1
|
Wang J, Liu Y, Li X, Lei H, Liu J. A high affinity and selective DNA aptamer for copper ions. Chem Commun (Camb) 2024; 60:14272-14275. [PMID: 39540788 DOI: 10.1039/d4cc05410e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Capture-SELEX was employed for the selection of DNA aptamers for Cu2+. The best aptamer named Cu-1 has a Kd of 14.2 nM as determined using the strand-displacement assay, representing an approximate 3000-fold improvement over a previously reported Cu2+ aptamer. The sensor achieved a limit of detection of 2.1 nM.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
2
|
Chen L, Yuan A, Zhang D, Xie W, Peng H. Fluorescence and colorimetric analysis of β-estradiol based on aptamer assembled spherical nucleic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6356-6363. [PMID: 39221548 DOI: 10.1039/d4ay01283f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Detecting β-estradiol (E2) in environmental monitoring is a complex task due to its status as a significant environmental contaminant. The detection methods require precision, sensitivity, and the ability to be conducted on-site without expensive instrumentation. Herein, we developed a novel approach using E2 aptamer assembled spherical nucleic acids (SNAs), which combines the sensitivity of fluorescence and the simplicity of colorimetry. Initially, a fluorescein (FAM)-labeled DNA aptamer is attached to the surface of gold nanoparticles (AuNPs) through hybridization with thiol-labeled DNA, resulting in fluorescence quenching. However, when E2 is present, the aptamer specifically binds to it, displacing from the thiol-DNA and releasing from the AuNP's surface. This leads to the recovery of fluorescence, allowing for quantitative detection of E2 by measuring the increase in fluorescence signal. Additionally, E2 detection can also be achieved visually using ultraviolet light. For colorimetric analysis, we introduce another set of AuNPs modified with thiol-DNA complementary to the DNA remaining on the surface of the previous AuNPs. When E2 triggers the release of the aptamer, the DNA on both AuNPs hybridized to each other, causing the aggregation of AuNPs and resulting in a distinct color change from red to purple. The detection limits for fluorescence and colorimetric analyses are 1 nM and 5 nM, respectively. We successfully applied this biosensing strategy to determine E2 concentrations in tap water and serum samples. Furthermore, our assay exhibits high selectivity towards E2 over other estrogens. Overall, this innovative approach provides an effective and versatile method for convenient on-site monitoring of E2.
Collapse
Affiliation(s)
- Leyuan Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- School of Environment, Hangzhou Institution for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijiao Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- School of Environment, Hangzhou Institution for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ren J, Li L, Han H, Chen Y, Qin Z, Song Z. Construction of a New Probe Based on Copper Chaperone Protein for Detecting Cu 2+ in Cells. Molecules 2024; 29:1020. [PMID: 38474532 DOI: 10.3390/molecules29051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Biomacromolecular probes have been extensively employed in the detection of metal ions for their prominent biocompatibility, water solubility, high selectivity, and easy modification of fluorescent groups. In this study, a fluorescent probe FP was constructed. The probe FP exhibited high specificity recognition for Cu2+. With the combination of Cu2+, the probe was subjected to fluorescence quenching. The research suggested that the probe FP carried out the highly sensitive detection of Cu2+ with detection limits of 1.7 nM. The fluorescence quenching of fluorescamine was induced by Cu2+ perhaps due to the PET (photoinduced electron transfer) mechanism. The FP-Cu2+ complex shows weak fluorescence, which is likely due to the PET quenching effect from Cu2+ to fluorescamine fluorophore. Moreover, the probe FP can be employed for imaging Cu2+ in living cells. The new fluorescent probe developed in this study shows the advantages of good biocompatibility and low cytotoxicity. It can be adopted for the targeted detection of Cu2+ in cells, and it has promising applications in the mechanism research and diagnosis of Cu2+-associated diseases.
Collapse
Affiliation(s)
- Jing Ren
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Lin Li
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Hongfei Han
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Yi Chen
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
| | - Ziying Qin
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
| | - Zhen Song
- Laboratory of Protein Based Functional Materials of Shanxi Province, Taiyuan Normal University, Jinzhong 030619, China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| |
Collapse
|
4
|
Wang ZK, Yuan ZX, Qian C, Liu XW. Plasmonic Probing of Deoxyribonucleic Acid Hybridization at the Single Base Pair Resolution. Anal Chem 2023; 95:18398-18406. [PMID: 38055795 DOI: 10.1021/acs.analchem.3c03316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Partial DNA duplex formation greatly impacts the quality of DNA hybridization and has been extensively studied due to its significance in many biological processes. However, traditional DNA sensing methods suffer from time-consuming amplification steps and hinder the acquisition of information about single-molecule behavior. In this work, we developed a plasmonic method to probe the hybridization process at a single base pair resolution and study the relationship between the complementarity of DNA analytes and DNA hybridization behaviors. We measured single-molecule hybridization events with Au NP-modified ssDNA probes in real time and found two hybridization adsorption events: stable and transient adsorption. The ratio of these two hybridization adsorption events was correlated with the length of the complementary sequences, distinguishing DNA analytes from different complementary sequences. By using dual incident angle excitation, we recognized different single-base complementary sequences. These results demonstrated that the plasmonic method can be applied to study partial DNA hybridization behavior and has the potential to be incorporated into the identification of similar DNA sequences, providing a sensitive and quantitative tool for DNA analysis.
