1
|
Bauland J, Andrieux V, Pignon F, Frath D, Bucher C, Gibaud T. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature. SOFT MATTER 2024; 20:8278-8290. [PMID: 39387141 DOI: 10.1039/d4sm00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Supramolecular crystal gels, a subset of molecular gels, are formed through the self-assembly of low molecular weight gelators into interconnecting crystalline fibers, creating a three-dimensional soft solid network. This study focuses on the formation and properties of viologen-based supramolecular crystalline gels. It aims to answer key questions about the tunability of network properties and the origin of these properties through in-depth analyses of the gelation kinetics triggered by thermal quenching. Experimental investigations, including UV-Vis absorption spectroscopy, rheology, microscopy and scattering measurements, contribute to a comprehensive and self-consistent understanding of the system kinetics. We confirm that viologen-based gelators crystallize by forming nanometer radius hollow tubes that assemble into micro to millimetric spherulites. We then show that crystallization follows the Avrami theory and is based on pre-existing nuclei. We also establish that the growth is interface-controlled, leading the hollow tubes to branch into spherulites with fractal structures. Finally, we demonstrate that the gel properties can be tuned depending on the quenching temperature. Lowering the temperature results in the formation of denser and smaller spherulites. In contrast, the gel's elasticity is not significantly affected by the quench temperature, leading us to hypothesize that the densification of spherulites occurs at the expense of connectivity between spherulites.
Collapse
Affiliation(s)
- Julien Bauland
- ENS de Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France.
| | - Vivien Andrieux
- ENS de Lyon, CNRS, LCH, UMR 5182, 69342, Lyon cedex 07, France.
| | - Frédéric Pignon
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, F-38000 Grenoble, France
| | - Denis Frath
- ENS de Lyon, CNRS, LCH, UMR 5182, 69342, Lyon cedex 07, France.
| | | | - Thomas Gibaud
- ENS de Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France.
| |
Collapse
|
2
|
Hu Z, Tang W, Ji X. Application of Organic Gel on Skin Realized by Hydrogel/Organic Gel Adhesion. Macromol Rapid Commun 2024; 45:e2400371. [PMID: 38879779 DOI: 10.1002/marc.202400371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Diversity in solvent selection bestows the organic gel with appealing characteristics embracing antidrying, anti-icing, and antifouling abilities. However, organic gel, subjected to the "toxic" inherent property of solvent, is not able to be manipulated on skin. Herein, introducing the hydrogel layer amid organic gel and skin is envisaged to realize application of organic gel on skin. Hydrogel, inserted as the medium layer, works for the coupling role between skin and organic gel, also avoids the direct contact of organic gel toward skin. First, hydrogel system composed of acrylic acid is fabricated, meanwhile organic gel is prepared employing 2-hydroxyethyl methacrylate, ethylene glycol (EG) as solvent. Organic gel is able to adhere to hydrogel by hydrogen bonding resulting from carboxyl groups of polyacrylic acid chains and hydroxyl groups occurring on 2-hydroxyethyl methacrylate or EG. Additionally, hydrogen bonding enables the hydrogel to be firmly attached to skin, thus organic gel/hydrogel/skin assembly is produced. The further application of organic gel is exploited by incorporating stimuli-responsive dyes including spiropyran and rhodamine derivative.
Collapse
Affiliation(s)
- Ziqing Hu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Tang
- Key Laboratory of Human-Machine-Intelligence Synergic System, Research Center for Neural Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xiaofan Ji
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Zhou X, Bai X, Shang F, Zhang HY, Wang LH, Xu X, Liu Y. Supramolecular assembly activated single-molecule phosphorescence resonance energy transfer for near-infrared targeted cell imaging. Nat Commun 2024; 15:4787. [PMID: 38839843 PMCID: PMC11153566 DOI: 10.1038/s41467-024-49238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Pure organic phosphorescence resonance energy transfer is a research hotspot. Herein, a single-molecule phosphorescence resonance energy transfer system with a large Stokes shift of 367 nm and near-infrared emission is constructed by guest molecule alkyl-bridged methoxy-tetraphenylethylene-phenylpyridines derivative, cucurbit[n]uril (n = 7, 8) and β-cyclodextrin modified hyaluronic acid. The high binding affinity of cucurbituril to guest molecules in various stoichiometric ratios not only regulates the topological morphology of supramolecular assembly but also induces different phosphorescence emissions. Varying from the spherical nanoparticles and nanorods for binary assemblies, three-dimensional nanoplate is obtained by the ternary co-assembly of guest with cucurbit[7]uril/cucurbit[8]uril, accompanying enhanced phosphorescence at 540 nm. Uncommonly, the secondary assembly of β-cyclodextrin modified hyaluronic acid and ternary assembly activates a single intramolecular phosphorescence resonance energy transfer process derived from phenyl pyridines unit to methoxy-tetraphenylethylene function group, enabling a near-infrared delayed fluorescence at 700 nm, which ultimately applied to mitochondrial targeted imaging for cancer cells.
Collapse
Affiliation(s)
- Xiaolu Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Xue Bai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Fangjian Shang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Heng-Yi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Li-Hua Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, P. R. China.
| |
Collapse
|
4
|
Takahashi S, Matsumoto T, Hollamby MJ, Miyasaka H, Vacha M, Sotome H, Yagai S. Impact of Ring-Closing on the Photophysical Properties of One-Dimensional π-Conjugated Molecular Aggregate. J Am Chem Soc 2024; 146:2089-2101. [PMID: 38163763 DOI: 10.1021/jacs.3c11407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The self-assembled state of molecules plays a pivotal role in determining how inherent molecular properties transform and give rise to supramolecular functionalities and has long attracted attention. However, understanding the influence of morphologies spanning the nano- to mesoscopic scales of supramolecular assemblies derived from identical intermolecular interactions has been notoriously challenging due to dynamic structural change and monomer exchange of assemblies in solution. In this study, we demonstrate that curved one-dimensional molecular assemblies (supramolecular polymers) of lengths of around 70-200 nm, originating from the same luminescent molecule, exhibit distinct photoluminescent properties when they form closed circular structures (toroids) versus when they possess chain termini in solution (random coils). By exploiting the difference in kinetic stability between the toroids and random coils, we developed a dialysis protocol to selectively purify the former. It was revealed that these terminus-free closed structures manifest higher energy and more efficient luminescence compared with their mixed state with random coils. Time-resolved fluorescence measurements unveiled that random coils, due to their dynamic structural fluctuation in solution, generate local defects throughout the main chain, leading to luminescence from lower energy levels. In mixtures of the two assemblies, luminescence was exclusively observed from such a lower energy level of random coils, a result attributed to energy transfer between the assemblies. This work emphasizes that for identical supramolecular assemblies, only averaged properties have traditionally been considered, but their structures at the nano- to mesoscopic scale are important especially if they have a certain degree of shape persistency even in solution.
