental step in synthesizing polycyclic aromatic hydrocarbons. In this work, therefore, a computational study into the C3H3 + C3H3 potential energy surface has been carefully characterized. The calculated results indicate that the reaction can occur by H-abstraction or addition of two propargyl radicals together. The H-abstraction mechanism can create the products P3 (H2CCC + H3CCCH) and P4 (H2CCCH2 + HCCCH) but the energy barriers of the two H-abstraction channels are very high (from 12 to 22 kcal/mol). In contrast, the addition mechanism of two propargyl radicals forming the intermediates (I1, I5, I12) and the bimolecular products (P1, P2, P7, P11, P12) are dominant. Among the bimolecular products, the P11 (C6H4 + H2) product is the most energetically favorable, and the channel leading to this product is also the most preferred path compared to all other paths throughout the PES. The calculated enthalpy changes of various reaction paths in this study are in good agreement with the available literature data, indicating that the CCSD(T) method is suitable for the title reaction. The overall rate constant of the reaction depends on both temperature and pressure, reducing with temperature but rising with pressure. The calculated results agree closely with the available experimental values and previous calculated data. Thus, it can be affirmed that in addition to the CASPT2 method as applied in the study of Georgievskii et al. (Phys. Chem. Chem. Phys., 2007, 9, 4259-4268), the CCSD(T) method is also very good for the self-reaction of two propargyl radicals. METHODS The M06-2X and CCSD(T) methods with the aug-cc-pVTZ basis set were used to optimize and calculate single-point energies for all species of the reaction. The bimolecular rate constants of the dominant reaction paths were predicted in the temperature and pressure ranges of 300-1800 K and 0 - 76,000 Torr, respectively, using the VTST and RRKM models with Eckart tunneling correction for the H-shift steps.
Collapse
Affiliation(s)
- Tien V Pham
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Vietnam.
| | - Nghia T Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Tran Thu Huong
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
2
|
Flores J, Ruscitti M, Khani S, Reilly NJ. Electronic Spectrum of α-Hydrofulvenyl Radical (C 6H 7), and a Simple and Accurate Recipe for Predicting Adiabatic Ionization Energies of Resonance-Stabilized Hydrocarbon Radicals. J Phys Chem A 2024; 128:8123-8136. [PMID: 39264134 DOI: 10.1021/acs.jpca.4c04746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Using a combination of resonant two-photon two-color ionization (R2C2PI) and laser-induced fluorescence/dispersed fluorescence spectroscopy, we have examined the A ~ 2A″ ← X ~ 2A″ transition of the resonance-stabilized α-hydrofulvenyl radical, produced from methylcyclopentadiene dimer in a jet-cooled discharge. Like the related 1,4-pentadienyl and cyclohexadienyl radicals, the α-hydrofulvenyl Ã-state lifetime is orders of magnitude shorter than the predicted f-value implies, indicative of rapid nonradiative decay. The transition is fully allowed by symmetry but considerably weakened by transition moment interference. Intensity borrowing among a' modes brings about static (i.e., Condon) and vibronic (i.e., Herzberg-Teller) moments of similar size, the result being a spectrum substantially less origin-dominated than is usually observed for extensively delocalized radicals. Twenty A ~ -state modes and twelve X ~ -state modes are identified with high confidence and assignments for several others are suggested. In addition, from a series of two-color appearance potential scans with the A ~ -state zero-point level serving as an intermediate, we obtain a field-free adiabatic ionization energy (AIE) of 7.012(1) eV. For a set of 21 resonance-stabilized radicals bearing 5 to 11 carbon atoms, it emerges that the field-free AIE obtained by R2C2PI methods under jet-cooled conditions lies very close to the average of B3LYP/6-311G++(d,p) (with harmonic zero-point energy) and CBS-QB3 0 K calculations, with a mean absolute deviation of only 0.010(7) eV (approximately 1 kJ/mol). On average, this represents a nearly 10-fold improvement in accuracy over CBS-QB3 predictions for the same set of radicals.
Collapse
Affiliation(s)
- Jonathan Flores
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Massimo Ruscitti
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Sima Khani
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Neil J Reilly
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| |
Collapse
|
3
|
Selby TM, Goulay F, Soorkia S, Ray A, Jasper AW, Klippenstein SJ, Morozov AN, Mebel AM, Savee JD, Taatjes CA, Osborn DL. Radical-Radical Reactions in Molecular Weight Growth: The Phenyl + Propargyl Reaction. J Phys Chem A 2023; 127:2577-2590. [PMID: 36905386 DOI: 10.1021/acs.jpca.2c08121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The mechanism for hydrocarbon ring growth in sooting environments is still the subject of considerable debate. The reaction of phenyl radical (C6H5) with propargyl radical (H2CCCH) provides an important prototype for radical-radical ring-growth pathways. We studied this reaction experimentally over the temperature range of 300-1000 K and pressure range of 4-10 Torr using time-resolved multiplexed photoionization mass spectrometry. We detect both the C9H8 and C9H7 + H product channels and report experimental isomer-resolved product branching fractions for the C9H8 product. We compare these experiments to theoretical kinetics predictions from a recently published study augmented by new calculations. These ab initio transition state theory-based master equation calculations employ high-quality potential energy surfaces, conventional transition state theory for the tight transition states, and direct CASPT2-based variable reaction coordinate transition state theory (VRC-TST) for the barrierless channels. At 300 K only the direct adducts from radical-radical addition are observed, with good agreement between experimental and theoretical branching fractions, supporting the VRC-TST calculations of the barrierless entrance channel. As the temperature is increased to 1000 K we observe two additional isomers, including indene, a two-ring polycyclic aromatic hydrocarbon, and a small amount of bimolecular products C9H7 + H. Our calculated branching fractions for the phenyl + propargyl reaction predict significantly less indene than observed experimentally. We present further calculations and experimental evidence that the most likely cause of this discrepancy is the contribution of H atom reactions, both H + indenyl (C9H7) recombination to indene and H-assisted isomerization that converts less stable C9H8 isomers into indene. Especially at low pressures typical of laboratory investigations, H-atom-assisted isomerization needs to be considered. Regardless, the experimental observation of indene demonstrates that the title reaction leads, either directly or indirectly, to the formation of the second ring in polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Talitha M Selby
- Department of Mathematics and Natural Sciences, University of Wisconsin-Milwaukee, West Bend, Wisconsin 53095, United States