Collapse
Affiliation(s)
- Zhao-Kun Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhen-Xuan Yuan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Zhang H, Dong K, Xiang S, Lin Y, Cha X, Shang Y, Xu W. A Novel Cu2+ Quantitative Detection Nucleic Acid Biosensors Based on DNAzyme and “Blocker” Beacon. Foods 2023; 12:foods12071504. [PMID: 37048325 PMCID: PMC10094606 DOI: 10.3390/foods12071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
In this paper, a “turn-off” biosensor for detecting copper (II) ions based on Cu2+-dependent DNAzyme and a “blocker” beacon were developed. Upon the copper ion being added, the Cu2+-dependent DNAzyme substrate strand was irreversibly cleaved, thereby blocking the occurrence of the ligation reaction and PCR, which inhibited the G-rich sequence from forming the G-quadruplex structure, efficiently reducing the detection signal. This method had the characteristics of strong specificity and high sensitivity compared with the existing method due to the application of ligation-dependent probe signal recognition and amplification procedures. Under the optimized conditions, this method proved to be highly sensitive. The signal decreased as the concentration of copper ions increased, exhibiting a linear calibration from 0.03125 μM to 0.5 μM and a limit of detection of 18.25 nM. Subsequently, the selectivity of this biosensor was verified to be excellent by testing different relevant metal ions. Furthermore, this detection system of copper (II) ions was successfully applied to monitor Cu2+ contained in actual water samples, which demonstrated the feasibility of the biosensor.
Collapse
Affiliation(s)
- Hanyue Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kai Dong
- College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Shuna Xiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingting Lin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoyan Cha
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Alam MZ, Khan SA. A review on Rhodamine-based Schiff base derivatives: synthesis and fluorescent chemo-sensors behaviour for detection of Fe 3+ and Cu 2+ ions. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2183852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Md Zafer Alam
- Physical Science Section (Chemistry), School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, 500032, India
| | - Salman A. Khan
- Physical Science Section (Chemistry), School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, 500032, India
| |
Collapse
|
7
|
Wang K, Yang J, Yang X, Guo Q, Nie G. Photoelectrochemical nanoprobe for combined monitoring of Cu2+ and β-amyloid peptide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Thy-AuNP-AgNP Hybrid Systems for Colorimetric Determination of Copper (II) Ions Using UV-Vis Spectroscopy and Smartphone-Based Detection. NANOMATERIALS 2022; 12:nano12091449. [PMID: 35564160 PMCID: PMC9105095 DOI: 10.3390/nano12091449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023]
Abstract
A colorimetric probe based on a hybrid sensing system of gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), and thymine (Thy) was developed for easy and rapid detection of copper (II) ions (Cu2+) in solution. The underlying principle of this probe was the Cu2+-triggered aggregation of the nanoparticle components. Color change of the sensing solution (from red to purple) was clearly observed with naked eyes. The experimental parameters, including pH and concentration of tris buffer, thymine concentration and AgNP dilution ratios, were investigated and optimized. Once optimized, the limits of detection were found to be 1, 0.09 and 0.03 ppm for naked eyes, smartphone application and UV-vis spectrophotometer, respectively. Furthermore, determination of Cu2+ was accomplished within 15 min under ambient conditions. For quantitative analysis, the linearity of detection was observed through ranges of 0.09−0.5 and 0.03−0.5 ppm using smartphone application and UV-vis spectrophotometer, respectively, conforming to the World Health Organization guideline for detection of copper at concentrations < 2 ppm in water. This developed hybrid colorimetric probe exhibited preferential selectivity toward Cu2+, even when assessed in the presence of other metal ions (Al3+, Ca2+, Pb2+, Mn2+, Mg2+, Zn2+, Fe3+, Ni2+, Co2+, Hg2+ and Cd2+). The developed procedure was also successfully applied to quantification of Cu2+ in real water samples. The recovery and relative standard deviation (RSD) values from real water sample analysis were in the ranges of 70.14−103.59 and 3.21−17.63%, respectively. Our findings demonstrated a successful development and implementation of the Thy-AuNP-AgNP hybrid sensing system for rapid, simple and portable Cu2+ detection in water samples using a spectrophotometer or a smartphone-based device.
Collapse
|
9
|
Huang M, Tong C. Silicon nanoparticles / gold nanoparticles composite as a fluorescence probe for sensitive and selective detection of Co 2+ and vitamin B 12 based on the selective aggregation and inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120706. [PMID: 34915228 DOI: 10.1016/j.saa.2021.120706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Cobalt as a transition metal ion is a biologically essential trace element, and plays an important role in various biological systems. The silicon nanoparticles (SiNPs) / gold nanoparticles (AuNPs) composite as a simple and efficient fluorescent probe was developed to detect Co2+ and vitamin B12 (VB12) based on the selective aggregation and inner filter effect (IFE). The green-emitting SiNPs were synthesized by one-pot hydrothermal method, and the AuNPs were synthesized and modified with thioglycolic acid and cetyltrimethylammonium bromide. The fluorescent probe was fabricated by simple mixing the SiNPs and AuNPs together. In the presence of Co2+/VB12, AuNPs are selectively aggregated, which results in the enhancement of the local surface plasmon resonance absorption centered at 520 nm and the green fluorescence of SiNPs is significantly quenched via IFE. The fluorescence quenching efficiency of the probe is linearly proportional to the concentration of Co2+ in the range of 0.1-80 µM with a low detection limit of 60 nM, which is far lower than the guideline value of Co2+ in drinking water (1.7 µM). For vitamin B12 (VB12), its linear relationship is in the range of 0.1-100 µM, and the limit of detection is 69 nM. Furthermore, the proposed method shows good selectivity for the detection of Co2+ and VB12, and does not need sophisticated pretreatment, only through simple filter. It has been applied in actual environmental water samples and drug tablets with satisfactory results.