Collapse
Affiliation(s)
- Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takuma Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12 Meguro-ku, Tokyo 152-8552, Japan
| | - Martin J Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST55BG, U.K
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12 Meguro-ku, Tokyo 152-8552, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
5
|
Zhang F, Li Z, Wang X. Mechanically tunable organogels from highly charged polyoxometalate clusters loaded with fluorescent dyes. Nat Commun 2023; 14:8327. [PMID: 38097637 PMCID: PMC10721816 DOI: 10.1038/s41467-023-43989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Inorganic nanowires-based organogel, a class of emerging organogel with convenient preparation, recyclability, and excellent mechanical properties, is in its infancy. Solidifying and functionalizing nanowires-based organogels by designing the gelator structure remains challenging. Here, we fabricate Ca2-P2W16 and Ca2-P2W15M nanowires utilizing highly charged [Ca2P2W16O60]10- and [Ca2P2W15MO60]14-/13- cluster units, respectively, which are then employed for preparing organogels. The mechanical performance and stability of prepared organogels are improved due to the enhanced interactions between nanowires and locked organic molecules. Compressive stress and tensile stress of Ca2-P2W16 nanowires-based organogel reach 34.5 and 29.0 kPa, respectively. The critical gel concentration of Ca2-P2W16 nanowires is as low as 0.28%. Single-molecule force spectroscopy confirms that the connections between cluster units and linkers can regulate the flexibility of nanowires. Furthermore, the incorporation of fluorophores into the organogels adds fluorescence properties. This work reveals the relationships between the microstructures of inorganic gelators and the properties of organogels, guiding the synthesis of high-performance and functional organogels.
Collapse
Affiliation(s)
- Fenghua Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhong Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Rajak A, Das A. Cascade Energy Transfer and White-Light Emission in Chirality-Controlled Crystallization-Driven Two-Dimensional Co-assemblies from Donor and Acceptor Dye-Conjugated Polylactides. Angew Chem Int Ed Engl 2023; 62:e202314290. [PMID: 37842911 DOI: 10.1002/anie.202314290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
Achieving predictable and programmable two-dimensional (2D) structures with specific functions from exclusively organic soft materials remains a scientific challenge. This article unravels stereocomplex crystallization-driven self-assembly as a facile method for producing thermally robust discrete 2D-platelets of diamond shape from biodegradable semicrystalline polylactide (PLA) scaffolds. The method involves co-assembling two PLA stereoisomers, namely, PY-PDLA and NMI-PLLA, which form stereocomplex (SC)-crystals in isopropanol. By conjugating a well-known Förster resonance energy transfer (FRET) donor and acceptor dye, namely, pyrene (PY) and naphthalene monoimide (NMI), respectively, to the chain termini of these two interacting stereoisomers, a thermally robust FRET process can be stimulated from the 2D array of the co-assembled dyes on the thermally resilient SC-PLA crystal surfaces. Uniquely, by decorating the surface of the SC-PLA crystals with an externally immobilized guest dye, Rhodamine-B, similar diamond-shaped structures could be produced that exhibit pure white-light emission through a surface-induced two-step cascade energy transfer process. The FRET response in these systems displays remarkable dependence on the intrinsic crystalline packing, which could be modulated by the chirality of the co-assembling PLA chains. This is supported by comparing the properties of similar 2D platelets generated from two homochiral PLLAs (PY-PLLA and NMI-PLLA) labeled with the same FRET pair.
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
7
|
Liu Q, Zuo M, Wang K, Hu XY. A cavitand-based supramolecular artificial light-harvesting system with sequential energy transfer for photocatalysis. Chem Commun (Camb) 2023; 59:13707-13710. [PMID: 37905993 DOI: 10.1039/d3cc04040b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A novel artificial light-harvesting system, featuring sequential energy transfer processes, has been successfully constructed, which demonstrated white light emission through a precise adjustment of the donor-acceptor ratio. To better mimic natural photosynthesis, the system is employed as a nanoreactor for the photocatalysis of a cross-dehydrogenative coupling (CDC) reaction in aqueous solution.
Collapse
Affiliation(s)
- Qian Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| |
Collapse
|
8
|
Chen TR, Chang KC, Chen CY, Wu TW, Lee LW, Shen LC, Chen HN, Chung WS. Calix[4]arene-based Supramolecular Gels for Mercury Ion Removal in Water. Chem Asian J 2023; 18:e202300739. [PMID: 37800724 DOI: 10.1002/asia.202300739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
A calix[4]arene-based gelator 1, with lower-rim mono triazolylpyridine group, capable of spontaneous self-assembly into microspheres in different ethanol/H2 O mixtures, is synthesized. The concentration-dependent 1 H NMR spectra and X-ray single-crystal structure of 1 provided evidence for self-assembly of gelator 1 via cooperative interactions of intermolecular noncovalent forces. Furthermore, metallogels by self-assembly of 1 was found to exhibit remarkable selectivity toward Hg2+ ions. 1 H NMR spectra support that Hg2+ ion was bound to the nitrogen atoms of two coordination sites of 1, which composed of triazole and pyridine. Moreover, the results of field emission scanning electron microscopy and rheology experiments indicated that Hg2+ ions not only enhanced the gelling ability of gelator 1 in ethanol but also led to morphological change of its self-assembly through metal-ligand interactions. Finally, the in situ gelation, triggered by mixing a gelator solution of 1 in ethanol with water samples such as deionized (DI), tap, and lake water, leads to the effective removal of Hg(II) from a water sample which reduced from 400 to 1.6 ppm.
Collapse
Grants
- MOST-112-2113-M-019-002-MY2 Ministry of Science and Technology, Taiwan, ROC
- MOST-110-2113-M-A49-009 Ministry of Science and Technology, Taiwan, ROC
- MOST-110-2113-M-019-003-MY2 Ministry of Science and Technology, Taiwan, ROC
- MOST-109-2113-M-009-016 Ministry of Science and Technology, Taiwan, ROC
- MOST-108-2113-M-009-006 Ministry of Science and Technology, Taiwan, ROC
Collapse
Affiliation(s)
- Tyng-Rong Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Ting-Wen Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Li-Wei Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Li-Ching Shen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hsin-Ni Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wen-Sheng Chung
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
9
|
Saha E, Jungi H, Dabas S, Mathew A, Kuniyil R, Subramanian S, Mitra J. Amine-rich Nickel(II)-Xerogel as a Highly Active Bifunctional Metallo-organo Catalyst for Aqueous Knoevenagel Condensation and Solvent-free CO 2 Cycloaddition. Inorg Chem 2023; 62:14959-14970. [PMID: 37672483 DOI: 10.1021/acs.inorgchem.3c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Metallogels formed from supramolecular interactions of low-molecular-weight gelators (LMWGs) combine the qualities of heterogeneous catalysts and offer the advantages of multifunctionality owing to the facile installation of desired task-specific moieties on the surface and along the channels of the gels. We discuss the applications of a triazole-based Ni(II) gel-derived xerogel (NiXero) having a high density of Ni(II)-nodes and appended primary amines as a recyclable heterogeneous catalyst for Knoevenagel condensation of aldehyde and malononitrile in water and the solvent-free cycloaddition of CO2 to form a series of cyclic carbonates with near-quantitative conversion of the respective epoxides, with low catalyst loading (0.59 mol %), high catalyst stability, and recyclability. The structural advantages of NiXero, due to the concurrent presence of bifunctional Lewis acid-base sites on the channels, open Ni(II) nodes, Ntriazole, pendant -NH2 and its chemical stability, are conducive to the cooperative heterogeneous catalytic activity under mild conditions. This work emphasizes the effective amalgamation of metals with purpose-built ligand systems for the construction of metallogels and their utility as heterogeneous catalysts for desired organic transformations.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Hiren Jungi
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Shilpa Dabas
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Abra Mathew
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Palakkad 678623, Kerala, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Palakkad 678623, Kerala, India
| | - Saravanan Subramanian
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| |
Collapse
|
10
|
Aryal P, Morris J, Adhikari SB, Bietsch J, Wang G. Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators. Molecules 2023; 28:6228. [PMID: 37687056 PMCID: PMC10488493 DOI: 10.3390/molecules28176228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Carbohydrate-based low-molecular-weight gelators are interesting new materials with many potential applications. These compounds can be designed to include multiple stimuli-responsive functional groups. In this study, we designed and synthesized several chemically responsive bola-glycolipids and dimeric carbohydrate- and diarylethene-based photoswitchable derivatives. The dimeric glycolipids formed stable gels in a variety of solvent systems. The best performing gelators in this series contained decanedioic and dithienylethene (DTE) spacers, which formed gels in eight and nine of the tested solvents, respectively. The two new DTE-containing esters possessed interesting photoswitching properties and DTE derivative 7 was found to have versatile gelation properties in many solvents, including DMSO solutions at low concentrations. The gels formed by these compounds were stable under acidic conditions and tended to hydrolyze under basic conditions. Several gels were used to absorb rhodamine B and Toluidine blue from aqueous solutions. In this study, we demonstrated the rational design of molecular gelators which incorporated photoresponsive and pH responsive functions, leading to the discovery of multiple effective stimuli-responsive gelators.