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, F-91405 Orsay, France
| | - Amelia Ray
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha, Wisconsin 53144, United States
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - John D Savee
- KLA Corporation, Milpitas, California 95035, United States
| | - Craig A Taatjes
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551, United States
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
4
|
Field-Theodore TE, Taylor PR. Interstellar hide and go seek: C 3H 4O. There and back (again). Phys Chem Chem Phys 2022; 24:19184-19198. [PMID: 35730752 DOI: 10.1039/d2cp00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular species C3H4O represents a striking example of an astrochemical conundrum. With more than 60 structural isomers theoretically possible, to date only acrolein (CH2CHCHO) has been identified in the Sgr B2(N) region of the interstellar medium (ISM). The topography of the singlet potential energy surface is complicated, with three low-lying minima predicted to be almost isoenergetic: cis and trans-acrolein, and methylketene (CH3CHCO). Our CCSD(T)/cc-pVTZ calculations confirm that methylketene is energetically lower than cis-acrolein, lying only 1.9 kJ mol-1 above the trans-isomer, which is the global minimum. In this respect, methylketene is a promising candidate for interstellar observation. Unfortunately, however, despite several searches its astronomical detection has been unsuccessful. To this end, the key question is whether in fact methylketene exists as a discrete chemical entity in the ISM at all? In this paper, we present a detailed examination of the C3H4O potential energy surface, with specific focus on formation pathways. CCSD(T)/cc-pVTZ calculations enable a more elaborate interpretation of reaction mechanisms than was published hitherto. Our results show that gauche-propargyl alcohol and syn and anti-allenol emerge as interesting new targets for observational astronomers in TMC-1: given the recent discovery of the propargyl radical in this region, barrierless product channels involving OH˙ lend support to their candidacy as possible interstellar species. Finally, this work provides accurate spectral data of these three potential molecules, to be used for searches in interstellar space.
Collapse
Affiliation(s)
| | - Peter R Taylor
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
5
|
Nguyen TN, Trang HTT, Nguyen NT, Pham TV. Computational study of the reaction of C
3
H
3
with HNCO and the decomposition of C
4
H
4
NO radicals. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tue N. Nguyen
- School of Chemical Engineering Hanoi University of Science and Technology Hanoi Vietnam
| | | | - Nghia T. Nguyen
- School of Chemical Engineering Hanoi University of Science and Technology Hanoi Vietnam
| | - Tien V. Pham
- School of Chemical Engineering Hanoi University of Science and Technology Hanoi Vietnam
| |
Collapse
|
6
|
Reizer E, Viskolcz B, Fiser B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review. CHEMOSPHERE 2022; 291:132793. [PMID: 34762891 DOI: 10.1016/j.chemosphere.2021.132793] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/18/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are mostly formed during the incomplete combustion of organic materials, but their importance and presence in materials science, and astrochemistry has also been proven. These carcinogenic persistent organic pollutants are essential in the formation of combustion generated particles as well. Due to their significant impact on the environment and human health, to understand the formation and growth of PAHs is essential. Therefore, the most important growth mechanisms are reviewed, and presented here from the past four decades (1981-2021) to initiate discussions from a new perspective. Although, the collected and analyzed observations are derived from both experimental, and computational studies, it is neither a systematic nor a comprehensive review. Nevertheless, the mechanisms were divided into three main categories, acetylene additions (e.g. HACA), vinylacetylene additions (HAVA), and radical reactions, and discussed accordingly.
Collapse
Affiliation(s)
- Edina Reizer
- Institute of Chemistry, University of Miskolc, H-3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc-Egyetemváros, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, H-3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, H-3515, Miskolc, Miskolc-Egyetemváros, Hungary; Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515, Miskolc-Egyetemváros, Hungary; Ferenc Rákóczi II. Transcarpathian Hungarian College of Higher Education, UA, 90200, Beregszász, Transcarpathia, Ukraine.
| |
Collapse
|
7
|
Su Z, Ying Y, Chen C, Zhao R, Zhao X, Liu D. Effects of diluent gases on sooting transition process in ethylene counterflow diffusion flames. RSC Adv 2022; 12:18181-18196. [PMID: 35800317 PMCID: PMC9210520 DOI: 10.1039/d2ra02409h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022] Open
Abstract
The impacts of adding diluent gases (nitrogen, carbon dioxide, and helium) either to the fuel side or the oxidizer side on the sooting transition process in ethylene counterflow diffusion flames are investigated experimentally and numerically. A series of ethylene flames ranging from non-sooting to heavy-sooting are studied by gradually increasing the oxygen concentration on the oxidizer side. The optical method is used to analyze flame images, determining the sooting transition process. It is found that whether CO2 is added to the fuel side or the oxidizer side, the sooting transition process is delayed significantly. This process is slightly delayed when He is added to the fuel side, however, it is promoted when He is introduced to the oxidizer side. The numerical results show that in CO2-diluted flames, the mole fraction of the main soot precursors C2H2, C3H3, and C6H6 are reduced, which leads to the delay of soot formation. In addition, the H radical decreases while the OH radical increases, both of them are important for soot formation. In He-diluted flames, the concentration of C2H2, C3H3, and C6H6 decreased, as well as H and OH radicals. Moreover, adding He obviously changes the distribution area of products. This study analyzes the flame images by optical method to distinguish the sooting transition process under different diluent gases (CO2, He, and N2) and carries out chemical kinetic simulations during this transition process.![]()
Collapse
Affiliation(s)
- Zhiwei Su
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yaoyao Ying
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Chen Chen
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Rui Zhao
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Xuan Zhao
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Dong Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
8
|
Klippenstein SJ. Spiers Memorial Lecture: theory of unimolecular reactions. Faraday Discuss 2022; 238:11-67. [DOI: 10.1039/d2fd00125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One hundred years ago, at an earlier Faraday Discussion meeting, Lindemann presented a mechanism that provides the foundation for contemplating the pressure dependence of unimolecular reactions. Since that time, our...