Collapse
Affiliation(s)
- Mengqi Huang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changlun Tong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Meng A, Huangfu B, Sheng L, Hong X, Li Z. One-pot hydrothermal synthesis of boron and nitrogen co-doped carbon dots for copper ion assay and multicolor cell imaging using fluorescence quenchometric method. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Perrin D, Paul S, Wong AAWL, Liu LT. Selection of M2+-independent RNA-cleaving DNAzymes with Sidechains Mimicking Arginine and Lysine. Chembiochem 2021; 23:e202100600. [PMID: 34881502 DOI: 10.1002/cbic.202100600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/04/2021] [Indexed: 11/07/2022]
Abstract
Sequence-specific cleavage of RNA by nucleic acid catalysts in the absence of a divalent metal cation (M 2+ ) has remained an important goal in biomimicry with potential therapeutic applications. Given the lack of functional group diversity in canonical nucleotides, modified nucleotides with amino acid-like side chains were used to enhance self-cleavage rates at a single embedded ribonucleoside site. Previous works relied on three functional groups: an amine, a guanidine and an imidazole ensconced on three different nucleosides. However, to date, few studies have systematically addressed the necessity of all three modifications, as the value of any single modified nucleoside is contextualized at the outset of selection. Herein, we report on the use of only two modified dNTPs, excluding an imidazole, i.e. 5-(3-guanidinoallyl)-2'-dUTP (dU ga TP) and 5-aminoallyl-2'-dCTP (dC aa TP), to select in-vitro self-cleaving DNAzymes that cleave in the absence of M 2+ in a pH-independent fashion. Cleavage shows biphasic kinetics with rate constants that are significantly higher than in unmodified DNAzymes and compare favorably to certain DNAzymes involving an imidazole. This work is the first report of a M2+-independent DNAzyme with two cationic modifications; as such it shows appreciable self-cleaving activity in the absence of an imidazole modification.
Collapse
Affiliation(s)
- David Perrin
- U. British Columbia, Chemistry, 2036 Main Mall, V6T-1Z1, Vancouver, CANADA
| | - Somdeb Paul
- The University of British Columbia, Chemistry, 2036 Main Mall, Vancouver, V6T1Z1, Vancouver, CANADA
| | - Antonio A W L Wong
- The University of British Columbia, Chemistry, 2036 Main Mall, Vancouver, V6T1Z1, Vancouver, CANADA
| | - Leo T Liu
- The University of British Columbia, Chemistry, 2036 Main Mall, UBC, Vancouver, V6T-1Z1, Vancouver, CANADA
| |
Collapse
|
12
|
Jouha J, Xiong H. DNAzyme-Functionalized Nanomaterials: Recent Preparation, Current Applications, and Future Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105439. [PMID: 34802181 DOI: 10.1002/smll.202105439] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
DNAzyme-nanomaterial bioconjugates are a popular hybrid and have received major attention for diverse biomedical applications, such as bioimaging, biosensor development, cancer therapy, and drug delivery. Therefore, significant efforts are made to develop different strategies for the preparation of inorganic and organic nanoparticles (NPs) with specific morphologies and properties. DNAzymes functionalized with metal-organic frameworks (MOFs), gold nanoparticles (AuNPs), graphene oxide (GO), and molybdenum disulfide (MoS2 ) are introduced and summarized in detail in this review. Moreover, the focus is on representative examples of applications of DNAzyme-nanomaterials over recent years, especially in bioimaging, biosensing, phototherapy, and stimulation response delivery in living systems, with their several advantages and drawbacks. Finally, the perspective regarding the future directions of research addressing these challenges is also discussed and highlighted.
Collapse
Affiliation(s)
- Jabrane Jouha
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
13
|
Development of a DNAzyme-based colorimetric biosensor assay for dual detection of Cd 2+ and Hg 2. Anal Bioanal Chem 2021; 413:7081-7091. [PMID: 34585255 DOI: 10.1007/s00216-021-03677-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
A colorimetric biosensor assay has been developed for Cd2+ and Hg2+ detection based on Cd2+-dependent DNAzyme cleavage and Hg2+-binding-induced conformational switching of the G-quadruplex fragment. Two types of multifunctional magnetic beads (Cd-MBs and Hg-MBs) were synthesized by immobilizing two functionalized DNA sequences on magnetic beads via avidin-biotin chemistry. For Cd2+ detection, Cd-MBs are used as recognition probes, which are modified with a single phosphorothioate ribonucleobase (rA) substrate (PS substrate) and a Cd2+-specific DNAzyme (Cdzyme). In the presence of Cd2+, the PS substrate is cleaved by Cdzyme, and single-stranded DNA is released as the signal transduction sequence. After molecular assembly with the other two oligonucleotides, duplex DNA is produced, and it can be recognized and cleaved by FokI endonuclease. Thus, a signal output component consisting of a G-quadruplex fragment is released, which catalyzes the oxidation of ABTS with the addition of hemin and H2O2, inducing a remarkably amplified colorimetric signal. To rule out false-positive results and reduce interference signals, Hg-MBs modified with poly-T fragments were used as Hg2+ accumulation probes during the course of Cd2+ detection. On the other hand, Hg-MBs can perform their second function in Hg2+ detection by changing the catalytic activity of the G-quadruplex/hemin DNAzyme. In the presence of Hg2+, the G-quadruplex structure in Hg-MBs is disrupted upon Hg2+ binding. In the absence of Hg2+, an intensified color change can be observed by the naked eye for the formation of intact G-quadruplex/hemin DNAzymes. The biosensor assay exhibits excellent selectivity and high sensitivity. The detection limits for Cd2+ and Hg2+ are 1.9 nM and 19.5 nM, respectively. Moreover, the constructed sensors were used to detect environmental water samples, and the results indicate that the detection system is reliable and could be further used in environmental monitoring. The design strategy reported in this study could broadly extend the application of metal ion-specific DNAzyme-based biosensors.