Collapse
Affiliation(s)
| | | | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Avenue, Norfolk, VA 23529-0126, USA; (P.A.); (J.M.); (S.B.A.); (J.B.)
| |
Collapse
|
11
|
Ding J, Kumar CV. Non-Covalent Assembly of Multiple Fluorophores in Edible Protein/Lipid Hydrogels for Applications in Multi-Step Light Harvesting and White-Light Emission. Molecules 2023; 28:6028. [PMID: 37630280 PMCID: PMC10458872 DOI: 10.3390/molecules28166028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The design and production of biodegradable and sustainable non-toxic materials for solar-energy harvesting and conversion is a significant challenge. Here, our goal was to report the preparation of novel protein/lipid hydrogels and demonstrate their utility in two orthogonal fundamental studies-light harvesting and white-light emission. Our hydrogels contained up to 90% water, while also being self-standing and injectable with a syringe. In one application, we loaded these hydrogels with suitable organic donor-acceptor dyes and demonstrated the energy-transfer cascade among four different dyes, with the most red-emitting dye as the energy destination. We hypothesized that the dyes were embedded in the protein/lipid phase away from the water pools as monomeric entities and that the excitation of any of the four dyes resulted in intense emission from the lowest-energy acceptor. In contrast to the energy-transfer cascade, we demonstrate the use of these gels to form a white-light-emitting hydrogel dye assembly, in which excitation migration is severely constrained. By restricting the dye-to-dye energy transfer, the blue, green, and red dyes emit at their respective wavelengths, thereby producing the composite white-light emission. The CIE color coordinates of the emission were 0.336 and 0.339-nearly pure white-light emission. Thus, two related studies with opposite requirements could be accommodated in the same hydrogel, which was made from edible ingredients by a simple method. These gels are biodegradable when released into the environment, sustainable, and may be of interest for energy applications.
Collapse
Affiliation(s)
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
12
|
Du J, You Y, Reis RL, Kundu SC, Li J. Manipulating supramolecular gels with surfactants: Interfacial and non-interfacial mechanisms. Adv Colloid Interface Sci 2023; 318:102950. [PMID: 37352741 DOI: 10.1016/j.cis.2023.102950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Gel is a class of self-supporting soft materials with applications in many fields. Fast, controllable gelation, micro/nano structure and suitable rheological properties are essential considerations for the design of gels for specific applications. Many methods can be used to control these parameters, among which the additive approach is convenient as it is a simple physical mixing process with significant advantages, such as avoidance of pH change and external energy fields (ultrasound, UV light and others). Although surfactants are widely used to control the formation of many materials, particularly nanomaterials, their effects on gelation are less known. This review summarizes the studies that utilized different surfactants to control the formation, structure, and properties of molecular and silk fibroin gels. The mechanisms of surfactants, which are interfacial and non-interfacial effects, are classified and discussed. Knowledge and technical gaps are identified, and perspectives for further research are outlined. This review is expected to inspire increasing research interest in using surfactants for designing/fabricating gels with desirable formation kinetics, structure, properties and functionalities.
Collapse
Affiliation(s)
- Juan Du
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Yue You
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia.
| |
Collapse
|
13
|
Lian Z, He J, Liu L, Fan Y, Chen X, Jiang H. [2,2] Paracyclophanes-based double helicates for constructing artificial light-harvesting systems and white LED device. Nat Commun 2023; 14:2752. [PMID: 37173318 PMCID: PMC10182020 DOI: 10.1038/s41467-023-38405-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
The construction of efficient artificial light-harvesting systems (ALHSs) is of vital importance in utilizing solar energy. Herein, we report the non-covalent syntheses of double helicates PCP-TPy1/2 and Rp,Rp-PCP-TPy1/2 by metal-coordination interaction and their applications in ALHSs and white light-emitting diode (LED) device. All double helicates exhibit significant aggregation-induced emission in tetrahydrofuran/water (1:9, v/v) solvent. The aggregated double helicates can be used to construct one-step or sequential ALHSs with fluorescent dyes Eosin Y (EsY) and Nile red (NiR) with the energy transfer efficiency up to 89.3%. Impressively, the PMMA film of PCP-TPy1 shows white-light emission when doped 0.075% NiR, the solid of double helicates (Rp,Rp-) PCP-TPy2 can be used as the additive of a blue LED bulb to achieve white-light emission. In this work, we provided a general method for the preparation of novel double helicates and explored their applications in ALHSs and fluorescent materials, which will promote future construction and application of helicates as emissive devices.
Collapse
Affiliation(s)
- Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
14
|
Yang Z, Li X, Yang K, Yu N, Gao R, Ren Y. Synthesis and Unexpected Optical Properties of Ionic Phosphorus Heterocycles with P-Regulated Noncovalent Interactions. J Org Chem 2023. [PMID: 36786509 DOI: 10.1021/acs.joc.2c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Optoelectronic properties of organic chromophores (OCPs) are to a large extent dictated by the chemical structures. Herein, we synthesized a new series of ionic phosphorus(P)-heteropines via the methylation of the P(III) center. Our studies revealed that methylation is highly dependent on the P(III) environments (NPN, NPC, and CPC), in which adjacent nitrogen atoms greatly withdraw electron density of the P(III) center. The observation of noncovalent interactions between solvent molecules and the molecular backbones of the related P-heterocycle in the single crystal structure implied tunable molecular conformations. Different from the red-shifted absorption and emission spectra of ionic P-OCPs induced by either decreased lowest unoccupied molecular orbital (LUMO) or intramolecular charge transfer (ICT) state in previous studies, current ionic P-heterocycles exhibit blue-shifted absorption and emission spectra compared to the nonionic counterparts. Our experimental and theoretical studies suggest that the unexpected photophysical characters are probably due to the counter-anion induced structure twisting via intermolecular noncovalent interactions between NH-indole and O(OTf), and/or strong intermolecular O···F bonding between O(MI) and F(OTf). Our studies also revealed that the P-environments (NPN, NPC, and CPC) conjunctly impact the photophysical properties of the ionic P-heteropines. Overall, the fact that the P-environment-regulated noncovalent interactions induce the rich structure dynamics and photophysics offers us with a new and effective strategy to fine-tune the optical properties of OCPs.
