1
|
Tabatabai ASD, Dehghanian E, Mansouri-Torshizi H. Comparative Linkage of Novel Anti-Tumor Pd(II) Complex with Bio-Macromulecules: Fluorescence, UV-Vis, DFT, Molecular Docking and Molecular Dynamics Simulation Studies. J Fluoresc 2024:10.1007/s10895-024-03820-8. [PMID: 38967860 DOI: 10.1007/s10895-024-03820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
A novel mononuclear palladium complex, [Pd(dach)(SSA)], where dach and SSA are diaminocyclohexane and sulfosalicylic acid ligands, respectively, has been synthesized and identified utilizing analytical and spectral methods. DFT calculations, namely geometry optimization, MEP, HOMO-LUMO and NBO analysis, have been conducted at B3LYP level by aug-ccpVTZ-PP and 6-311G(d, p) basis sets. NBO and HOMO-LUMO analysis exhibited that the palladium compound is stable. MEP showed the potential sites of molecule for the interaction. By employing MTT assay, the cytotoxicity activity of the aforesaid compound was examined on K562 cell line, which revealed a proper activity compared to cisplatin. To ascertain the lipophilicity of the newly made compound, the partition coefficient measurement was accomplished, which follows the order of cisplatin < Pd(II) complex. Next, investigation of binding properties of the studied compound with DNA of calf thymus and BSA were done by spectroscopic (CD, fluorescence emission and electronic adsorption) and non-spectroscopic (viscosity measurements, DNA gel electrophoresis, molecular docking and molecular dynamics simulation) methods. The outcomes of CD and UV-Vis spectroscopy demonstrated that the title compound refolded the protein via increasing the alpha helix percentage. The data obtained from UV-Vis studies indicated the non-intercalative mutual action between Pd(II) complex with DNA. It also revealed that the Kapp magnitude of CT-DNA (7.43 × 104 M- 1) is higher than the BSA (5.17 × 103 M- 1), and L1/2 (midpoint of transition) of CT-DNA (5 µM) is lower than the BSA (5.7 µM), indicating that the complex has a greater binding affinity to CT-DNA than BSA. Fluorescence quenching mechanism of the two biomolecules by the metal complex is static and the calculated thermodynamic parameters (ΔS° < 0 and ΔH° < 0) suggested the hydrogen bonding and/ or van der Waals forces with DNA and BSA. Further, molecular docking indicated that the studied compound fits into the groove of DNA and the site I of BSA. The stability of metal compound-DNA/-BSA in the presence of H2O solvent and over the time were validated via molecular dynamics simulation.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
2
|
Mitrović M, Djukić MB, Vukić M, Nikolić I, Radovanović MD, Luković J, Filipović IP, Matić S, Marković T, Klisurić OR, Popović S, Matović ZD, Ristić MS. Search for new biologically active compounds: in vitro studies of antitumor and antimicrobial activity of dirhodium(II,II) paddlewheel complexes. Dalton Trans 2024; 53:9330-9349. [PMID: 38747564 DOI: 10.1039/d4dt01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Four neutral Rh1-Rh4 complexes of the general formula [Rh2(CH3COO)4L2], where L is an N-alkylimidazole ligand, were synthesized and characterized using various spectroscopic techniques, and in the case of Rh4 the crystal structure was confirmed. Investigation of the interactions of these complexes with HSA by fluorescence spectroscopy revealed that the binding constants Kb are moderately strong (∼104 M-1), and site-marker competition experiments showed that the complexes bind to Heme site III (subdomain IB). Competitive binding studies for CT DNA using EB and HOE showed that the complexes bind to the minor groove, which was also confirmed by viscosity experiments. Molecular docking confirmed the experimental data for HSA and CT DNA. Antimicrobial tests showed that the Rh2-Rh4 complexes exerted a strong inhibitory effect on G+ bacteria B. cereus and G- bacteria V. parahaemolyticus as well as on the yeast C. tropicalis, which showed a higher sensitivity compared to fluconazole. The cytotoxic activity of Rh1-Rh4 complexes tested on three cancer cell lines (HeLa, HCT116 and MDA-MB-231) and on healthy MRC-5 cells showed that all investigated complexes elicited more efficient cytotoxicity on all tested tumor cells than on control cells. Investigation of the mechanism of action revealed that the Rh1-Rh4 complexes inhibit cell proliferation via different mechanisms of action, namely apoptosis (increase in expression of the pro-apoptotic Bax protein and caspase-3 protein in HeLa and HCT116 cells; changes in mitochondrial potential and mitochondrial damage; release of cytochrome c from the mitochondria; cell cycle arrest in G2/M phase in both HeLa and HCT116 cells together with a decrease in the expression of cyclin A and cyclin B) and autophagy (reduction in the expression of the protein p62 in HeLa and HCT116 cells).