Collapse
|
14
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
15
|
Yang H, Peng Y, Xu M, Xu S, Zhou Y. Development of DNA Biosensors Based on DNAzymes and Nucleases. Crit Rev Anal Chem 2021; 53:161-176. [PMID: 34225516 DOI: 10.1080/10408347.2021.1944046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA biosensors play important roles in environmental, medical, industrial and agricultural analysis. Many DNA biosensors have been designed based on the enzyme catalytic reaction. Because of the importance of enzymes in biosensors, we present a review on this topic. In this review, the enzymes were divided into DNAzymes and nucleases according to their chemical nature. Firstly, we introduced the DNAzymes with different function inducing cleavage, metalation, peroxidase, ligation and allosterism. In this section, the G-quadruplex DNAzyme, as a hot topic in recent years, was described in detail. Then, the nucleases-assisted signal amplification method was also reviewed in three categories including exonucleases, endonucleases and other nucleases according to the digestion sites in DNA substrates. In exonucleases section, the Exo I and Exo III were selected as examples. Then, the DNase I, BamH I, nicking endonuclease, S1 nuclease, the duplex specific nuclease (DSN) and RNases were chosen to illustrate the application of endonucleases. In other nucleases section, DNA polymerases and DNA ligases were detailed. Last, the challenges and future perspectives in the field were discussed.
Collapse
Affiliation(s)
- Hualin Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Peng
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mingming Xu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shuxia Xu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China.,College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
16
|
Ultrasensitive detection of total copper with an electrochemical biosensor built on the in cis coupling of hexynyl CLICK-17 DNAzyme with azido self-assembled monolayers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|
18
|
Zn 2+-dependent DNAzymes that cleave all combinations of ribonucleotides. Commun Biol 2021; 4:221. [PMID: 33594202 PMCID: PMC7886857 DOI: 10.1038/s42003-021-01738-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 11/14/2020] [Indexed: 11/08/2022] Open
Abstract
Although several DNAzymes are known, their utility is limited by a narrow range of substrate specificity. Here, we report the isolation of two zinc-dependent DNAzymes, ZincDz1 and ZincDz2, which exhibit compact catalytic core sequences with highly versatile hydrolysis activity. They were selected through in vitro selection followed by deep sequencing analysis. Despite their sequence similarity, each DNAzyme showed different Zn2+-concentration and pH-dependent reaction profiles, and cleaved the target RNA sequences at different sites. Using various substrate RNA sequences, we found that the cleavage sequence specificity of ZincDz2 and its highly active mutant ZincDz2-v2 to be 5'-rN↓rNrPu-3'. Furthermore, we demonstrated that the designed ZincDz2 could cut microRNA miR-155 at three different sites. These DNAzymes could be useful in a broad range of applications in the fields of medicine and biotechnology.
Collapse
|
19
|
A novel peptide-based fluorescent chemosensor for detection of zinc (II) and copper (II) through differential response and application in logic gate and bioimaging. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Yu Y, Zhang Q, Gao H, Yan C, Zheng X, Yang T, Zhou X, Shao Y. Metalloenzyme-mimic innate G-quadruplex DNAzymes using directly coordinated metal ions as active centers. Dalton Trans 2020; 49:13160-13166. [PMID: 32936164 DOI: 10.1039/d0dt02871a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G-quadruplex DNAs (G4s) have been reported to exhibit the DNAzyme activities by binding with some metal complexes and functional organic ligands. However, there is a challenge to develop metalloenzyme-mimic G4-based innate DNAzymes using the complexed metal ions directly serving as the active centers. This will diversify DNAzymes for developing novel devices since G4 structures are more polymorphic than the other DNA foldings. In this work, we found that the lanthanide trivalent cerium ion of Ce3+ can bind to the human telomere G4 (htG4) according to a 1 : 2 binding mode favorable for creating metalloenzymes-mimic G4 DNAzymes. This Ce3+-G4 entity exhibits a peroxidase activity towards the oxidation of the substrate of 3,3,5,5-tetramethylbenzidine (TMB) by hydrogen peroxide. The 5' G4 tetrads with the orderly arranged carbonyl oxygen atoms are believed to be the coordination sites for Ce3+ and favor the conversion between Ce3+ and Ce4+. Our work provides an alternative feasibility in developing the G4-based innate DNAzymes for variant applications.