Collapse
Affiliation(s)
- Zi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
15
|
Jia PP, Hu YX, Peng ZY, Song B, Zeng ZY, Ling QH, Zhao X, Xu L, Yang HB. Construction of an Artificial Light-Harvesting System with Efficient Photocatalytic Activity in an Aqueous Solution Based on a FRET-Featuring Metallacage. Inorg Chem 2023; 62:1950-1957. [PMID: 35939800 DOI: 10.1021/acs.inorgchem.2c01869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few decades, the design and construction of high-efficiency artificial light-harvesting systems (LHSs) involving multistep fluorescence-resonance energy transfer (FRET) processes have gradually received considerable attention within wide fields ranging from supramolecular chemistry to chemical biology and even materials science. Herein, through coordination-driven self-assembly, a novel tetragonal prismatic metallacage featuring a FRET process using tetraphenylethene (TPE) units as donors and BODIPY units as acceptors has been conveniently synthesized. Subsequently, taking advantage of supramolecular hydrophobic interactions, a promising artificial LHS involving two-step FRET processes from TPE to BODIPY and then to Nile Red (NiR) has been successfully fabricated in an aqueous solution using the FRET-featuring metallacage, NiR, and an amphiphilic polymer (mPEG-DSPE). Notably, this obtained aqueous LHS exhibits highly efficient photocatalytic activity in the dehalogenation of a bromoacetophenone derivate. This study provides a unique strategy for fabricating artificial LHSs in aqueous solutions with multistep FRET processes and further promotes the future development of mimicking the photosynthesis process.
Collapse
Affiliation(s)
- Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.,Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Wuhu 241001, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Zhi-Yong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Bo Song
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Zhi-Yong Zeng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.,Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Wuhu 241001, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.,Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Wuhu 241001, P. R. China
| |
Collapse
|
16
|
Hydrogelation behaviour of methoxy terpyridine ligand induced by transition metal ions. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
17
|
Wang Q, Wang XF, Sun WQ, Lin RL, Ye MF, Liu JX. Supramolecular Host-Guest Hydrogel Based on γ-Cyclodextrin and Carboxybenzyl Viologen Showing Reversible Photochromism and Photomodulable Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2479-2485. [PMID: 36583679 DOI: 10.1021/acsami.2c20153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Much effort has been devoted to the development of supramolecular hydrogels due to their broad applications and conveniently controllable properties. Here, we demonstrate a novel supramolecular host-guest hydrogel, which is constructed by the host γ-CD complexed with the guest 1-(4-carboxybenzyl)-4,4'-bipyridinium chloride (1+·Cl-) through the π···π interaction, hydrogen bonding, and host-guest interactions. The supramolecular hydrogel [1+@γ-CD]n exhibits reversible electron transfer photochromic behavior and photomodulable fluorescence. The excellent photochromic and fluorescence properties support the practical utility of the supramolecular hydrogel as a visual display and anti-counterfeiting material.
Collapse
Affiliation(s)
- Qin Wang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Xiao-Feng Wang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Wen-Qi Sun
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Ming-Fu Ye
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
18
|
Wang Y, Lai Y, Ren T, Tang J, Gao Y, Geng Y, Zhang J, Ma X. Construction of Artificial Light-Harvesting Systems Based on Aggregation-Induced Emission Type Supramolecular Self-Assembly Metallogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1103-1110. [PMID: 36625456 DOI: 10.1021/acs.langmuir.2c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A method for preparing new artificial light-harvesting systems (ALHSs) based on supramolecular metallogels was proposed. Various metal ions were introduced into a solution of a bi-benzimidazole compound (P) in ethylene glycol, and P exhibited high selectivity toward Al3+, as indicated by the noticeable red shift (49 nm) observed in the fluorescence spectra of P after the addition of Al3+. Interestingly, the gelator, P, could self-assemble into a stable supramolecular gel (P-gel) that exhibits strong aggregation-induced emission in ethylene glycol. Thus, two ALHSs were successfully prepared in a gel environment. The P-Al3+ assembly acts as the donor in the ALHSs, while BODIPY 505/515 (BDP) and rhodamine 6G (Rh6G), which are loaded onto the P-Al3+ assembly, act as acceptors. In these two diverse systems, the occurrence of an energy transfer process is confirmed from the P-Al3+ assembly to BDP and Rh6G. The findings of this study will enable the design and fabrication of ALHSs.
Collapse
Affiliation(s)
- Yipei Wang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Yingshan Lai
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Tianqi Ren
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Jiahong Tang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Yang Gao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Yutao Geng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Jiali Zhang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| | - Xinxian Ma
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China
| |
Collapse
|
19
|
Chuang YT, Wang S, Hsu LY. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. II. Polariton-mediated population dynamics in a dimer system. J Chem Phys 2022; 157:234109. [PMID: 36550029 DOI: 10.1063/5.0124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, based on the theory developed in Paper I, we explore the combined effects of molecular fluorescence and excitation energy transfer in a minimal model-a pair of single-vibration-mode chromophores coupled to surface plasmon polaritons. For the chromophores with zero Huang-Rhys factors and strong couplings to surface plasmon polaritons, we find that the frequencies of Rabi oscillations (the strengths of strong light-matter couplings) are associated with the initial excitation conditions. On the other hand, for the chromophores weakly coupled to surface plasmon polaritons, our numerical calculations together with analytical analysis elaborate on the conditions for the superradiant and subradiant decay behaviors. Moreover, we show that the modified decay rate constants can be explicitly expressed in terms of generalized spectral densities (or dyadic Green's functions), revealing a relationship between photonic environments and the collective effects such as superradiance and subradiance. For the chromophores with nonzero Huang-Rhys factors and strong coupling to surface plasmon polaritons, the effects of molecular vibrations emerge. We demonstrate that the low-frequency vibrational modes do not affect the excited state population dynamics, while the high-frequency vibrational modes can modify either the period of Rabi oscillation (Franck-Condon Rabi oscillation) or the amplitude of excited state population. Our study shows that the collective effects, including superradiance and subradiance, can be controlled via dielectric environments and initial excitation conditions, providing new insights into polariton chemistry and the design of quantum optical devices.
Collapse
Affiliation(s)
- Yi-Ting Chuang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siwei Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Sun YL, Wang Z, Ren C, Zhang J, Zhang H, Zhang C, Tang BZ. Highly Emissive Organic Cage in Single-Molecule and Aggregate States by Anchoring Multiple Aggregation-Caused Quenching Dyes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53567-53574. [PMID: 36413752 DOI: 10.1021/acsami.2c17640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It remains a great challenge to design and synthesize organic luminescent molecules with strong emission in both dilute solution and aggregate state. Herein, an organic cage with dodecadansyl groups (D-RCC1) from an easy sulfonation reaction displays strong emissive behavior in dilute organic solution with a quantum yield of 42%. Moreover, D-RCC1 exhibits an ultrahigh quantum yield of 92% in the solid state, which is more than 3 times that of 27% for the model compound D-DEA. The results of the experiment and theoretical calculation show that the three-dimensional symmetrical skeleton of the organic cage anchored evenly by multiple dye molecules effectively satisfies both high local density and a symmetrical distribution of chromophores, which prevents the interaction of dye molecules and ensures that dye molecules have strong emission in both single-molecule and aggregate states.