Collapse
|
9
|
Ferhoune I, Guemini M, Rezgui Y. Effect of the Chemical Structure of Hydrocarbons on the Emissions of CO, CO2 and Soot Precursors Issued from Cyclohexane and Benzene Premixed Flames. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158421040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Caster KL, Selby TM, Osborn DL, Le Picard SD, Goulay F. Product Detection of the CH(X 2Π) Radical Reaction with Cyclopentadiene: A Novel Route to Benzene. J Phys Chem A 2021; 125:6927-6939. [PMID: 34374546 DOI: 10.1021/acs.jpca.1c03517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of the methylidyne radical (CH(X2Π)) with cyclopentadiene (c-C5H6) is studied in the gas phase at 4 Torr and 373 K using a multiplexed photoionization mass spectrometer. Under multiple collision conditions, the dominant product channel observed is the formation of C6H6 + H. Fitting the photoionization spectrum using reference spectra allows for isomeric resolution of C6H6 isomers, where benzene is the largest contributor with a relative branching fraction of 90 (±5)%. Several other C6H6 isomers are found to have smaller contributions, including fulvene with a branching fraction of 8 (±5)%. Master Equation calculations for four different entrance channels on the C6H7 potential energy surface are performed to explore the competition between CH cycloaddition to a C═C bond vs CH insertion into C-H bonds of cyclopentadiene. Previous studies on CH addition to unsaturated hydrocarbons show little evidence for the C-H insertion pathway. The present computed branching fractions support benzene as the sole cyclic product from CH cycloaddition, whereas fulvene is the dominant product from two of the three pathways for CH insertion into the C-H bonds of cyclopentadiene. The combination of experiment with Master Equation calculations implies that insertion must account for ∼10 (±5)% of the overall CH + cyclopentadiene mechanism.
Collapse
Affiliation(s)
- Kacee L Caster
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Talitha M Selby
- Department of Mathematics and Natural Sciences, University of Wisconsin-Milwaukee, West Bend, Wisconsin 53095, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551, United States
| | - Sebastien D Le Picard
- IPR (Institut de Physique de Rennes), UMR 6251, Univ Rennes, CNRS, F-35000 Rennes, France
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
11
|
Muresan M, Subramanian H, Sibi MP, Green JR. Propargyl Radicals in Organic Synthesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marcus Muresan
- Department of Chemistry and Biochemistry University of Windsor 401 Sunset Ave. Windsor Ontario N9B 3P4 Canada
| | - Hariharaputhiran Subramanian
- Department of Chemistry and Biochemistry North Dakota State University Dept 2735 PO Box 6050 Fargo North Dakota 58108-6050 USA
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University Dept 2735 PO Box 6050 Fargo North Dakota 58108-6050 USA
| | - James R. Green
- Department of Chemistry and Biochemistry University of Windsor 401 Sunset Ave. Windsor Ontario N9B 3P4 Canada
| |
Collapse
|
12
|
Zhao L, Lu W, Ahmed M, Zagidullin MV, Azyazov VN, Morozov AN, Mebel AM, Kaiser RI. Gas-phase synthesis of benzene via the propargyl radical self-reaction. SCIENCE ADVANCES 2021; 7:7/21/eabf0360. [PMID: 34020951 PMCID: PMC8139581 DOI: 10.1126/sciadv.abf0360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/31/2021] [Indexed: 06/01/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been invoked in fundamental molecular mass growth processes in our galaxy. We provide compelling evidence of the formation of the very first ringed aromatic and building block of PAHs-benzene-via the self-recombination of two resonantly stabilized propargyl (C3H3) radicals in dilute environments using isomer-selective synchrotron-based mass spectrometry coupled to theoretical calculations. Along with benzene, three other structural isomers (1,5-hexadiyne, fulvene, and 2-ethynyl-1,3-butadiene) and o-benzyne are detected, and their branching ratios are quantified experimentally and verified with the aid of computational fluid dynamics and kinetic simulations. These results uncover molecular growth pathways not only in interstellar, circumstellar, and solar systems environments but also in combustion systems, which help us gain a better understanding of the hydrocarbon chemistry of our universe.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | - Valeriy N Azyazov
- Lebedev Physical Institute, Samara 443011, Russian Federation
- Samara National Research University, Samara 443086, Russian Federation
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
13
|
Morozov AN, Medvedkov IA, Azyazov VN, Mebel AM. Theoretical Study of the Phenoxy Radical Recombination with the O( 3P) Atom, Phenyl plus Molecular Oxygen Revisited. J Phys Chem A 2021; 125:3965-3977. [PMID: 33929861 DOI: 10.1021/acs.jpca.1c01545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum chemical calculations of the C6H5O2 potential energy surface (PES) were carried out to study the mechanism of the phenoxy + O(3P) and phenyl + O2 reactions. CASPT2(15e,13o)/CBS//CASSCF(15e,13o)/DZP multireference calculations were utilized to map out the minimum energy path for the entrance channels of the phenoxy + O(3P) reaction. Stationary points on the C6H5O2 PES were explored at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311++G** level for the species with a single-reference character of the wave function and at the CASPT2(15e,13o)/CBS//B3LYP/6-311++G** level of theory for the species with a multireference character of the wave function. Conventional, variational, and variable reaction coordinate transition-state theories were employed in Rice-Ramsperger-Kassel-Marcus master equation calculations to assess temperature- and pressure-dependent phenomenological rate constants and product branching ratios. The main bimolecular product channels of the phenoxy + O(3P) reaction are concluded to be para/ortho-benzoquinone + H, 2,4-cyclopentadienone + HCO and, at high temperatures, also phenyl + O2. The main bimolecular product channels of the phenyl + O2 reaction include 2,4-cyclopentadienone + HCO at lower temperatures and phenoxy + O(3P) at higher temperatures. For both the phenoxy + O(3P) and phenyl + O2 reactions, the collisional stabilization of peroxybenzene at low temperatures and high pressures competes with the bimolecular product channels.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Iakov A Medvedkov
- Samara National Research University, Samara 443086, Russian Federation.,Lebedev Physical Institute, Samara 443011, Russian Federation
| | - Valeriy N Azyazov
- Samara National Research University, Samara 443086, Russian Federation.,Lebedev Physical Institute, Samara 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