Collapse
Affiliation(s)
- Yali Yu
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Qingqing Zhang
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Heng Gao
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Chenxiao Yan
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Xiong Zheng
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Tong Yang
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Xiaoshun Zhou
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| | - Yong Shao
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
Khodashenas B, Ardjmand M, Baei MS, Rad AS, Akbarzadeh A. Conjugation of pectin biopolymer with Au‐nanoparticles as a drug delivery system: Experimental and DFT studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Khodashenas
- Department of Chemical Engineering, South Tehran BranchIslamic Azad University Tehran Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran BranchIslamic Azad University Tehran Iran
| | | | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr BranchIslamic Azad University Qaemshahr Iran
| | - Azim Akbarzadeh
- Pilot Nanobiotechnology DepPasteur Institute of Iran Tehran Iran
| |
Collapse
|
22
|
Dumur F, Dumas E, Mayer CR. Functionalization of Gold Nanoparticles by Inorganic Entities. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E548. [PMID: 32197512 PMCID: PMC7153718 DOI: 10.3390/nano10030548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
The great affinity of gold surface for numerous electron-donating groups has largely contributed to the rapid development of functionalized gold nanoparticles (Au-NPs). In the last years, a new subclass of nanocomposite has emerged, based on the association of inorganic molecular entities (IME) with Au-NPs. This highly extended and diversified subclass was promoted by the synergy between the intrinsic properties of the shell and the gold core. This review-divided into four main parts-focuses on an introductory section of the basic notions related to the stabilization of gold nanoparticles and defines in a second part the key role played by the functionalizing agent. Then, we present a wide range of inorganic molecular entities used to prepare these nanocomposites (NCs). In particular, we focus on four different types of inorganic systems, their topologies, and their current applications. Finally, the most recent applications are described before an overview of this new emerging field of research.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Eddy Dumas
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, F-78035 Versailles, France;
| | - Cédric R. Mayer
- Laboratoire LuMin, FRE CNRS 2036, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, F-91405 Orsay CEDEX, France
- Département de Chimie, UFR des Sciences, Université de Versailles Saint-Quentin-en-Yvelines, F-78035 Versailles, France
| |
Collapse
|
23
|
Wang P, Wu J, Zhao C. A water-soluble peptide fluorescent chemosensor for detection of cadmium (II) and copper (II) by two different response modes and its application in living LNcap cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117600. [PMID: 31622827 DOI: 10.1016/j.saa.2019.117600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/06/2019] [Indexed: 05/12/2023]
Abstract
A novel peptide-based fluorescent chemosensor (DGC) based on dansyl-appended dipeptide (Gly-Cys-NH2) was synthesized using SPPS technology. DGC exhibited highly sensitive detection of Cadmium (II) ions in 100% aqueous solutions through fluorescent "turn on" response and the detection limits of 14.5 nM. On the other hand, the fluorescence of DGC was almost completely quenched with fast response time when the addition of Cu2+ ions to DGC solutions, the detection limits for Cu2+ was 26.3 nM. In addition, the 2:1 binding stoichiometry of DGC with Cd2+ and Cu2+ were confirmed by Job's plot, fluorescent titration and HR-MS data. More importantly, MTT assays and fluorescence imaging experiments suggested that DGC has outstanding membrane permeability and hypotoxicity, and could be an efficient fluorescent chemosensor for Cd2+ and Cu2+ detection by two different response modes in living LNcap cells.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong, 637009, PR China.
| | - Jiang Wu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, PR China
| | - Chenhui Zhao
- Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| |
Collapse
|
24
|
Khodashenas B, Ardjmand M, Sharifzadeh Baei M, Shokuhi Rad A, Akbarzadeh Khiyavi A. Bovine serum albumin/gold nanoparticles as a drug delivery system for Curcumin: experimental and computational studies. J Biomol Struct Dyn 2019; 38:4644-4654. [DOI: 10.1080/07391102.2019.1683073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bahareh Khodashenas
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mazyar Sharifzadeh Baei
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | | |
Collapse
|
25
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
26
|
A sensorial colorimetric detection method for Hg2+ and Cu2+ ions using single probe sensor based on 5-methyl-1,3,4-thiadiazole-2-thiol stabilized gold nanoparticles and its application in real water sample analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Gelatin–Gold Nanoparticles as an Ideal Candidate for Curcumin Drug Delivery: Experimental and DFT Studies. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01178-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Nguyen T, Tran H, Vu T, Reisberg S, Noël V, Mattana G, Pham M, Piro B. Peptide-modified electrolyte-gated organic field effect transistor. Application to Cu2+ detection. Biosens Bioelectron 2019; 127:118-125. [DOI: 10.1016/j.bios.2018.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/13/2023]
|
29
|
Cao T, Wang Y, Zhao LL, Wang Y, Tao Y, Heyman JA, Weitz DA, Zhou YL, Zhang XX. A simple mix-and-read bacteria detection system based on a DNAzyme and a molecular beacon. Chem Commun (Camb) 2019; 55:7358-7361. [DOI: 10.1039/c9cc03746b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A simple improved mix-and-read method for the detection of bacteria is developed based on a DNAzyme and a molecular beacon.