Collapse
Affiliation(s)
- Yu-Ling Sun
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Chang Ren
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jianyu Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077 Hong Kong Special Administrative Region of the People's Republic of China
| | - Haoke Zhang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, People's Republic of China
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077 Hong Kong Special Administrative Region of the People's Republic of China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
21
|
Cheng Q, Chen Z, Hu L, Song Y, Zhu S, Liu R, Zhu H. Spatial effect and resonance energy transfer for the construction of carbon dots composites with long-lived multicolor afterglow for advanced anticounterfeiting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Du C, Li Z, Zhu X, Ouyang G, Liu M. Hierarchically self-assembled homochiral helical microtoroids. NATURE NANOTECHNOLOGY 2022; 17:1294-1302. [PMID: 36329269 PMCID: PMC9747612 DOI: 10.1038/s41565-022-01234-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/07/2022] [Indexed: 05/22/2023]
Abstract
Fabricating microscale helical structures from small molecules remains challenging due to the disfavoured torsion energy of twisted architectures and elusory chirality control at different hierarchical levels of assemblies. Here we report a combined solution-interface-directed assembly strategy for the formation of hierarchically self-assembled helical microtoroids with micrometre-scale lengths. A drop-evaporation assembly protocol on a solid substrate from pre-assembled intermediate colloids of enantiomeric binaphthalene bisurea compounds leads to microtoroids with preferred helicity, which depends on the molecular chirality of the starting enantiomers. Collective variable-temperature spectroscopic analyses, electron microscopy characterizations and theoretical simulations reveal a mechanism that simultaneously induces aggregation and cyclization to impart a favourable handedness to the final microtoroidal structures. We then use monodispersed luminescent helical toroids as chiral light-harvesting antenna and show excellent Förster resonance energy transfer ability to a co-hosted chiral acceptor dye, leading to unique circularly polarized luminescence. Our results shed light on the potential of the combined solution-interface-directed self-assembly approach in directing hierarchical chirality control and may advance the prospect of chiral superstructures at a higher length scale.
Collapse
Affiliation(s)
- Cong Du
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zujian Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Zhu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Sutradhar S, Das D, Ghosh BN. Copper(II) and Cadmium(II) triggered hydrogelation of a simple trimethoxy terpyridine ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Integrated and dual-responsive lipopeptide nanovector with parallel effect to tumor and micro-environment regulation by efficient gene and drug co-delivery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Mattsson I, Lahtinen M, Sitdikov R, Wank B, Saloranta-Simell T, Leino R. Phase-selective low molecular weight organogelators derived from allylated d-mannose. Carbohydr Res 2022; 518:108596. [DOI: 10.1016/j.carres.2022.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
26
|
Feng Y, Liu ZX, Chen H, Fan QH. Functional supramolecular gels based on poly(benzyl ether) dendrons and dendrimers. Chem Commun (Camb) 2022; 58:8736-8753. [PMID: 35861166 DOI: 10.1039/d2cc03040c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular gels, as a fascinating and useful class of soft materials, constructed from low-molecular-weight gelators via noncovalent interactions have attracted increasing attention in the past few decades. Dendrimers and dendrons are highly branched and monodisperse macromolecules with a well-defined three-dimensional architecture and multiple surface functionalities. In recent years, poly(benzyl ether) dendrimers and dendrons are found to be powerful candidates for constructing gel phase materials in organic or aqueous media due to the advantages of capability of forming multiple noncovalent interactions and significant steric impact. In this Feature Article, we provide a comprehensive overview of recent progress in supramolecular gels involving poly(benzyl ether) dendritic molecules. Firstly, we outline the molecular design strategies of dendritic gelators with an emphasis on the discussion of their gelating units and position in molecular structures. Subsequently, we discuss the potential applications of dendritic gels in light harvesting, stimuli responsive materials, sensors and environmental remediation. In addition, the potential challenges and future perspectives of poly(benzyl ether) dendritic gels have also been discussed. It is hoped that this feature article will attract increasing attention and provide some valuable insights for the future design and evolution of supramolecular gels.
Collapse
Affiliation(s)
- Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Zhi-Xiong Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, P. R. China.
| | - Hui Chen
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
| |
Collapse
|
27
|
Das AK, Biswas S, Manna SS, Pathak B, Mandal S. An atomically precise silver nanocluster for artificial light-harvesting system through supramolecular functionalization. Chem Sci 2022; 13:8355-8364. [PMID: 35919723 PMCID: PMC9297522 DOI: 10.1039/d2sc02786k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Designing an artificial light-harvesting system (LHS) with high energy transfer efficiency has been a challenging task. Herein, we report an atom-precise silver nanocluster (Ag NC) as a unique platform to fabricate the artificial LHS. A facile one-pot synthesis of [Cl@Ag16S(S-Adm)8(CF3COO)5(DMF)3(H2O)2]·DMF (Ag16) NC by using a bulky adamantanethiolate ligand is portrayed here which, in turn, alleviates the issues related to the smaller NC core designed from a highly steric environment. The surface molecular motion of this NC extends the non-radiative relaxation rate which is strategically restricted by a recognition site-specific supramolecular adduct with β-cyclodextrin (β-CD) that results in the generation of a blue emission. This emission property is further controlled by the number of attached β-CD which eventually imposes more rigidity. The higher emission quantum yield and the larger emission lifetime relative to the lesser numbered β-CD conjugation signify Ag16 ∩ β-CD2 as a good LHS donor component. In the presence of an organic dye (β-carotene) as an energy acceptor, an LHS is fabricated here via the Förster resonance energy transfer pathway. The opposite charges on the surfaces and the matched electronic energy distribution result in a 93% energy transfer efficiency with a great antenna effect from the UV-to-visible region. Finally, the harvested energy is utilized successfully for efficient photocurrent generation with much-enhanced yields compared to the individual components. This fundamental investigation into highly-efficient energy transfer through atom-precise NC-based systems will inspire additional opportunities for designing new LHSs in the near future.
Collapse
Affiliation(s)
- Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| | - Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore Madhya Pradesh 453552 India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 69551 India
| |
Collapse
|
28
|
Supramolecular assemblies working as both artificial light-harvesting system and nanoreactor for efficient organic dehalogenation in aqueous environment. J Colloid Interface Sci 2022; 617:118-128. [DOI: 10.1016/j.jcis.2022.02.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/21/2023]
|
29
|
Schäfer P, de Vet C, Gartzia-Rivero L, Raffy G, Kao MT, Schäfer C, Romasanta LJ, Pavageau B, Tsai YT, Hirsch L, Bassani DM, Del Guerzo A. Narcissistic self-sorting of n-acene nano-ribbons yielding energy-transfer and electroluminescence at p-n junctions. NANOSCALE 2022; 14:8951-8958. [PMID: 35551573 DOI: 10.1039/d2nr01017h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The 2,3-didecyloxy derivative of an n-type anthracene (n-BG) and a p-type tetracene (p-R) have been synthesized and their self-assembly into nano-ribbons studied. Hyperspectral fluorescence imaging revealed their narcissistic self-sorting, leading to separated nanoribbons emitting with very different colors (blue or green for n-BG, depending on the growth solvent, and red for p-R). It is unique that the usual origins of self-sorting, such as specific H-bonding, different growth kinetics, or incompatible steric hindrance can be ruled out. Hence, the narcissistic behaviour is herein proposed to originate from a so-far unconsidered cause: the discrepancy between the quadrupolar character of n-BG and dipolar character of p-R. At the p-n junctions of these nanoribbons, inter-ribbon FRET and electro-luminescence switch-on were observed by fluorescence/luminescence microscopy.