14
|
Pham TV, Tue Trang HT. Theoretical Investigation of the Mechanisms and Kinetics of the Bimolecular and Unimolecular Reactions Involving in the C 4H 6 Species. J Phys Chem A 2021; 125:585-596. [PMID: 33412848 DOI: 10.1021/acs.jpca.0c08983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A theoretical study of the mechanisms and kinetics for the C4H6 system was carried out using ab initio molecular orbital theory based on the CCSD(T)/CBS//B3LYP/6-311++G(3df,2p) method in conjunction with statistical theoretical variable reaction coordinate transition-state theory and RRKM/ME calculations. The calculated results indicate that buta-1,3-diene, but-1-yne, and C4H5 + H can be the major products of the C3 + C1 reaction, while CCH2 + C2H4 and C4H5 + H play an important role in the C2 + C2 reaction. In contrast, the C4H6 fragmentation giving rise to C3 + C1 and C4H5 + H becomes the key reaction paths under any temperature and pressure. The rate constants for the system have been calculated in the 300-2000 K temperature range at various pressures for which the C2 + C2 → C4H6 high-P limit rate constant, 10.24 × 1014T-0.51 cm3/mol/s, agrees well with the measured value of Hidaka et al., 9.64 × 1014T-0.5 cm3/mol/s. Also, the high-P limit rate constants of the channels but-2-yne → 2-C4H5 + H and C3 + C1 → C4H6, being 1.7 × 1014 exp(-351.5 kJ·mol-1/RT) s-1 and 5.07 × 1013 exp(0.694 kJ·mol-1/RT) cm3/mol/s, are in good agreement with the available literature data 5 × 1014 exp(-365.3 kJ·mol-1/RT) s-1 and 4.09 × 1013 exp(1.08 kJ·mol-1/RT) cm3/mol/s reported by Hidaka et al. and Knyazev and Slagle, respectively. Moreover, the 298 K/50 Torr branching ratios for the formation of buta-1,2-diene (0.43) and but-1-yne (0.57) as well as the total rate constant 5.18 × 1013 cm3/mol/s of the channels C3 + C1 → buta-1,2-diene and C3 + C1 → but-1-yne are in excellent accord with the laboratory values given by Fahr and Nayak, being 0.4, 0.6, and (9.03 ± 1.8) × 1013 cm3/mol/s, respectively. Last but not least, the rate constants and branching ratios for the C4H6 dissociation processes in the present study also agree closely with the theoretically and experimentally reported data.
Collapse
Affiliation(s)
- Tien V Pham
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Hoang T Tue Trang
- Department of Chemistry, Hanoi Architectural University, Hanoi, Vietnam
| |
Collapse
|
15
|
A quantum chemical study of the mechanisms and kinetics of the reaction between propargyl (C3H3) and methyl (CH3) radicals. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Doddipatla S, Galimova GR, Wei H, Thomas AM, He C, Yang Z, Morozov AN, Shingledecker CN, Mebel AM, Kaiser RI. Low-temperature gas-phase formation of indene in the interstellar medium. SCIENCE ADVANCES 2021; 7:7/1/eabd4044. [PMID: 33523847 PMCID: PMC7775774 DOI: 10.1126/sciadv.abd4044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are fundamental molecular building blocks of fullerenes and carbonaceous nanostructures in the interstellar medium and in combustion systems. However, an understanding of the formation of aromatic molecules carrying five-membered rings-the essential building block of nonplanar PAHs-is still in its infancy. Exploiting crossed molecular beam experiments augmented by electronic structure calculations and astrochemical modeling, we reveal an unusual pathway leading to the formation of indene (C9H8)-the prototype aromatic molecule with a five-membered ring-via a barrierless bimolecular reaction involving the simplest organic radical-methylidyne (CH)-and styrene (C6H5C2H3) through the hitherto elusive methylidyne addition-cyclization-aromatization (MACA) mechanism. Through extensive structural reorganization of the carbon backbone, the incorporation of a five-membered ring may eventually lead to three-dimensional PAHs such as corannulene (C20H10) along with fullerenes (C60, C70), thus offering a new concept on the low-temperature chemistry of carbon in our galaxy.
Collapse
Affiliation(s)
- Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
- Samara National Research University, Samara 443086, Russia
| | - Hongji Wei
- Department of Physics and Astronomy, Benedictine College, Atchison, KS 66002, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | | | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
17
|
Cao X, Gong C, Liu J, Ma H, Li Z, Wang J, Li X. Development of a detailed pyrolysis mechanism for C
1
–C
4
hydrocarbons under a wide range of temperature and pressure. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaomei Cao
- College of Aeronautics and Astronautics Sichuan University Chengdu China
| | | | - Jianwen Liu
- Beijing Power Machinery Institute Beijing China
| | - Huimin Ma
- Beijing Power Machinery Institute Beijing China
| | - Zerong Li
- College of Chemistry Sichuan University Chengdu China
| | - Jingbo Wang
- College of Chemical Engineering Sichuan University Chengdu China
| | - Xiangyuan Li
- College of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
18
|
Smith MC, Liu G, Buras ZJ, Chu TC, Yang J, Green WH. Direct Measurement of Radical-Catalyzed C 6H 6 Formation from Acetylene and Validation of Theoretical Rate Coefficients for C 2H 3 + C 2H 2 and C 4H 5 + C 2H 2 Reactions. J Phys Chem A 2020; 124:2871-2884. [PMID: 32164407 PMCID: PMC7309326 DOI: 10.1021/acs.jpca.0c00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The
addition of vinylic radicals to acetylene is an important step
contributing to the formation of polycyclic aromatic hydrocarbons
in combustion. The overall reaction 3C2H2 →
C6H6 could result in large benzene yields, but
without accurate rate parameters validated by experiment, the extent
of aromatic ring formation from this pathway is uncertain. The addition
of vinyl radicals to acetylene was investigated using time-resolved
photoionization time-of-flight mass spectrometry at 500 and 700 K
and 5–50 Torr. The formation of C6H6 was
observed at all conditions, attributed to sequential addition to acetylene
followed by cyclization. Vinylacetylene (C4H4) was observed with increasing yield from 500 to 700 K, attributed
to the β-scission of the thermalized 1,3-butadien-1-yl radical
and the chemically activated reaction C2H3 +
C2H2 → C4H4 + H.
The measured kinetics and product distributions are consistent with
a kinetic model constructed using pressure- and temperature-dependent
reaction rate coefficients computed from previously reported ab initio calculations. The experiments provide direct measurements
of the hypothesized C4H5 intermediates and validate
predictions of pressure-dependent addition reactions of vinylic radicals
to C2H2, which are thought to play a key role
in soot formation.