Collapse
Affiliation(s)
- Marina Mitrović
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Maja B Djukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Milena Vukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Ivana Nikolić
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Marko D Radovanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jovan Luković
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Ignjat P Filipović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Sanja Matić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Tijana Marković
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Suzana Popović
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zoran D Matović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Marija S Ristić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
3
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
4
|
Getreuer P, Marretta L, Toyoglu E, Dömötör O, Hejl M, Prado-Roller A, Cseh K, Legin AA, Jakupec MA, Barone G, Terenzi A, Keppler BK, Kandioller W. Investigating the anticancer potential of 4-phenylthiazole derived Ru(II) and Os(II) metalacycles. Dalton Trans 2024; 53:5567-5579. [PMID: 38426897 DOI: 10.1039/d4dt00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this contribution we report the synthesis, characterization and in vitro anticancer activity of novel cyclometalated 4-phenylthiazole-derived ruthenium(II) (2a-e) and osmium(II) (3a-e) complexes. Formation and sufficient purity of the complexes were unambigiously confirmed by 1H-, 13C- and 2D-NMR techniques, X-ray diffractometry, HRMS and elemental analysis. The binding preferences of these cyclometalates to selected amino acids and to DNA models including G-quadruplex structures were analyzed. Additionally, their stability and behaviour in aqueous solutions was determined by UV-Vis spectroscopy. Their cellular accumulation, their ability of inducing apoptosis, as well as their interference in the cell cycle were studied in SW480 colon cancer cells. The anticancer potencies were investigated in three human cancer cell lines and revealed IC50 values in the low micromolar range, in contrast to the biologically inactive ligands.
Collapse
Affiliation(s)
- Paul Getreuer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Laura Marretta
- STEBICEF-Department, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Emine Toyoglu
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720 Szeged, Hungary
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Alexander Prado-Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Anton A Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Giampaolo Barone
- STEBICEF-Department, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Alessio Terenzi
- STEBICEF-Department, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| |
Collapse
|
5
|
Mariconda A, Iacopetta D, Sirignano M, Ceramella J, D'Amato A, Marra M, Pellegrino M, Sinicropi MS, Aquaro S, Longo P. Silver and Gold Complexes with NHC-Ligands Derived from Caffeine: Catalytic and Pharmacological Activity. Int J Mol Sci 2024; 25:2599. [PMID: 38473851 DOI: 10.3390/ijms25052599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
N-heterocyclic carbene (NHC) silver(I) and gold(I) complexes have found different applications in various research fields, as in medicinal chemistry for their antiproliferative, anticancer, and antibacterial activity, and in chemistry as innovative and effective catalysts. The possibility of modulating the physicochemical properties, by acting on their ligands and substituents, makes them versatile tools for the development of novel metal-based compounds, mostly as anticancer compounds. As it is known, chemotherapy is commonly adopted for the clinical treatment of different cancers, even though its efficacy is hampered by several factors. Thus, the development of more effective and less toxic drugs is still an urgent need. Herein, we reported the synthesis and characterization of new silver(I) and gold(I) complexes stabilized by caffeine-derived NHC ligands, together with their biological and catalytic activities. Our data highlight the interesting properties of this series as effective catalysts in A3-coupling and hydroamination reactions and as promising anticancer, anti-inflammatory, and antioxidant agents. The ability of these complexes in regulating different pathological aspects, and often co-promoting causes, of cancer makes them ideal leads to be further structurally functionalized and investigated.