Collapse
Affiliation(s)
- Ting Cao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Yongcheng Wang
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics
- Harvard University
- Cambridge
- USA
- Wyss Institute for Biologically Inspired Engineering
| | - Ling-Li Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Ye Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Ye Tao
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics
- Harvard University
- Cambridge
- USA
| | - John A. Heyman
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics
- Harvard University
- Cambridge
- USA
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics
- Harvard University
- Cambridge
- USA
- Wyss Institute for Biologically Inspired Engineering
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
30
|
Chang CC, Lee CH, Wu TH, Chen CP, Chen CY, Lin CW. Reversion of gold nanoparticle aggregates for the detection of Cu 2+ and its application in immunoassays. Analyst 2018; 142:4684-4690. [PMID: 29119996 DOI: 10.1039/c7an01511a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A high concentration of copper is a hazardous element to organisms and human health. Although various strategies have been reported for the sensitive detection of copper, a facile and rapid detection of aqueous copper has seldom been addressed to date. Here, we present an easy and accessible colorimetric method to detect Cu2+ using the redispersion of cysteamine-modified gold nanoparticles (CA-AuNPs). Initially, CA caused the aggregation of AuNPs due to the electrostatic interaction and aggregated AuNPs can be regenerated in basic medium. The subsequent addition of Cu2+ to the CA-AuNP dispersion could effectively trigger the aggregation of CA-AuNPs, resulting from the coordination reactivity between the deprotonated CA and Cu2+. This strategy resulted in a detection limit (LOD) of 1.52 μM in drinking water, which is below the U.S. Environmental Protection Agency permissible limit (20 μM). To demonstrate the broad application of CA-AuNPs, we further applied this method to plasmonic immunoassays based on the competitive interaction of Cu2+ between CA-AuNPs and enzymes. The LOD of the Down syndrome biomarker hyperglycosylated human chorionic gonadotropin (H-hCG) was 0.125 mIU mL-1, which is better than that of commercial immunoassays. Importantly, the determination of H-hCG in serum indicates its applicability for the measurement of real samples. Our assay agrees well with the current immunoassay systems and thus it can easily be expanded to a more common sensing platform for different types of biotargets by changing the corresponding antibodies.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Institute of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | | | | | |
Collapse
|
31
|
Zhai TT, Ye D, Shi Y, Zhang QW, Qin X, Wang C, Xia XH. Plasmon Coupling Effect-Enhanced Imaging of Metal Ions in Living Cells Using DNAzyme Assembled Core-Satellite Structures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33966-33975. [PMID: 30113806 DOI: 10.1021/acsami.8b11477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate a core-satellite plasmonic nanoprobe assembled via metal-ion-dependent DNA-cleaving DNAzyme linker for imaging intercellular metal ion based on plasmon coupling effect at a single-particle level. As metal ions are present in the system, the DNAzyme linker will be cleaved, and thus, disassembly of the core-satellite nanoprobes occurs, which results in distinct blue shift of the scattering spectra of Au core-satellite probes and naked color change of the scattering light. This change in scattering spectra has been supported by theoretical simulations. As a proof of concept, sensitive detection of Cu2+ with a limit of detection down to 67.2 pM has been demonstrated. The nanoprobes have been further utilized for intracellular Cu2+ imaging in living cells. The results demonstrate that the present strategy provides a promising platform for detection and imaging of metal ions in living cells and could be potentially applied to imaging other interesting target molecules simply by substituting the oligonucleotide sequence.
Collapse
Affiliation(s)
- Ting-Ting Zhai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Dekai Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Yi Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Qian-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Chen Wang
- School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Collaborative Innovation Center of Chemistry for Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
32
|
A "Turn-On" Fluorescence Copper Biosensor Based on DNA Cleavage-Dependent Graphene Oxide-dsDNA-CdTe Quantum Dots Complex. SENSORS 2018; 18:s18082605. [PMID: 30096861 PMCID: PMC6111893 DOI: 10.3390/s18082605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
A novel “turn-on” fluorescent copper biosensor is developed successfully based on the graphene oxide (GO)-dsDNA-CdTe quantum dots (QDs) complex via chemical crosslink method. The optical and structure properties of GO-dsDNA-CdTe QDs complex are studied by fluorescence (FL) spectra and transmission electron microscopy (TEM) in detail. It is demonstrated that the fluorescence quenching of CdTe QDs is a process of fluorescence resonance energy transfer (FRET) due to the essential surface and quenching properties of two-dimensional GO. Copper ions induce the catalytic reaction of DNA chain and irreversibly break at the cleavage site, which will cause the G-quadruplex formation, moreover further result in the CdTe QDs separated from GO and restored its fluorescence. Therefore, a significant recovery effect on the fluorescence of the GO-dsDNA-CdTe QDs complex is observed in the presence of copper ions. The fluorescence responses are concentration-dependent and can be well described by a linear equation. Compared with other metal ions, the sensor performs good selectivity for copper ions.
Collapse
|
33
|
DU ZH, LI XY, TIAN JJ, Zhang YZ, TIAN HT, XU WT. Progress on Detection of Metals Ions by Functional Nucleic Acids Biosensor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61094-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Liu X, Li X, Xu W, Zhang X, Huang Z, Wang F, Liu J. Sub-Angstrom Gold Nanoparticle/Liposome Interfaces Controlled by Halides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6628-6635. [PMID: 29741377 DOI: 10.1021/acs.langmuir.8b01138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A hallmark of nanoscience is size-dependent and distance-dependent physical properties. Although most previous studies focused on optical properties, which are often tuned at nanometer scale, we herein report on the interaction between halide-capped gold nanoparticles (AuNPs) and phosphocholine (PC) liposomes at the sub-Angstrom level. Halide-capped AuNPs are adsorbed by PC liposomes attributable to van der Waals force. Iodide-capped AuNPs interact much more weakly with the liposomes compared with bromide- and chloride-capped AuNPs, as indicated by a liposome leakage assay and differential scanning calorimetry. This is explained by the slightly larger size of iodide separating the AuNP core more from the liposome surface. Cryo-transmission electron microscopy indicates that the liposomes remain intact when mixed with these halide-capped AuNPs of 13 or 70 nm in diameter. Other even larger ligands, including small thiol compounds, DNA oligonucleotides, proteins, and polymers, fully blocked the interaction, whereas AuNPs dispersed in noninteracting ions, including fluoride, phosphate, perchlorate, nitrate, sulfate, and bicarbonate, are still adsorbed strongly by 1,2-dioleoyl- sn-glycero-3-phosphocholine liposomes. Taken together, halides can be used to control interparticle distances at an extremely small scale with remarkable effects on materials properties, allowing surface probing, biosensor development, and fundamental surface science studies.