Collapse
Affiliation(s)
- Philip Schäfer
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255, 351 Cours de la Libération, F-33400 Talence, France.
| | - Christiaan de Vet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255, 351 Cours de la Libération, F-33400 Talence, France.
| | - Leire Gartzia-Rivero
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255, 351 Cours de la Libération, F-33400 Talence, France.
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Apartado 644, 48080 Bilbao, Spain
| | - Guillaume Raffy
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255, 351 Cours de la Libération, F-33400 Talence, France.
| | - Min-Tzu Kao
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255, 351 Cours de la Libération, F-33400 Talence, France.
| | - Christian Schäfer
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255, 351 Cours de la Libération, F-33400 Talence, France.
| | - Laura J Romasanta
- CNRS, Solvay, Univ. Bordeaux, LOF, UMR 5258, 178 Avenue du Dr Albert Schweitzer, F-33600 Pessac, France
| | - Bertrand Pavageau
- CNRS, Solvay, Univ. Bordeaux, LOF, UMR 5258, 178 Avenue du Dr Albert Schweitzer, F-33600 Pessac, France
| | - Yu-Tang Tsai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255, 351 Cours de la Libération, F-33400 Talence, France.
- Univ. Bordeaux, CNRS, Bordeaux INP, ENSCPB, IMS, CNRS UMR 5218, F-33600 Pessac, France
| | - Lionel Hirsch
- Univ. Bordeaux, CNRS, Bordeaux INP, ENSCPB, IMS, CNRS UMR 5218, F-33600 Pessac, France
| | - Dario M Bassani
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255, 351 Cours de la Libération, F-33400 Talence, France.
| | - André Del Guerzo
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires UMR 5255, 351 Cours de la Libération, F-33400 Talence, France.
| |
Collapse
|
30
|
Anthracene-Containing Metallacycles and Metallacages: Structures, Properties, and Applications. INORGANICS 2022. [DOI: 10.3390/inorganics10070088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Due to its highly conjugated panel-like structure and unique photophysical and chemical features, anthracene has been widely used for fabricating attractive and functional supramolecular assemblies, including two-dimensional metallacycles and three-dimensional metallacages. The embedded anthracenes in these assemblies often show synergistic effects on enhancing the desired supramolecular and luminescent properties. This review focuses on the metallasupramolecular architectures with anthracene-containing building blocks, as well as their applications in host-guest chemistry, stimulus response, molecular sensing, light harvesting, and biomedical science.
Collapse
|
31
|
Han Y, Zhang X, Ge Z, Gao Z, Liao R, Wang F. A bioinspired sequential energy transfer system constructed via supramolecular copolymerization. Nat Commun 2022; 13:3546. [PMID: 35729110 PMCID: PMC9213434 DOI: 10.1038/s41467-022-31094-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Sequential energy transfer is ubiquitous in natural light harvesting systems to make full use of solar energy. Although various artificial systems have been developed with the biomimetic sequential energy transfer character, most of them exhibit the overall energy transfer efficiency lower than 70% due to the disordered organization of donor/acceptor chromophores. Herein a sequential energy transfer system is constructed via supramolecular copolymerization of σ-platinated (hetero)acenes, by taking inspiration from the natural light harvesting of green photosynthetic bacteria. The absorption and emission transitions of the three designed σ-platinated (hetero)acenes range from visible to NIR region through structural variation. Structural similarity of these monomers faciliates supramolecular copolymerization in apolar media via the nucleation-elongation mechanism. The resulting supramolecular copolymers display long diffusion length of excitation energy (> 200 donor units) and high exciton migration rates (~1014 L mol−1 s−1), leading to an overall sequential energy transfer efficiency of 87.4% for the ternary copolymers. The superior properties originate from the dense packing of σ-platinated (hetero)acene monomers in supramolecular copolymers, mimicking the aggregation mode of bacteriochlorophyll pigments in green photosynthetic bacteria. Overall, directional supramolecular copolymerization of donor/acceptor chromophores with high energy transfer efficiency would provide new avenues toward artificial photosynthesis applications. Sequential energy transfer is ubiquitous in natural light harvesting systems, but most artificial mimics have unsatisfactory energy transfer efficiency. Here, authors synthesize a sequential energy transfer system with overall efficiency of 87.4% via supramolecular copolymerization mimicking the aggregation mode of bacteriochlorophyll pigments in green photosynthetic bacteria.
Collapse
Affiliation(s)
- Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiqing Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Rui Liao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
32
|
Kotha S, Sahu R, Srideep D, Yamijala SSRKC, Reddy SK, Rao KV. Cooperative supramolecular polymerization guided by dispersive interactions. Chem Asian J 2022; 17:e202200494. [DOI: 10.1002/asia.202200494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Srinu Kotha
- IITH: Indian Institute of Technology Hyderabad Chemistry INDIA
| | - Rahul Sahu
- IIT Kharagpur: Indian Institute of Technology Kharagpur Centre for Computational and Data Science INDIA
| | - Dasari Srideep
- IITH: Indian Institute of Technology Hyderabad Chemistry INDIA
| | - Sharma S. R. K. C. Yamijala
- IIT Madras: Indian Institute of Technology Madras Department of Chemistry and Center for Atomistic Modelling and Materials Design INDIA
| | - Sandeep Kumar Reddy
- IIT Kharagpur: Indian Institute of Technology Kharagpur Centre for Computational and Data Science INDIA
| | | |
Collapse
|
33
|
Self-Assembly of Alkylamido Isophthalic Acids toward the Design of a Supergelator: Phase-Selective Gelation and Dye Adsorption. Gels 2022; 8:gels8050285. [PMID: 35621583 PMCID: PMC9140382 DOI: 10.3390/gels8050285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
A new series of 5-alkylamido isophthalic acid (ISA) derivatives with varying single and twin alkyl chain lengths were designed and synthesized as potential supramolecular organogelators. 5-alkylamido ISAs with linear or branched alkyl tail-groups of different lengths were effective gelators for low polarity solvents. In particular, among the presented series, a derivative with a branched, 24 carbon atom tail-group behaves as a “supergelator” with up to twenty organic solvents forming gels that are highly stable over time. The gelation behavior was analyzed using Hansen solubility parameters, and the thermal stability and viscoelastic properties of select gels were characterized. Microscopy, spectroscopy, powder X-ray diffraction, and computer modeling studies were consistent with a hierarchical self-assembly process involving the formation of cyclic H-bonded hexamers via the ISA carboxylic acid groups, which stack into elementary fibers stabilized by H-bonding of the amide linker groups and π–π stacking of the aromatic groups. These new nanomaterials exhibited potential for the phase-selective gelation of oil from oil–water mixtures and dye uptake from contaminated water. The work expands upon the design and synthesis of supramolecular self-assembled nanomaterials and their application in water purification/remediation.