Collapse
Affiliation(s)
- Mica C Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 01239, United States
| | - Guozhu Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 01239, United States.,Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zachary J Buras
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 01239, United States
| | - Te-Chun Chu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 01239, United States
| | - Jeehyun Yang
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 01239, United States
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 01239, United States
| |
Collapse
|
19
|
He C, Thomas AM, Galimova GR, Morozov AN, Mebel AM, Kaiser RI. Gas-Phase Formation of Fulvenallene (C 7H 6) via the Jahn-Teller Distorted Tropyl (C 7H 7) Radical Intermediate under Single-Collision Conditions. J Am Chem Soc 2020; 142:3205-3213. [PMID: 31961149 DOI: 10.1021/jacs.9b13269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The fulvenallene molecule (C7H6) has been synthesized via the elementary gas-phase reaction of the methylidyne radical (CH) with the benzene molecule (C6H6) on the doublet C7H7 surface under single collision conditions. The barrier-less route to the cyclic fulvenallene molecule involves the addition of the methylidyne radical to the π-electron density of benzene leading eventually to a Jahn-Teller distorted tropyl (C7H7) radical intermediate and exotic ring opening-ring contraction sequences terminated by atomic hydrogen elimination. The methylidyne-benzene system represents a benchmark to probe the outcome of the elementary reaction of the simplest hydrocarbon radical-methylidyne-with the prototype of a closed-shell aromatic molecule-benzene-yielding nonbenzenoid fulvenallene. Combined with electronic structure and statistical calculations, this bimolecular reaction sheds light on the unusual reaction dynamics of Hückel aromatic systems and remarkable (polycyclic) reaction intermediates, which cannot be studied via classical organic, synthetic methods, thus opening up a versatile path to access this previously largely obscure class of fulvenallenes.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Aaron M Thomas
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States.,Samara National Research University , Samara 443086 , Russia
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
20
|
Morozov AN, Mebel AM. Theoretical study of the reaction mechanism and kinetics of the phenyl + propargyl association. Phys Chem Chem Phys 2020; 22:6868-6880. [PMID: 32179880 DOI: 10.1039/d0cp00306a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Potential energy surface for the phenyl + propargyl radical recombination reaction has been studied at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G** level of theory for the closed-shell singlet species and at the triplet-singlet gap CASPT2/cc-pVTZ-CCSD(T)-F12/cc-pVTZ-f12//CASSCF/cc-pVTZ level of theory for the diradical species. High-pressure limit rate constants for the barrierless channels were evaluated with variable reaction coordinate transition state theory (VRC-TST). Rice-Ramsperger-Kassel-Marcus Master Equation (RRKM-ME) calculations have been performed to assess temperature- and pressure-dependent phenomenological rate constants and product branching ratios. The entrance channels of the radical association reaction produce 3-phenyl-1-propyne and phenylallene which can further dissociate/isomerize into a variety of unimolecular and bimolecular products. Theoretical evidence is presented that, at combustion relevant conditions, the phenyl + propargyl recombination provides a feasible mechanism for the addition of a second five-member ring to the first six-member aromatic ring producing the prototype two-ring species indene and indenyl. Rate expressions for all important reaction channels in a broad range of temperatures and pressures have been generated for kinetic modeling.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA.
| |
Collapse
|
21
|
Döntgen M, Pekkanen TT, Joshi SP, Timonen RS, Eskola AJ. Oxidation Kinetics and Thermodynamics of Resonance-Stabilized Radicals: The Pent-1-en-3-yl + O 2 Reaction. J Phys Chem A 2019; 123:7897-7910. [PMID: 31446757 PMCID: PMC7076695 DOI: 10.1021/acs.jpca.9b03923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/14/2019] [Indexed: 11/29/2022]
Abstract
The kinetics and thermochemistry of the pent-1-en-3-yl radical reaction with molecular oxygen (CH2CHCHCH2CH3 + O2) has been studied by both experimental and computational methods. The bimolecular rate coefficient of the reaction was measured as a function of temperature (198-370 K) and pressure (0.2-4.5 Torr) using laser photolysis-photoionization mass-spectrometry. Quantum chemical calculations were used to explore the potential energy surface of the reaction, after which Rice-Ramsperger-Kassel-Marcus theory/master equation simulations were performed to investigate the reaction. The experimental data were used to adjust key parameters, such as well depths, in the master equation model within methodological uncertainties. The master equation simulations suggest that the formation rates of the two potential RO2 adducts are equal and that the reaction to QOOH is slower than for saturated hydrocarbons. The initial addition reaction, CH2CHCHCH2CH3 + O2, is found to be barrierless when accounting for multireference effects. This is in agreement with the current experimental data, as well as with past experimental data for the allyl + O2 reaction. Finally, we conducted numerical simulations of the pent-1-en-3-yl + O2 reaction system and observed significant amounts of penta-1,3-diene being formed under engine-relevant conditions.