Collapse
Affiliation(s)
- Annaluisa Mariconda
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Hanifa B, Bibi N, Sirajuddin M, Tiekink ERT, Kubicki M, Khan I, Bari A, Wadood A, Shams S. Synthesis, spectral characterisation, biocidal investigation, in-silico and molecular docking studies of 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid derived triorganotin(IV) compounds. J Biomol Struct Dyn 2024; 42:1826-1845. [PMID: 37114651 DOI: 10.1080/07391102.2023.2204160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Three triorganotin(IV) compounds, R3Sn(L), with R = CH3 (1), n-C4H9 (2) and C6H5 (3), and LH = 4-[(2-chloro-4-methylphenyl)carbamoyl]butanoic acid, were prepared and confirmed by various techniques. A five-coordinate, distorted trigonal-bipyramidal geometry was elucidated for tin(IV) centres both in solution and solid states. An intercalation mode was confirmed for the compound SS-DNA interaction by UV-visible, viscometric techniques and molecular docking. MD simulation revealed stable binding of LH with SS-DNA. Anti-bacterial investigation revealed 2 to be generally the most potent, especially against Sa and Ab, i.e. having the lowest MIC values (≤0.25 μg/mL) compared to the standard anti-biotics vancomycin-HCl (MIC = 1 μg/mL) and colistin-sulphate (MIC = 0.25 μg/mL). Similarly, the anti-fungal profile shows 2 exhibits 100% inhibition against Ca and Cn fungal strains and has MIC values (≤0.25 μg/mL) comparatively lower than standard drug fluconazole (0.125 and 8 μg/mL for Ca and Cn, respectively). Compound 2 has the greatest activity with CC50 ≤ 25 μg/mL and HC50 > 32 μg/mL performed against HEC239 and RBC cell lines. The anti-cancer potential was assessed against the MG-U87 cell line, using cisplatin as the standard (133 µM), indicates 2 displays the greatest activity (IC50: 5.521 µM) at a 5 µM dose. The greatest anti-leishmanial potential was observed for 2 (87.75 at 1000 μg/mL) in comparison to amphotericin B (90.67). The biological assay correlates with the observed maximum of 89% scavenging activity exhibited by 2. The Swiss-ADME data publicised the screened compounds generally follow the rule of 5 of drug-likeness and have good bioavailability potential.
Collapse
Affiliation(s)
- Bibi Hanifa
- Department of Chemistry, University of Science & Technology, Bannu, Pakistan
| | - Naila Bibi
- Department of Chemistry, University of Science & Technology, Bannu, Pakistan
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science & Technology, Bannu, Pakistan
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Maciej Kubicki
- Department of Chemistry, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Ishaq Khan
- Cancer Cell Culture & Precision Oncomedicine Lab, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
7
|
Arshad JZ, Tabassum S, Kiani MS, Arshad S, Hashmi MA, Majeed I, Ali H, Shah SSA. Anticancer Properties of Ru and Os Half-Sandwich Complexes of N,S Bidentate Schiff Base Ligands Derived from Phenylthiocarbamide. Chem Asian J 2023; 18:e202300804. [PMID: 37737043 DOI: 10.1002/asia.202300804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
The versatile coordinating nature of N,S bidentate ligands is of great importance in medicinal chemistry imparting stability and enhancing biological properties of the metal complexes. Phenylthiocarbamide-based N,S donor Schiff bases converted into RuII /OsII (cymene) complexes and characterized by spectroscopic techniques and elemental analysis. The hydrolytic stability of metal complexes to undergo metal-halide ligand exchange reaction was confirmed both by the DFT and NMR experimentation. The ONIOM (QM/MM) study confirmed the histone protein targeting nature of aqua/hydroxido complex 2 aH with an excellent binding energy of -103.19 kcal/mol. The antiproliferative activity against a panel of cancer cells A549, MCF-7, PC-3, and HepG2 revealed that ruthenium complexes 1 a-3 a were more cytotoxic than osmium complexes and their respective ligands 1-3 as well. Among these ruthenium cymene complex bearing sulfonamide moiety 2 a proved a strong cytotoxic agent and showed excellent correlation of cellular accumulation, lipophilicity, and drug-likeness to the anticancer activity. Moreover, the favorable physiochemical properties such as bioavailability and gastrointestinal absorption of ligand 2 also supported the development of Ru complex 2 a as an orally active anticancer metallodrug.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College, Women University Sialkot, Kutchehry Road, Sialkot, Pakistan
| | - Sana Tabassum
- Department of Chemistry, Government College, Women University Sialkot, Kutchehry Road, Sialkot, Pakistan