Collapse
|
34
|
A stimuli responsive lanthanide-based hydrogel possessing tunable luminescence by efficient energy transfer pathways. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Rai R, Sureshan KM. Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels. Angew Chem Int Ed Engl 2022; 61:e202111623. [DOI: 10.1002/anie.202111623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Rishika Rai
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Kana M. Sureshan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
36
|
Rajak A, Das A. Crystallization-Driven Controlled Two-Dimensional (2D) Assemblies from Chromophore-Appended Poly(L-lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022; 61:e202116572. [PMID: 35137517 DOI: 10.1002/anie.202116572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/12/2022]
Abstract
A rational approach towards precision two-dimensional (2D) assemblies by crystallization-driven self-assembly (CDSA) of poly(L-lactides) (PLLAs), end-capped with dipolar dyes like merocyanine (MC) or naphthalene monoimide (NMI) and hydrophobic pyrene (PY) or benzene (Bn) is described. PLLA chains crystallize into diamond-shaped platelets in isopropanol, which forces the terminal dyes to assemble into a 2D array on the platelet surface by either dipolar interactions or π-stacking and exhibit tunable emission. Dipolar dyes play a critical role in imparting colloidal stability and structural uniformity to the 2D crystals, which is partly compromised for hydrophobic ones. Co-crystallization between NMI- and PY-labeled PLLAs yields similar diamond-shaped co-platelets with highly efficient (≈80 %) Förster Resonance Energy Transfer on the 2D surface. Further, the "living" CDSA method confers enlarged, segmented block co-platelets using one of the homopolymers as "seed" and the other as "unimer".
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
37
|
Laishram R, Maitra U. Energy transfer in FRET pairs in a supramolecular hydrogel template. Chem Commun (Camb) 2022; 58:3162-3165. [PMID: 35170595 DOI: 10.1039/d1cc07048g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fluorescence resonance energy transfer (FRET) in pairs of chromophores has mostly been achieved using covalently bound chromophores. In this study, we have demonstrated energy transfer in FRET pairs by taking advantage of the self-assembly of the chromophores on metal cholate hydrogel fibers.
Collapse
|
38
|
Collavini S, Völker SF, Cabrera-Espinoza A, Martínez MA, De Cózar A, San Felices L, Sánchez L, Delgado JL. Triarylamine Enriched Organostannoxane Drums: Synthesis, Optoelectrochemical Properties, Association Studies, and Gelation Behavior. Inorg Chem 2022; 61:4046-4055. [PMID: 35201756 DOI: 10.1021/acs.inorgchem.1c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The straightforward synthesis of three organotin clusters endowed with six triarylamine-based moieties is reported herein. The optoelectronic properties of the molecules, as well as their ability to form gels, were investigated. The association ability of the compounds was studied as well by means of variable temperature nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-vis) spectroscopy. The optimization of the geometry of the compounds has been performed and compared to the X-ray diffraction of the crystals. The results obtained through this comparison are useful for the explanation of their different gelation behaviors. In fact, organostannoxane drum 1 exhibits a strong ability to form organized supramolecular structures by means of a number of noncovalent short contacts that finally yield luminescent organogels in aromatic solvents.
Collapse
Affiliation(s)
- Silvia Collavini
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Sebastian F Völker
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Andrea Cabrera-Espinoza
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Manuel A Martínez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Abel De Cózar
- Departamento de Química Orgánica I, Facultad de Química, University of the Basque Country UPV/EHU, Donostia International Physics Center (DIPC), P. K. 1072, 20018 Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Leire San Felices
- Servicios Generales de Investigación, SGIker, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Juan Luis Delgado
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
39
|
Rajak A, Das A. Crystallization‐Driven Controlled Two‐Dimensional (2D) Assemblies from Chromophore‐Appended Poly(L‐lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| |
Collapse
|
40
|
Sureshan KM, Rai R. Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kana M Sureshan
- Indian Institute of Science Education and Research Thiruvananthapuram School of Chemistry ThiruvananthapuramMaruthamalaVithura 695551 Thiruvananthapuram INDIA
| | - Rishika Rai
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram Chemistry 695551 Thiruvananthapuram INDIA
| |
Collapse
|
41
|
Khacef L, Legros P, Hervé P, Ovarlez G, Medina-Gonzalez Y. Effect of Solvent on the Mechanical and Structural Properties of N-Alkyldiamide Organogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14898-14910. [PMID: 34905373 DOI: 10.1021/acs.langmuir.1c02743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we study organogels prepared thanks to a new organogelator, the N-oleyldiamide molecule, which shows a remarkable propensity to gelify a large scope of solvents, from aprotic to high protic solvents. The solvent plays a key role in the formation and stability of supramolecular self-assemblies. However, the understanding and the control of its effects can be complex as many parameters are a priori involved. This study aims to understand the effect of solvent on the structures of organogels and on their final mechanical properties. Five solvent classes have been selected ranking from low protic to high protic, according to the Hansen H-bond parameter δh. The solvent proticity appears to be one of the main parameters that affect the organogel internal structure and therefore the final rheological properties. For a given organogelator fraction, the terminal elastic modulus measured by oscillatory rheology is observed to increase significantly with the Hansen H-bond solvent parameter δh. Materials of different mechanical properties are then shown to display various structures, which are investigated thanks to cryo-SEM. Besides, wide-angle X-ray scattering (WAXS) has been used to probe the gelator organization at the molecular scale with regard to the solvent nature, to understand the supramolecular self-assembly of this promising molecule.
Collapse
Affiliation(s)
- Leïla Khacef
- University of Bordeaux, CNRS, Solvay, LOF, UMR 5258, 33608 Pessac, France
| | - Philippe Legros
- University of Bordeaux, CNRS, PLACAMAT, UMS 3626, 33608 Pessac, France
| | - Pascal Hervé
- University of Bordeaux, CNRS, Solvay, LOF, UMR 5258, 33608 Pessac, France
| | - Guillaume Ovarlez
- University of Bordeaux, CNRS, Solvay, LOF, UMR 5258, 33608 Pessac, France
| | | |
Collapse
|
42
|
Xu W, Zheng Y, Pan P. Crystallization‐driven self‐assembly of semicrystalline block copolymers and end‐functionalized polymers: A minireview. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenqing Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University—Quzhou Quzhou China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University—Quzhou Quzhou China
| |
Collapse
|
43
|
Pramanik A, Karimadom BR, Kornweitz H, Levine M. Sonication-Induced, Solvent-Selective Gelation of a 1,8-Napthalimide-Conjugated Amide: Structural Insights and Pollutant Removal Applications. ACS OMEGA 2021; 6:32722-32729. [PMID: 34901620 PMCID: PMC8655950 DOI: 10.1021/acsomega.1c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Reported herein is the synthesis, characterization, and dye removal applications of a highly solvent-selective organogel-forming amide, compound 1, which contains a 1,8-naphthalmide moiety, flexible n-hexyl chain, and benzene ring. This compound displayed remarkable solvent selectivity, with gel formation occurring only in the presence of alkylated aromatic solvents. Detailed structural characterization of the gels, combined with notable theoretical insights, is invoked to explain the highly selective gelation properties of compound 1, as is a comparison to non-gel forming structural isomer 2, which contains the same structural elements in a different arrangement. Finally, the ability of the gel derived from compound 1 to act as a reusable material for the efficient removal of cationic organic dyes from contaminated aqueous environments is also reported, with up to 11 repeated uses of the gel still maintaining the ability to effectively remove Rhodamine B.