Collapse
Affiliation(s)
- Malte Döntgen
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki, Finland
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Timo T. Pekkanen
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki, Finland
| | - Satya P. Joshi
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki, Finland
| | - Raimo S. Timonen
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki, Finland
| | - Arkke J. Eskola
- Department
of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki, Finland
| |
Collapse
|
22
|
Theoretical Investigation on Mechanism, Thermochemistry, and Kinetics of the Gas-phase Reaction of 2-Propargyl Radical with Formaldehyde. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9054-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhao L, Kaiser RI, Lu W, Xu B, Ahmed M, Morozov AN, Mebel AM, Howlader AH, Wnuk SF. Molecular mass growth through ring expansion in polycyclic aromatic hydrocarbons via radical-radical reactions. Nat Commun 2019; 10:3689. [PMID: 31417088 PMCID: PMC6695427 DOI: 10.1038/s41467-019-11652-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/25/2019] [Indexed: 11/09/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent key molecular building blocks leading to carbonaceous nanoparticles identified in combustion systems and extraterrestrial environments. However, the understanding of their formation and growth in these high temperature environments has remained elusive. We present a mechanism through laboratory experiments and computations revealing how the prototype PAH—naphthalene—can be efficiently formed via a rapid 1-indenyl radical—methyl radical reaction. This versatile route converts five- to six-membered rings and provides a detailed view of high temperature mass growth processes that can eventually lead to graphene-type PAHs and two-dimensional nanostructures providing a radical new view about the transformations of carbon in our universe. Polycyclic aromatic hydrocarbons (PAHs) represent key molecular building blocks in extraterrestrial environments but the understanding of their formation and growth in this environment has remained elusive. Here the authors reveal how naphthalene can be efficiently formed via rapid radical–radical reactions.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
| | - A Hasan Howlader
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
24
|
Morozov AN, Mebel AM. Theoretical Study of the Reaction Mechanism and Kinetics of the Phenyl + Allyl and Related Benzyl + Vinyl Associations. J Phys Chem A 2019; 123:1720-1729. [PMID: 30758204 DOI: 10.1021/acs.jpca.9b00345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potential energy surfaces for the allyl + phenyl and benzyl + vinyl barrierless radical association reactions have been studied at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G** level of theory. Variable reaction coordinate transition state theory (VRC-TST) has been employed to evaluate high-pressure limit rate constants for the barrierless channels. Then, Rice-Ramsperger-Kassel-Marcus master equation (RRKM-ME) calculations have been performed to assess phenomenological rate constants and product branching ratios of various reaction channels at different temperatures and pressures. The initial step of both radical association reactions produces 3-phenylpropene which can further dissociate into a variety of bimolecular products including the indene precursor 1-phenylallyl + H. The results showed that at typical combustion conditions the collisional stabilization of 3-phenylpropene dominates both the phenyl + allyl and benzyl + vinyl reactions at temperatures below 1000 K and remains important at high pressures up to 2500 K. The main bimolecular products of the two reactions at high temperatures are predicted to be benzyl + vinyl and phenyl + allyl, respectively. The well-skipping mechanism to form 1-phenylallyl directly in the allyl + phenyl and benzyl + vinyl reactions appeared to be not significant, however, the reactions can provide some contributions into the formation of the indene precursor via the 3-phenylpropene stabilization/dissociation sequence and most of all, via the formation of 3-phenylpropene itself, which then can undergo H-abstraction by available radicals to produce 1-phenylallyl. The allyl + phenyl reaction can also contribute to the formation of two-ring PAH by producing benzyl radical at high temperatures, either by the well-skipping or stabilization/dissociation mechanisms; in turn, benzyl can readily react with acetylene or propargyl radical to form indene or naphthalene precursors, respectively. Rate expressions for all important reaction channels in a broad range of temperatures and pressures have been generated for kinetic modeling.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
25
|
Dubnikova F, Tamburu C, Lifshitz A. Production of Aliphatic and Aromatic Compounds in the High Temperature Decomposition of Propargyl Chloride. Single Pulse Shock Tube Experiments, Quantum Chemical Calculations, and Computer Modeling. J Phys Chem A 2019; 123:811-822. [DOI: 10.1021/acs.jpca.8b10515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Faina Dubnikova
- The Institute of Chemistry, Edmund J. Safra Campus, Giv’at Ram, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Carmen Tamburu
- The Institute of Chemistry, Edmund J. Safra Campus, Giv’at Ram, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Assa Lifshitz
- The Institute of Chemistry, Edmund J. Safra Campus, Giv’at Ram, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
26
|
Chu TC, Buras ZJ, Oßwald P, Liu M, Goldman MJ, Green WH. Modeling of aromatics formation in fuel-rich methane oxy-combustion with an automatically generated pressure-dependent mechanism. Phys Chem Chem Phys 2019; 21:813-832. [DOI: 10.1039/c8cp06097e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An automatic generated mechanism for methane-rich combustion captures the chemistry from small molecules to three-ring aromatic species.
Collapse
Affiliation(s)
- Te-Chun Chu
- Massachusetts Institute of Technology
- Cambridge
- USA
| | | | - Patrick Oßwald
- Institute of Combustion Technology
- German Aerospace Center (DLR)
- D-70569 Stuttgart
- Germany
| | - Mengjie Liu
- Massachusetts Institute of Technology
- Cambridge
- USA
| | | | | |
Collapse
|
27
|
Morozov AN, Mebel AM, Kaiser RI. A Theoretical Study of Pyrolysis of exo-Tetrahydrodicyclopentadiene and Its Primary and Secondary Unimolecular Decomposition Products. J Phys Chem A 2018; 122:4920-4934. [DOI: 10.1021/acs.jpca.8b02934] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander N. Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
28
|
McGuire BA, Burkhardt AM, Kalenskii S, Shingledecker CN, Remijan AJ, Herbst E, McCarthy MC. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 2018; 359:202-205. [DOI: 10.1126/science.aao4890] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/15/2017] [Indexed: 11/02/2022]
Abstract
Polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocycles are thought to be widespread throughout the universe, because these classes of molecules are probably responsible for the unidentified infrared bands, a set of emission features seen in numerous Galactic and extragalactic sources. Despite their expected ubiquity, astronomical identification of specific aromatic molecules has proven elusive. We present the discovery of benzonitrile (c-C6H5CN), one of the simplest nitrogen-bearing aromatic molecules, in the interstellar medium. We observed hyperfine-resolved transitions of benzonitrile in emission from the molecular cloud TMC-1. Simple aromatic molecules such as benzonitrile may be precursors for polycyclic aromatic hydrocarbon formation, providing a chemical link to the carriers of the unidentified infrared bands.
Collapse
|
29
|
Lockhart JPA, Goldsmith CF, Randazzo JB, Ruscic B, Tranter RS. An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers. J Phys Chem A 2017; 121:3827-3850. [PMID: 28440652 DOI: 10.1021/acs.jpca.7b01186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James P. A. Lockhart
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois, United States
| | | | - John B. Randazzo
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois, United States
| | - Branko Ruscic
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois, United States
- Computation
Institute, The University of Chicago, Chicago, Illinois, United States
| | - Robert S. Tranter
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois, United States
| |
Collapse
|
30
|
da Silva G. Mystery of 1-Vinylpropargyl Formation from Acetylene Addition to the Propargyl Radical: An Open-and-Shut Case. J Phys Chem A 2017; 121:2086-2095. [DOI: 10.1021/acs.jpca.6b12996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and
Biomolecular Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
Choe JC, Kim GS. An ab initioStudy of Excited States of C 4H 3Radical. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joong Chul Choe
- Department of Chemistry; Dongguk University; Seoul 04620 Korea
| | - Gap-Sue Kim
- Dharma College; Dongguk University; Seoul 04620 Korea
| |
Collapse
|
32
|
Sinha S, Raj A. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study. Phys Chem Chem Phys 2016; 18:8120-31. [DOI: 10.1039/c5cp06465a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of resonantly stabilized benzyl radicals in the formation of polycyclic aromatic hydrocarbons (phenanthrene and anthracene) in high-temperature flame environments has been explored.