Collapse
Affiliation(s)
- Xiuru Liu
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Xiaoqiu Li
- Center of Intervention Radiology, Center of Precise Medicine , Zhuhai People's Hospital , No. 79 Kangning Road , Zhuhai , Guangdong Province 519000 , China
| | - Wu Xu
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Xiaohan Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Feng Wang
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
35
|
Ghodake GS, Shinde SK, Saratale RG, Kadam AA, Saratale GD, Syed A, Ameen F, Kim DY. Colorimetric detection of Cu 2+ based on the formation of peptide-copper complexes on silver nanoparticle surfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1414-1422. [PMID: 29977676 PMCID: PMC6009356 DOI: 10.3762/bjnano.9.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/18/2018] [Indexed: 05/04/2023]
Abstract
We developed a colorimetric method for the rapid detection of copper ions (Cu2+) in aqueous solution. The detection of Cu2+ is based on coordination reactions of Cu2+ with casein peptide-functionalized silver nanoparticles (AgNPs), leading to a distinct color change of the solution from yellow to red. The developed method has a good detection limit of about 0.16 µM Cu2+ using 0.05 mL of AgNPs stock solution and a linearity in the range of 0.08-1.44 µM Cu2+ with a correlation coefficient of R2 = 0.973. The developed method is a useful tool for the detection of Cu2+ ions. Furthermore, it can be used for monitoring Cu2+ in water at concentrations below the safe limit for drinking water set by the World Health Organization.
Collapse
Affiliation(s)
- Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, 10326, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Surendra Krishna Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, 10326, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyonggido, 10326, Republic of Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyonggido, 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, 10326, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
36
|
Fateixa S, Nogueira HIS, Trindade T. Surface-Enhanced Raman Scattering Spectral Imaging for the Attomolar Range Detection of Crystal Violet in Contaminated Water. ACS OMEGA 2018; 3:4331-4341. [PMID: 31458659 PMCID: PMC6641606 DOI: 10.1021/acsomega.7b01983] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/27/2018] [Indexed: 05/29/2023]
Abstract
A series of nanocomposites based on polyamide (NL16, PA) filter membranes containing metal nanoparticles (NPs) have been prepared by filtration under reduced pressure of the metal colloids. The ensuing materials were then investigated as substrates for surface-enhanced Raman scattering (SERS) imaging studies envisaging the spectroscopic detection of vestigial organic pollutants dissolved in contaminated water. The organic dye crystal violet (CV) was used here as a model pollutant because it is a hazardous compound present in certain effluent waters. Moreover this compound is well-known for its strong SERS activity, which is clearly advantageous in the context of material development for SERS. Indeed, several preparative strategies were employed to prepare PA-based composites, and the impact on SERS detection was investigated. These include the use of chemical and morphological distinct plasmonic NPs (Ag, Au), a variable metal load and changing the order of addition of the analytical specimens. These studies demonstrate that the parameters employed in the fabrication of the SERS substrates have a strong impact on the Raman signal enhancement. The use of Raman imaging during the fabrication process allows establishing improvements that translate to better performances of the substrates in the analyte detection. The results have been interpreted by considering an integrated set of operational parameters that include the affinity of CV molecules to the substrate, amount and dispersion of NPs in the PA membranes, and the detection method. Noteworthy the use of SERS analysis assisted with Raman imaging allowed achieving a detection limit for CV as low as 100 aM in ultrapure water and 10 fM in real samples.
Collapse
|
37
|
Du Y, Liu H. Silsesquioxane-Based Hexaphenylsilole-Linked Hybrid Porous Polymer as an Effective Fluorescent Chemosensor for Metal Ions. ChemistrySelect 2018. [DOI: 10.1002/slct.201703133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yajing Du
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan P. R. China
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan P. R. China
- Key Laboratory of Organosilicon and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 31112 P. R. China
- Wuxi Detan Technology Co., Ltd; No. 588 Jinhui Rd. Huishan District, Wuxi Jiangsu P. R. China
| |
Collapse
|
38
|
|
39
|
Ahmad R, Jang H, Batule BS, Park HG. Barcode DNA-Mediated Signal Amplifying Strategy for Ultrasensitive Biomolecular Detection on Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) Mass Spectrometry. Anal Chem 2017; 89:8966-8973. [DOI: 10.1021/acs.analchem.7b01535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raheel Ahmad
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyowon Jang
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Bhagwan S. Batule
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Chen Z, He Q, Zhao M, Lin C, Luo F, Lin Z, Chen G. A fluorometric histidine biosensor based on the use of a quencher-labeled Cu(II)-dependent DNAzyme. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2425-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Jung CY, Yao W, Park JM, Cho JH, Kim DH, Jaung JY. Synthesis of a tetrapyrazinoporphyrazine-based fluorescent sensor for detection of Cu2+ ion. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0735-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
43
|
Wang Y, Su Z, Wang L, Dong J, Xue J, Yu J, Wang Y, Hua X, Wang M, Zhang C, Liu F. SERS Assay for Copper(II) Ions Based on Dual Hot-Spot Model Coupling with MarR Protein: New Cu2+-Specific Biorecognition Element. Anal Chem 2017; 89:6392-6398. [DOI: 10.1021/acs.analchem.6b05106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yulong Wang
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
| | - Zhenhe Su
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
| | - Limin Wang
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
| | - Jinbo Dong
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
| | - Juanjuan Xue
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
| | - Jiao Yu
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
| | - Yuan Wang
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
| | - Xiude Hua
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
| | - Minghua Wang
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
| | - Cunzheng Zhang
- Institute
of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, 210014, P.R.China
| | - Fengquan Liu
- College
of Plant Protection (Key Laboratory of Integrated Management of Crop
Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R.China
- Institute
of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, 210014, P.R.China
| |
Collapse
|
44
|
Huang J, Su X, Li Z. Metal ion detection using functional nucleic acids and nanomaterials. Biosens Bioelectron 2017; 96:127-139. [PMID: 28478384 DOI: 10.1016/j.bios.2017.04.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Metal ion detection is critical in a variety of areas. The past decade has witnessed great progress in the development of metal ion sensors using functional nucleic acids (FNAs) and nanomaterials. The former has good recognition selectivity toward metal ions and the latter possesses unique properties for enhancing the performance of metal ion sensors. This review offers a summary of FNA- and nanomaterial-based metal ion detection methods. FNAs mainly include DNAzymes, G-quadruplexes, and mismatched base pairs and nanomaterials cover gold nanoparticles (GNPs), quantum dots (QDs), carbon nanotubes (CNTs), and graphene oxide (GO). The roles of FNAs and nanomaterials are introduced first. Then, various methods based on the combination of different FNAs and nanomaterials are discussed. Finally, the challenges and future directions of metal ion sensors are presented.