| | - Muhammad Shaheer Kiani
- Department of Chemistry, Division of Science & Technology, University of Education, 54770, Lahore, Pakistan
| | - Sundas Arshad
- Department of Chemistry, Government College, Women University Sialkot, Kutchehry Road, Sialkot, Pakistan
| | - Muhammad Ali Hashmi
- Department of Chemistry, Division of Science & Technology, University of Education, 54770, Lahore, Pakistan
| | - Imran Majeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hassan Ali
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology H-12 Islamabad, Islamabad, 44000, Pakistan
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology H-12 Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
8
|
Yang Y, Gao Y, Sun Y, Zhao J, Gou S. Study on the Multimodal Anticancer Mechanism of Ru(II)/Ir(III) Complexes Bearing a Poly(ADP-ribose) Polymerase 1 Inhibitor. J Med Chem 2023; 66:13731-13745. [PMID: 37788351 DOI: 10.1021/acs.jmedchem.3c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A series of novel ruthenium(II) and iridium(III) complexes (Ru1-Ru3 and Ir1-Ir3) with different ancillary ligands and a PARP-1-inhibitory chelating ligand 2-(2,3-dibromo-4,5-dimethoxybenzylidene)hydrazine-1-carbothioamide (L1) were designed and prepared. The target complexes were structurally characterized by NMR and ESI-MS techniques. Among them, the crystal and molecular structures of Ir1 and Ir2 were also determined by X-ray crystallography. These complexes retained the PARP-1 enzyme inhibitory effect of L1 and showed potent antiproliferative activity on the tested cancer cell lines. The ruthenium(II) complexes Ru1-Ru3 were found to be more cytotoxic than the iridium(III) complexes Ir1-Ir3. Further investigations revealed that the most active complex Ru3 induced apoptosis in MCF-7 cells by multiple modes, inclusive of inducing DNA damage, suppressing DNA damage repair, disturbing cell cycle distribution, decreasing the mitochondrial membrane potential, and increasing the intracellular reactive oxygen species levels.
Collapse
Affiliation(s)
- Yuliang Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ya Gao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
de la Torre-Rubio E, Muñoz-Moreno L, Bajo AM, Arias-Pérez MS, Cuenca T, Gude L, Royo E. Carbohydrate effect of novel arene Ru(II) phenanthroline-glycoconjugates on metastatic biological processes. J Inorg Biochem 2023; 247:112326. [PMID: 37478778 DOI: 10.1016/j.jinorgbio.2023.112326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Novel water-soluble half-sandwich ruthenium(II) polypyridyl-glycoconjugates [Ru(p-cymene)Cl{N-(1,10-phenanthroline-5-yl)-β-glycopyranosylamine}][Cl] (glycopyranosyl = d-glucopyranosyl (1), D-mannopyranosyl (2), L-rhamnopyranosyl (3) and l-xylopyranosyl (4)) have been synthesized and fully characterized. Their behaviour in water under physiological conditions has been studied by nuclear magnetic resonance spectroscopy, revealing their hydrolytic stability. Interactions of the novel compounds with duplex-deoxiribonucleic acid (dsDNA) were investigated by different techniques and the results indicate that, under physiological pH and saline conditions, the metal glycoconjugates bind DNA in the minor groove and/or through external, electrostatic interactions, and by a non-classical, partial intercalation mechanism in non-saline phosphate buffered solution. Effects of compounds 1-4 on cell viability have been assessed in vitro against two human cell lines (androgen-independent prostate cancer PC-3 and non-tumorigenic prostate RWPE-1), showing moderate cytotoxicities, with IC50 values higher than those found for free ligands [N-(1,10-phenanthroline-5-yl)-β-glycopyranosylamine] (glycopyranosyl = d-glucopyranosyl (a), D-mannopyranosyl (b), L-rhamnopyranosyl (c) and l-xylopyranosyl (d)) or corresponding metal-aglycone. Cell viability was assayed in the presence and absence of the glucose transporters (GLUTs) inhibitor [N4-{1-(4-cyanobenzyl)-5-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl}-7-fluoroquinoline-2,4-dicarboxamide] (BAY-876), and the results point to a negligible impact of the inhibition of GLUTs on the cytotoxicity caused by Ru(II) compounds 1-4. Remarkably, glycoconjugates 1-4 potently affect the migration pattern of PC-3 cells, and the wound healing assay evidence that the presence of the carbohydrate and the Ru(II) center is a requisite for the anti-migratory activity observed in these novel derivatives. In addition, derivatives 1-4 strongly affect the matrix metalloproteinase MMP-9 activities of PC-3 cells, while proMMP-2 and especially proMMP-9 were influenced to a much lesser extent.