Collapse
Affiliation(s)
- Sourab Sinha
- Department of Chemical Engineering
- The Petroleum Institute
- Abu Dhabi
- United Arab Emirates
- Department of Chemistry
| | - Abhijeet Raj
- Department of Chemical Engineering
- The Petroleum Institute
- Abu Dhabi
- United Arab Emirates
| |
Collapse
|
33
|
Chang CH, Nesbitt DJ. Sub-Doppler infrared spectroscopy of propargyl radical (H2CCCH) in a slit supersonic expansion. J Chem Phys 2015; 142:244313. [DOI: 10.1063/1.4922931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chih-Hsuan Chang
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA and Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - David J. Nesbitt
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA and Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
34
|
Buras ZJ, Dames EE, Merchant SS, Liu G, Elsamra RMI, Green WH. Kinetics and Products of Vinyl + 1,3-Butadiene, a Potential Route to Benzene. J Phys Chem A 2015; 119:7325-38. [DOI: 10.1021/jp512705r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zachary J. Buras
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Enoch E. Dames
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Shamel S. Merchant
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Guozhu Liu
- Key Laboratory of Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Rehab M. I. Elsamra
- Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia 21321, Alexandria, Egypt
| | - William H. Green
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Knyazev VD, Popov KV. Kinetics of the Self Reaction of Cyclopentadienyl Radicals. J Phys Chem A 2015; 119:7418-29. [DOI: 10.1021/acs.jpca.5b00644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vadim D. Knyazev
- Research Center for Chemical
Kinetics, Department of Chemistry, The Catholic University of America, Washington, District of Columbia 20064, United States
| | - Konstantin V. Popov
- Research Center for Chemical
Kinetics, Department of Chemistry, The Catholic University of America, Washington, District of Columbia 20064, United States
| |
Collapse
|
36
|
Wang K, Villano SM, Dean AM. Reactions of allylic radicals that impact molecular weight growth kinetics. Phys Chem Chem Phys 2015; 17:6255-73. [DOI: 10.1039/c4cp05308g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis.
Collapse
Affiliation(s)
- Kun Wang
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | | | - Anthony M. Dean
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
37
|
Abhinavam Kailasanathan RK, Thapa J, Goulay F. Kinetic study of the OH radical reaction with phenylacetylene. J Phys Chem A 2014; 118:7732-41. [PMID: 25111848 DOI: 10.1021/jp506160p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of the OH radical with phenylacetylene is studied over the 298-423 K temperature range and 1-7.5 Torr pressure range in a quasi-static reaction cell. The OH radical is generated by 266 nm photolysis of hydrogen peroxide (H2O2) or 355 nm photolysis of nitrous acid (HONO), and its concentration monitored using laser-induced fluorescence. The measured reaction rates are found to strongly depend on laser fluence at 266 nm. The 266 nm absorption cross-section of phenylacetylene is measured to be 1.29 (±0.71) × 10(-17) cm(2), prohibiting any accurate kinetic measurements at this wavelength. The rates are independent of laser fluence at 355 nm with an average value of 8.75 (±0.73) × 10(-11) cm(3) s(-1). The reaction exhibits no pressure or temperature dependence over the studied experimental conditions and is much faster than the estimated values presently used in combustion models. These results are consistent with the formation of a short lifetime intermediate that stabilizes by collisional quenching with the buffer gas. The structures of the most likely formed products are discussed based on both the computed energies for the OH-addition intermediates and previous theoretical investigations on similar chemical systems.
Collapse
|
38
|
Kidwell NM, Mehta-Hurt DN, Korn JA, Sibert EL, Zwier TS. Ground and excited state infrared spectroscopy of jet-cooled radicals: Exploring the photophysics of trihydronaphthyl and inden-2-ylmethyl. J Chem Phys 2014; 140:214302. [DOI: 10.1063/1.4879550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Raj A, Al Rashidi MJ, Chung SH, Sarathy SM. PAH Growth Initiated by Propargyl Addition: Mechanism Development and Computational Kinetics. J Phys Chem A 2014; 118:2865-85. [PMID: 24650362 DOI: 10.1021/jp410704b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abhijeet Raj
- Department
of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Mariam J. Al Rashidi
- Clean
Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Suk Ho Chung
- Clean
Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - S. Mani Sarathy
- Clean
Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
40
|
Leavitt CM, Moradi CP, Acrey BW, Douberly GE. Infrared laser spectroscopy of the helium-solvated allyl and allyl peroxy radicals. J Chem Phys 2013; 139:234301. [DOI: 10.1063/1.4844175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Xu HC, Campbell JM, Moeller KD. Cyclization Reactions of Anode-Generated Amidyl Radicals. J Org Chem 2013; 79:379-91. [DOI: 10.1021/jo402623r] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hai-Chao Xu
- Department
of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - John M. Campbell
- Department
of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kevin D. Moeller
- Department
of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
42
|
Jasper AW, Miller JA, Klippenstein SJ. Collision Efficiency of Water in the Unimolecular Reaction CH4 (+H2O) ⇆ CH3 + H (+H2O): One-Dimensional and Two-Dimensional Solutions of the Low-Pressure-Limit Master Equation. J Phys Chem A 2013; 117:12243-55. [DOI: 10.1021/jp409086w] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahren W. Jasper
- Combustion
Research Facility, Sandia National Laboratories, P.O. Box 969, Livermore, California 94551-0969, United States
| | - James A. Miller
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
43
|
Seidel L, Hoyermann K, Mauß F, Nothdurft J, Zeuch T. Pressure dependent product formation in the photochemically initiated allyl + allyl reaction. Molecules 2013; 18:13608-22. [PMID: 24192913 PMCID: PMC6270213 DOI: 10.3390/molecules181113608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 11/16/2022] Open
Abstract
Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn's largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br), allyl chloride (C3H5Cl), and 1,5-hexadiene (CH2CH(CH2)2CHCH2) at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re-) combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re-) combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.