Collapse
Affiliation(s)
- Jiahao Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Xuefen Su
- School of Public Health and Primary Care, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
45
|
Zhou Y, Zhang J, Tang L, Peng B, Zeng G, Luo L, Gao J, Pang Y, Deng Y, Zhang F. A label–free GR–5DNAzyme sensor for lead ions detection based on nanoporous gold and anionic intercalator. Talanta 2017; 165:274-281. [DOI: 10.1016/j.talanta.2016.12.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/23/2022]
|
46
|
Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles. Sci Rep 2017; 7:41557. [PMID: 28155905 PMCID: PMC5290744 DOI: 10.1038/srep41557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/21/2016] [Indexed: 12/27/2022] Open
Abstract
We use the multiple antibiotic resistance regulator (MarR), as a highly selective biorecognition elements in a multipath colourimetric sensing strategy for the fast detection of Cu2+ in water samples. The colourimetric assay is based on the aggregation of MarR-coated gold nanoparticles in the presence of Cu2+ ions, which induces a red-to-purple colour change of the solution. The colour variation in the gold nanoparticle aggregation process can be used for qualitative and quantitative detection of Cu2+ by the naked eye, and with UV–vis and smartphone-based approaches. The three analysis techniques used in the multipath colourimetric assay complement each other and provide greater flexibility for differing requirements and conditions, making the assay highly applicable for Cu2+ detection. Under optimal conditions, the Cu2+ concentration was quantified in less than 5 min with limits of detection for the naked eye, UV–vis and smartphone-based approaches of 1 μM, 405 nM and 61 nM, respectively. Moreover, the sensing system exhibited excellent selectivity and practical application for Cu2+ detection in real water samples. Thus, our strategy has great potential for application in on-site monitoring of Cu2+, and the unique response of MarR towards copper ions may provide a new approach to Cu2+ sensing.
Collapse
|
47
|
Integrating Deoxyribozymes into Colorimetric Sensing Platforms. SENSORS 2016; 16:s16122061. [PMID: 27918487 PMCID: PMC5191042 DOI: 10.3390/s16122061] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/05/2023]
Abstract
Biosensors are analytical devices that have found a variety of applications in medical diagnostics, food quality control, environmental monitoring and biodefense. In recent years, functional nucleic acids, such as aptamers and nucleic acid enzymes, have shown great potential in biosensor development due to their excellent ability in target recognition and catalysis. Deoxyribozymes (or DNAzymes) are single-stranded DNA molecules with catalytic activity and can be isolated to recognize a wide range of analytes through the process of in vitro selection. By using various signal transduction mechanisms, DNAzymes can be engineered into fluorescent, colorimetric, electrochemical and chemiluminescent biosensors. Among them, colorimetric sensors represent an attractive option as the signal can be easily detected by the naked eye. This reduces reliance on complex and expensive equipment. In this review, we will discuss the recent progress in the development of colorimetric biosensors that make use of DNAzymes and the prospect of employing these sensors in a range of chemical and biological applications.
Collapse
|
48
|
Kim MS, Jo TG, Ahn HM, Kim C. A Colorimetric and Fluorescent Chemosensor for the Selective Detection of Cu 2+ and Zn 2+ Ions. J Fluoresc 2016; 27:357-367. [PMID: 27796628 DOI: 10.1007/s10895-016-1964-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
A new bi-functional chemosensor 1 based on 3,5-dichlorosalicylaldehyde and 2-(methylthio)aniline has been synthesized. It can detect Cu2+ with a color change from pale yellow to dark yellow in aqueous solution. The selective mechanism of 1 for Cu2+ was proposed to be the enhancement of the intramolecular charge transfer (ICT) band, which was explained by theoretical calculations. The sensor 1 could be used to detect and quantify Cu2+ in water samples. In addition, the sensor 1 displayed "turn-on" fluorescence response only to Zn2+, based on an effect of chelation-enhanced fluorescence (CHEF). Therefore, 1 can serve as a 'single sensor for two different targets' with dual modes.
Collapse
Affiliation(s)
- Min Seon Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul, 139-743, South Korea
| | - Tae Geun Jo
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul, 139-743, South Korea
| | - Hye Mi Ahn
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul, 139-743, South Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul, 139-743, South Korea.
| |
Collapse
|
49
|
A Readily-Synthesized Fluorescent Probe Based on N, N-Bis (Pyridin-2-Ylmethyl) Aniline for Copper(II) Detection in Aqueous Solution. J Fluoresc 2016; 26:2267-2270. [DOI: 10.1007/s10895-016-1922-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
50
|
Yan L, Zhang K, Xu H, Ji J, Wang Y, Liu B, Yang P. Target induced interfacial self-assembly of nanoparticles: A new platform for reproducible quantification of copper ions. Talanta 2016; 158:254-261. [DOI: 10.1016/j.talanta.2016.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/24/2022]
|