Collapse
|
44
|
Sonallya T, Sruthi L, Deshpande AP, Shanmugam G. Tweaking of supramolecular hydrogel property of single and two-component gel systems by a bifunctional molecule. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Panja SK, Patra S, Bag BG. Self-assembly of the monohydroxy triterpenoid lupeol yielding nano-fibers, sheets and gel: environmental and drug delivery applications. RSC Adv 2021; 11:33500-33510. [PMID: 35497535 PMCID: PMC9042272 DOI: 10.1039/d1ra06137b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
Lupeol is a medicinally important naturally abundant triterpenoid having a 6-6-6-6-5 fused pentacyclic backbone and one polar secondary "-OH" group at the C3 position of the "A" ring. It was extracted from the dried outer bark of Bombax ceiba and its self-assembly properties were investigated in different neat organic as well as aquous-organic binary liquid mixtures. The triterpenoid having only one polar "-OH" group and a rigid lipophilic backbone self-assembled in neat organic non-polar liquids like n-hexane, n-heptane, n-octane and polar liquids like DMSO, DMF, DMSO-H2O, DMF-H2O, and EtOH-H2O yielding supramolecular gels via formation of nano to micrometre long self-assembled fibrillar networks (SAFINs). Morphological investigation of the self-assemblies was carried out by field emission scanning electron microscopy, high resolution transmission electron microscopy, atomic force microscopy, optical microscopy, concentration dependent FTIR and wide angle X-ray diffraction studies. The mechanical properties of the gels were studied by concentration dependent rheological studies in different solvents. The gels were capable of removing toxic micro-pollutants like rhodamine-B and 5,6-carboxyfluorescein as well as the toxic heavy metal Cr(vi) from contaminated water. Moreover release of the chemotherapeutic drug doxorubicin from a drug loaded gel in PBS buffer at pH 7.2 has also been demonstrated by spectrophotometry.
Collapse
Affiliation(s)
- Saikat Kumar Panja
- Department of Chemistry and Chemical Technology, Vidyasagar University Midnapore 721102 West Bengal India
| | - Soumen Patra
- Department of Chemistry and Chemical Technology, Vidyasagar University Midnapore 721102 West Bengal India
| | - Braja Gopal Bag
- Department of Chemistry and Chemical Technology, Vidyasagar University Midnapore 721102 West Bengal India
| |
Collapse
|
46
|
Makeiff D, Cho J, Godbert N, Smith B, Azyat K, Wagner A, Kulka M, Carlini R. Supramolecular gels from alkylated benzimidazolone derivatives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Yang Z, Yang K, Wei X, Liu W, Gao R, Jäkle F, Loo YL, Ren Y. A Multiple Excited-State Engineering of Boron-Functionalized Diazapentacene Via a Tuning of the Molecular Orbital Coupling. J Phys Chem Lett 2021; 12:9308-9314. [PMID: 34543025 DOI: 10.1021/acs.jpclett.1c02668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Harvesting high-energy excited-state energy is still challenging in organic chromophores. An introduction of boron atoms along the short axis of the diazapentacene backbone induces multiple emission characteristics. Our studies reveal that the weak molecular orbital (MO) coupling of the S3-S1 transition is responsible for the slow internal conversion rates. Such MO coupling-regulated anti-Kasha emission is different from the large band gap-induced anti-Kasha emission character of classical azulene derivatives. Theoretical studies reveal that a strong MO coupling of the S3-S0 transition is responsible for the higher photoluminescence quantum yield of the anti-Kasha emission in a more polar solution (tetrahydrofuran: 11%; cyclohexane: 0%). Such an MO coupling factor is generally overlooked in anti-Kasha emitters reported previously. Furthermore, the multiple emission can be regulated by solvent polarity, solvent temperature, and fluoride anion binding. As a proof of concept of harvesting high-energy emission, the multiple emission character has allowed us to design single-molecule white-light-emitting materials.
Collapse
Affiliation(s)
- Zi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- University of Chinese Academy of Science, Beijing100449, People's Republic of China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Xiaofan Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544United States
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- University of Chinese Academy of Science, Beijing100449, People's Republic of China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
48
|
Yang D, Han J, Sang Y, Zhao T, Liu M, Duan P. Steering Triplet-Triplet Annihilation Upconversion through Enantioselective Self-Assembly in a Supramolecular Gel. J Am Chem Soc 2021; 143:13259-13265. [PMID: 34387996 DOI: 10.1021/jacs.1c05927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research on chiral selection and recognition not only is of fundamental importance in resolving the origin of biological homochirality, but also is instructive in the fabrication of controlled molecular organization in supramolecular systems to modulate their chirality-related functional properties. Here we report an enantioselective assembly process between a chiral energy donor and two enantiomeric energy acceptors, which further results in chirality-controlled energy transfer and enantioselective triplet-triplet annihilation upconversion (TTA-UC). It is found that the chiral energy donor Pd(II) octaethylporphyrin derivative PdOEP-LG12 (RD) can selectively coassemble with the chiral energy acceptor LGAn (RA) with the same chiral scaffold but tends to form segregation with the energy acceptor DGAn (SA) with the opposite chiral scaffold in a thermodynamic equilibrium state. Thus, the coassembly of RA/RD shows more effective triplet-triplet energy transfer (TTET) and stronger upconverted luminescence and upconverted circularly polarized luminescence in comparison to the segregation of SA/RD. The establishment of such an enantioselective TTA-UC system highlights the applications of chirality-regulated triplet fusion in optoelectronic materials.
Collapse
Affiliation(s)
- Dong Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianlei Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China
| | - Yutao Sang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Minghua Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China.,Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, People's Republic of China
| |
Collapse
|
49
|
Ahmad W, Wang J, Li H, Ouyang Q, Wu W, Chen Q. Strategies for combining triplet–triplet annihilation upconversion sensitizers and acceptors in a host matrix. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Madhu M, Ramakrishnan R, Vijay V, Hariharan M. Free Charge Carriers in Homo-Sorted π-Stacks of Donor-Acceptor Conjugates. Chem Rev 2021; 121:8234-8284. [PMID: 34133137 DOI: 10.1021/acs.chemrev.1c00078] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the high photoconversion efficiency observed in natural light-harvesting systems, the hierarchical organization of molecular building blocks has gained impetus in the past few decades. Particularly, the molecular arrangement and packing in the active layer of organic solar cells (OSCs) have garnered significant attention due to the decisive role of the nature of donor/acceptor (D/A) heterojunctions in charge carrier generation and ultimately the power conversion efficiency. This review focuses on the recent developments in emergent optoelectronic properties exhibited by self-sorted donor-on-donor/acceptor-on-acceptor arrangement of covalently linked D-A systems, highlighting the ultrafast excited state dynamics of charge transfer and transport. Segregated organization of donors and acceptors promotes the delocalization of photoinduced charges among the stacks, engendering an enhanced charge separation lifetime and percolation pathways with ambipolar conductivity and charge carrier yield. Covalently linking donors and acceptors ensure a sufficient D-A interface and interchromophoric electronic coupling as required for faster charge separation while providing better control over their supramolecular assemblies. The design strategies to attain D-A conjugate assemblies with optimal charge carrier generation efficiency, the scope of their application compared to state-of-the-art OSCs, current challenges, and future opportunities are discussed in the review. An integrated overview of rational design approaches derived from the comprehension of underlying photoinduced processes can pave the way toward superior optoelectronic devices and bring in new possibilities to the avenue of functional supramolecular architectures.
Collapse
Affiliation(s)
- Meera Madhu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Vishnu Vijay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|