Collapse
Affiliation(s)
- Lars Seidel
- Lehrstuhl Thermodynamik/Thermische Verfahrenstechnik, BrandenburgischeTechnische-Universität, Siemens-Halske-Ring 8, Cottbus D-03046, Germany; E-Mails: (L.S.); (F.M.)
| | - Karlheinz Hoyermann
- Institut für Physikalische Chemie, Georg-August-Universität, Tammannstr. 6, Göttingen D-37077, Germany; E-Mails: (K.H.); (J.N.)
| | - Fabian Mauß
- Lehrstuhl Thermodynamik/Thermische Verfahrenstechnik, BrandenburgischeTechnische-Universität, Siemens-Halske-Ring 8, Cottbus D-03046, Germany; E-Mails: (L.S.); (F.M.)
| | - Jörg Nothdurft
- Institut für Physikalische Chemie, Georg-August-Universität, Tammannstr. 6, Göttingen D-37077, Germany; E-Mails: (K.H.); (J.N.)
| | - Thomas Zeuch
- Institut für Physikalische Chemie, Georg-August-Universität, Tammannstr. 6, Göttingen D-37077, Germany; E-Mails: (K.H.); (J.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-551-39-33126; Fax: +49-551-39-33117
| |
Collapse
|
44
|
Polino D, Klippenstein SJ, Harding LB, Georgievskii Y. Predictive Theory for the Addition and Insertion Kinetics of 1CH2 Reacting with Unsaturated Hydrocarbons. J Phys Chem A 2013; 117:12677-92. [DOI: 10.1021/jp406246y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniela Polino
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Dipartimento
di Chimica, Materiali e Ingegneria chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Lawrence B. Harding
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yuri Georgievskii
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
45
|
Moradi CP, Morrison AM, Klippenstein SJ, Goldsmith CF, Douberly GE. Propargyl + O2 Reaction in Helium Droplets: Entrance Channel Barrier or Not? J Phys Chem A 2013; 117:13626-35. [DOI: 10.1021/jp407652f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher P. Moradi
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Alexander M. Morrison
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - C. Franklin Goldsmith
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Gary E. Douberly
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
46
|
Lynch PT, Annesley CJ, Aul CJ, Yang X, Tranter RS. Recombination of Allyl Radicals in the High Temperature Fall-Off Regime. J Phys Chem A 2013; 117:4750-61. [DOI: 10.1021/jp402484v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick T. Lynch
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439, United States
| | - Christopher J. Annesley
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439, United States
| | - Christopher J. Aul
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Xueliang Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439, United States
| | - Robert S. Tranter
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439, United States
| |
Collapse
|
47
|
Dangi BB, Maity S, Kaiser RI, Mebel AM. A Combined Crossed Beam and Ab Initio Investigation of the Gas Phase Reaction of Dicarbon Molecules (C2; X1Σg+/a3Πu) with Propene (C3H6; X1A′): Identification of the Resonantly Stabilized Free Radicals 1- and 3-Vinylpropargyl. J Phys Chem A 2013; 117:11783-93. [DOI: 10.1021/jp402700j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beni B. Dangi
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United
States
| | - Surajit Maity
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United
States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United
States
| | - Alexander M. Mebel
- Department of Chemistry
and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
48
|
Tabor DP, Harding ME, Ichino T, Stanton JF. High-Accuracy Extrapolated Ab Initio Thermochemistry of the Vinyl, Allyl, and Vinoxy Radicals. J Phys Chem A 2012; 116:7668-76. [DOI: 10.1021/jp302527n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel P. Tabor
- Institute for Theoretical Chemistry, Department of
Chemistry and Biochemistry, The University of Texas at Austin, 105 E. 24th St., A5300, Austin, Texas 78712-0165,
United States
| | - Michael E. Harding
- Institute for Theoretical Chemistry, Department of
Chemistry and Biochemistry, The University of Texas at Austin, 105 E. 24th St., A5300, Austin, Texas 78712-0165,
United States
| | - Takatoshi Ichino
- Institute for Theoretical Chemistry, Department of
Chemistry and Biochemistry, The University of Texas at Austin, 105 E. 24th St., A5300, Austin, Texas 78712-0165,
United States
| | - John F. Stanton
- Institute for Theoretical Chemistry, Department of
Chemistry and Biochemistry, The University of Texas at Austin, 105 E. 24th St., A5300, Austin, Texas 78712-0165,
United States
| |
Collapse
|
49
|
Matsugi A, Miyoshi A. Reactions of o-benzyne with propargyl and benzyl radicals: potential sources of polycyclic aromatic hydrocarbons in combustion. Phys Chem Chem Phys 2012; 14:9722-8. [PMID: 22678346 DOI: 10.1039/c2cp41002h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanisms of the reactions of o-benzyne with propargyl and benzyl radicals have been investigated computationally. The possible reaction pathways have been explored by quantum chemical calculations at the M06-2X/6-311+G(3df,2p)//B3LYP/6-311G(d,p) level and the mechanisms have been investigated by the Rice-Ramsperger-Kassel-Marcus theory/master-equation calculations. It was found that the o-benzyne associates with the propargyl and benzyl radicals without pronounced barriers and the activated adducts easily isomerize to five-membered ring species. Indenyl radical and fluorene + H were predicted to be dominantly produced by the reactions of o-benzyne with propargyl and benzyl radicals, respectively, with the rate constants close to the high-pressure limits at temperatures below 2000 K. The related reactions on the two potential energy surfaces, namely, the reaction between fulvenallenyl radical and acetylene and the decomposition reactions of indenyl and α-phenylbenzyl radicals were also investigated. The high reactivity of o-benzyne toward the resonance stabilized radicals suggested a potential role of o-benzyne as a precursor of polycyclic aromatic hydrocarbons in combustion.
Collapse
Affiliation(s)
- Akira Matsugi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
50
|
Matsugi A, Miyoshi A. Computational study on the recombination reaction between benzyl and propargyl radicals. INT J CHEM KINET 2012. [DOI: 10.1002/kin.20625] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|