Collapse
Affiliation(s)
- Elena de la Torre-Rubio
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
| | - Laura Muñoz-Moreno
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, 28805 Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, 28805 Alcalá de Henares, Madrid, Spain
| | - Maria-Selma Arias-Pérez
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
| | - Tomás Cuenca
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
| | - Lourdes Gude
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
| | - Eva Royo
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
10
|
Garcia PF, Saez Torillo SN, Anzani A, Argüello G, Burgos Paci MA. Characterization of Binding Properties of Cr(Phen) 3 3+ and Ru(Phen) 3 2+ Complexes with Human Lactoferrin. Photochem Photobiol 2023; 99:1225-1232. [PMID: 36504265 DOI: 10.1111/php.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This work presents research about [Cr(phen)3 ]3+ and [Ru(phen)3 ]2+ interaction with human lactoferrin (HLf), a key carrier protein of ferric cations. The photochemical and photophysical properties of [Cr(phen)3 ]3+ and [Ru(phen)3 ]2+ have been widely studied in the last decades due to their potential use as photosensitizers in photodynamic therapy (PDT). The behavior between the complexes and the protein was studied employing UV-visible absorption, fluorescence emission and circular dichroism spectroscopic techniques. It was found that both complexes bind to HLf with a large binding constant (Kb ): 9.46 × 104 for the chromium complex and 4.16 × 104 for the ruthenium one at 299 K. Thermodynamic parameters were obtained from the Van't Hoff equation. Analyses of entropy (ΔS), enthalpy (ΔH) and free energy changes (ΔG) indicate that these complexes bind to HLf because of entropy-driven processes and electrostatic interactions. According to circular dichroism experiments, no conformational changes have been observed in the secondary and tertiary structure of the protein in the presence of any of the studied complexes. These experimental results suggest that [Cr(phen)3 ]3+ and [Ru(phen)3 ]2+ bind to HLf, indicating that this protein could act as a carrier of these complexes in further applications.
Collapse
Affiliation(s)
- Pablo Facundo Garcia
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Santiago N Saez Torillo
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Angel Anzani
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Gerardo Argüello
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Maxi A Burgos Paci
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
11
|
Swaminathan S, Karvembu R. Dichloro Ru(II)- p-cymene-1,3,5-triaza-7-phosphaadamantane (RAPTA-C): A Case Study. ACS Pharmacol Transl Sci 2023; 6:982-996. [PMID: 37470017 PMCID: PMC10353064 DOI: 10.1021/acsptsci.3c00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 07/21/2023]
Abstract
The use of organometallic compounds to treat various phenotypes of cancer has attracted increased interest in recent decades. Organometallic compounds, which are transitional between conventional inorganic and organic materials, have outstanding and one-of-a-kind features that offer fresh insight into the development of inorganic medicinal chemistry. The therapeutic potential of ruthenium(II)-arene RAPTA-type compounds is being thoroughly investigated, specifically owing to the excellent antimetastatic property of the initial candidate RAPTA-C. This review gives a thorough analysis of this complex and its evolution as a potential anticancer drug candidate. The numerous mechanistic investigations of RAPTA-C are discussed, and they are connected to the macroscopic biological characteristics that have been found. The "multitargeted" complex described here target enzymes, peptides, and intracellular proteins in addition to DNA that allow it to specifically target cancer cells. Understanding these may allow researchers to find specific targets and tune a new-generation organometallic complex accordingly.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
- Center
for Computational Modeling, Chennai Institute
of Technology (CIT), Chennai 600069, India
| | - Ramasamy Karvembu
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| |
Collapse
|
12
|
Spychala J. Antitumor activity of triazine mimic antibiotics for DNA-binding implications (impressive activity in vitro against a variety of tumor types in the NCI-60 screen): NSC 710607 to fight HCT-116 human colon carcinoma cell lines in vivo using the hollow fiber assay and xenograft mouse models. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04604-6. [PMID: 36780052 DOI: 10.1007/s00432-023-04604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/25/2023] [Indexed: 02/14/2023]
Abstract
PURPOSE Successful clinical applications of DNA-directed selective cytotoxic agents disrupt the vital replication/transcription processes and ultimately lead to cancer cell death. This study aimed to examine the growth screen of two lead triazine compounds in a number of cell lines and xenografts and to develop anticancer agents with noncovalent binding affinity bringing fewer side effects. METHODS The NCI initial hollow fiber test was performed using an established procedure. The cytostatic and cytocidal capacities of the test compounds were assessed by evaluating cytotoxicity by simply performing a standard cellular viability assay. The nude mouse human tumor xenograft system was used as an in vivo model. RESULTS More sensitive drug with sub-micromolar activity met the interdisciplinary criteria for testing and was referred to evaluations in subcutaneous colorectal carcinoma HCT-116 human tumor xenografted into nude mice. Principal findings of the study: total cytostasis, almost nontoxic schedules, specific working hypotheses, strong rationale for the potential use, and important general implications (relevance to human biology). NSC 710607 displayed in vivo better than Cisplatin and 5-fluorouracil abilities to significantly decrease tumor growth. CONCLUSION Cell proliferation can be reduced or stopped in vivo in view of the xenograft results. The mimic molecule behaves as DNA-binding antitumor antibiotics with great potential as general anticancer agents and deserves further trials. NSC 710607 represents the result of a design strategy with outstanding potential. This study also identifies the prognostic significance and is likely to translate to other species or systems.
Collapse
|
13
|
Al Nasr IS, Koko WS, Khan TA, Gürbüz N, Özdemir I, Hamdi N. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity. Molecules 2023; 28:molecules28031359. [PMID: 36771026 PMCID: PMC9921063 DOI: 10.3390/molecules28031359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
A series of [RuCl2(p-cymene)(NHC)] complexes were obtained by reacting [RuCl2(p-cymene)]2 with in situ generated Ag-N-heterocyclic carbene (NHC) complexes. The structure of the obtained complexes was determined by the appropriate spectroscopy and elemental analysis. In addition, we evaluated the biological activities of these compounds as antienzymatic, antioxidant, antibacterial, anticancer, and antiparasitic agents. The results revealed that complexes 3b and 3d were the most potent inhibitors against AchE with IC50 values of 2.52 and 5.06 μM mL-1. Additionally, 3d proved very good antimicrobial activity against all examined microorganisms with IZ (inhibition zone) over 25 mm and MIC (minimum inhibitory concentration) < 4 µM. Additionally, the ligand 2a and its corresponding ruthenium (II) complex 3a had good cytotoxic activity against both cancer cells HCT-116 and HepG-2, with IC50 values of (7.76 and 11.76) and (4.12 and 9.21) μM mL-1, respectively. Evaluation of the antiparasitic activity of these complexes against Leishmania major promastigotes and Toxoplasma gondii showed that ruthenium complexes were more potent than the free ligand, with an IC50 values less than 1.5 μM mL-1. However, 3d was found the best one with SI (selectivity index) values greater than 5 so it seems to be the best candidate for antileishmanial drug discovery program, and much future research are recommended for mode of action and in vivo evaluation. In general, Ru-NHC complexes are the most effective against L. major promastigotes.
Collapse
Affiliation(s)
- Ibrahim S. Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Waleed S. Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A. Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Naceur Hamdi
- Department of Chemistry, College of Science and Arts at ArRass, Qassim University, Ar Rass 51921, Saudi Arabia
- Correspondence: ; Tel.: +966-556394839
| |
Collapse
|
14
|
Mansouri F, Ortiz D, Dyson PJ. Competitive binding studies of the nucleosomal histone targeting drug, [Ru(η 6-p-cymene)Cl 2(pta)] (RAPTA-C), with oligonucleotide-peptide mixtures. J Inorg Biochem 2023; 238:112043. [PMID: 36370502 DOI: 10.1016/j.jinorgbio.2022.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Protein crystallography and biochemical assays reveal that the organometallic drug, [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C), preferentially binds to nucleosomal histone proteins in chromatin. To better understand the binding mechanism we report here a mass spectrometric-based competitive binding study between a model peptide from the acidic patch region of the H2A histone protein (the region where RAPTA-C is known to bind) and an oligonucleotide. In contrast to the protein crystallography and biochemical assays, RAPTA-C preferentially binds to the oligonucleotide, confirming that steric factors, rather than electronic effects, primarily dictate binding of RAPTA-C to histone proteins within the nucleosome.
Collapse
Affiliation(s)
- Farangis Mansouri
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland; Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Daniel Ortiz
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
15
|
Khan T, Raza S, Lawrence AJ. Medicinal Utility of Thiosemicarbazones with Special Reference to Mixed Ligand and Mixed Metal Complexes: A Review. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422600280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Hamdi N, Mansour L, Al-Tamimi J, Al-Hazmy SM, Gurbuz N, Özdemir I. Synthesis and Investigation of Antimicrobial, Antioxidant, Enzymatic Inhibitory, and Antiproliferative Activities of Ruthenium (II) Complexes Bearing Benzimidazole-Based N-Heterocyclic Carbene (NHC) Ligands. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2150659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Naceur Hamdi
- Department of Chemistry, College of Science and Arts at ArRass, Qassim University, ArRass, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jameel Al-Tamimi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sadeq M. Al-Hazmy
- Chemistry Department, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Nevin Gurbuz
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- İnönü University, Catalysis Research and Application Center, Malatya, Turkey
| | - Ismail Özdemir
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- İnönü University, Catalysis Research and Application Center, Malatya, Turkey
| |
Collapse
|
17
|
Gallium (III) Complexes with 5-Bromosalicylaldehyde Benzoylhydrazones: In Silico Studies and In Vitro Cytotoxic Activity. Molecules 2022; 27:molecules27175493. [PMID: 36080261 PMCID: PMC9457627 DOI: 10.3390/molecules27175493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
Gallium (III) complexes with the ligands 5-bromosalicylaldehyde-4-hydroxybenzoylhydrazone and 5-bromosalicylaldehyde isonicotinoylhydrazone were synthesized to receive compounds with improved antiproliferative action. Compounds were characterized by elemental analysis, IR, and NMR spectroscopy. Density functional theory calculations with Becke’s 3-parameter hybrid functional and 6-31+G(d,p) basis set were carried out to investigate the structural features of the ligands and Ga(III) complexes. Cytotoxic screening by MTT-dye reduction assay was carried out using cisplatin and melphalan as reference cytotoxic agents. A general formula [Ga(HL)2]NO3 for the complexes obtained was suggested. The complexes are mononuclear with the Ga(III) ions being surrounded by two ligands. The ligands acted as monoanionic tridentate (ONO) donor molecules. The analysis revealed coordination binding through deprotonated phenolic-oxygen, azomethine-nitrogen, and amide-oxygen atoms. The bioassay demonstrated that all compounds exhibited concentration-dependent antiproliferative activity at low micromolar concentrations against the acute myeloid leukemia HL-60 and T-cell leukemia SKW-3 cell lines. IC50 values of 5-bromo-derivative ligands and gallium (III) complexes are lower than those of cisplatin and much lower than these of melphalan. The coordination to gallium (III) additionally increased the cytotoxicity compared to the metal-free hydrazones.
Collapse
|
18
|
Khursheed S, Siddique HR, Tabassum S, Arjmand F. Water soluble transition metal [Ni(II), Cu(II) and Zn(II)] complexes of N-phthaloylglycinate bis(1,2-diaminocyclohexane). DNA binding, pBR322 cleavage and cytotoxicity. Dalton Trans 2022; 51:11713-11729. [PMID: 35852297 DOI: 10.1039/d2dt01312f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To validate the effect of metal ions in analogous ligand scaffolds on DNA binding and cytotoxic response, we have synthesized a series of water-soluble ionic N-phthaloylglycinate conjugated bis(diaminocyclohexane)M2+ complexes where M = Ni(II), Cu(II) and Zn(II) (1-3). The structural characterization of the complexes (1-3) was achieved by spectroscopic {FT-IR, EPR, UV-vis absorption data, 1H NMR, ESI-MS and elemental analysis} and single crystal X-ray diffraction studies, which revealed different topologies for the late 3d-transition metals. The Ni(II) and Zn(II) complexes exhibited an octahedral geometry with coordinated labile water molecules in the P1̄ space group while the Cu(II) complex revealed a square planar geometry with the P21/c space lattice. In vitro DNA-complexation studies were performed employing various complementary biophysical methods to quantify the intrinsic binding constant Kb and Ksv values and to envisage the binding modes and binding affinity of (1-3) at the therapeutic targets. The corroborative results of these experiments revealed a substantial geometric and electronic effect of (1-3) on DNA binding and the following inferences were observed, (i) high Kb and Ksv values, (ii) remarkable cleavage efficiency via an oxidative pathway, (iii) condensation behavior and (iv) good cytotoxic response to HepG2 and PTEN-caP8 cancer cell lines, with copper(II) complex 2 outperforming the other two complexes as a most promising anticancer drug candidate. Copper(II) complexes have been proven in the literature to be good anticancer drug entities, displaying inhibition of uncontrolled-cell growth by multiple pathways viz., anti-angiogenesis, inducing apoptosis and reactive oxygen species mediated cell death phenomena. Nickel(II) and zinc(II) ionic complexes 1 and 3 have also demonstrated good chemotherapeutic potential in vitro and the bioactive 1,2-diaminocyclohexane fragment in these complexes plays an instrumental role in anticancer activity.
Collapse
Affiliation(s)
- Salman Khursheed
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| | - Hifzur R Siddique
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
19
|
Morais TS, Marques F, Madeira PJA, Robalo MP, Garcia MH. Design and Anticancer Properties of New Water-Soluble Ruthenium–Cyclopentadienyl Complexes. Pharmaceuticals (Basel) 2022; 15:ph15070862. [PMID: 35890160 PMCID: PMC9321894 DOI: 10.3390/ph15070862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Ruthenium complexes are emerging as one of the most promising classes of complexes for cancer therapy. However, their limited aqueous solubility may be the major limitation to their potential clinical application. In view and to contribute to the progress of this field, eight new water-soluble Ru(II) organometallic complexes of general formula [RuCp(mTPPMS)n(L)] [CF3SO3], where mTPPMS = diphenylphosphane-benzene-3-sulfonate, for n = 2, L is an imidazole-based ligand (imidazole, 1-benzylimidazole, 1-butylimidazole, (1-(3-aminopropyl)imidazole), and (1-(4-methoxyphenyl)imidazole)), and for n = 1, L is a bidentate heteroaromatic ligand (2-benzoylpyridine, (di(2-pyridyl)ketone), and (1,2-(2-pyridyl)benzo-[b]thiophene)) were synthesized and characterized. The new complexes were fully characterized by NMR, FT-IR, UV–vis., ESI-HRMS, and cyclic voltammetry, which confirmed all the proposed molecular structures. The antiproliferative potential of the new Ru(II) complexes was evaluated on MDAMB231 breast adenocarcinoma, A2780 ovarian carcinoma, and HT29 colorectal adenocarcinoma cell lines, showing micromolar (MDAMB231 and HT29) and submicromolar (A2780) IC50 values. The interaction of complex 6 with human serum albumin (HSA) and fatty-acid-free human serum albumin (HSAfaf) was evaluated by fluorescence spectroscopy techniques, and the results revealed that the ruthenium complex strongly quenches the intrinsic fluorescence of albumin in both cases.
Collapse
Affiliation(s)
- Tânia S. Morais
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: (T.S.M.); (M.H.G.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Lisboa, Portugal;
| | | | - Maria Paula Robalo
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Maria Helena Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: (T.S.M.); (M.H.G.)
| |
Collapse
|
20
|
Shahabadi N, Karampour F, Fatahi N, Zendehcheshm S. Synthesis, characterization, in vitro cytotoxicity and DNA interaction studies of antioxidant ferulic acid loaded on γ-Fe 2O 3@SiO 2 nanoparticles. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:994-1011. [PMID: 35815694 DOI: 10.1080/15257770.2022.2094409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared via a chemical coprecipitation reaction, and the surface of Fe3O4 MNPs was coated with silica by a sol-gel process. The surface of Fe3O4@SiO2 MNPs was modified by an antioxidant agent, trans-ferulic acid, to achieve water-soluble MNPs for biological applications. Fourier transform infrared spectroscopy (FT-IR) showed that the MNPs were successfully coated with SiO2 and ferulic acid (FA) ligand. The morphology of γ-Fe2O3@SiO2-FA MNPs was found to be spherical in images of transmission electron microscopy (TEM) and showed a uniform size distribution with an average diameter of 21 nm. The in vitro cytotoxic activity of γ-Fe2O3@SiO2-FA MNPs and FA were investigated against the human cancer cells (MCF-7, PC-3, U-87 MG, A-2780, and A-549) by MTT colorimetric assay. The cytotoxic effect of MNPs on all cancer cell lines was several times of magnitude higher compared to free FA except for A-549 cell lines. Furthermore, in vitro DNA binding studies were investigated by UV-vis and circular dichroism spectroscopies.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | | | - Navid Fatahi
- Pharmacy College, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
21
|
Improvement of Kiteplatin Efficacy by a Benzoato Pt(IV) Prodrug Suitable for Oral Administration. Int J Mol Sci 2022; 23:ijms23137081. [PMID: 35806087 PMCID: PMC9266928 DOI: 10.3390/ijms23137081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022] Open
Abstract
Kiteplatin, [PtCl2(cis-1,4-DACH)] (DACH = diaminocyclohexane), contains an isomeric form of the oxaliplatin diamine ligand trans-1R,2R-DACH and has been proposed as a valuable drug candidate against cisplatin- and oxaliplatin-resistant tumors, in particular, colorectal cancer. To further improve the activity of kiteplatin, it has been transformed into a Pt(IV) prodrug by the addition of two benzoato groups in the axial positions. The new compound, cis,trans,cis-[PtCl2(OBz)2(cis-1,4-DACH)] (1; OBz = benzoate), showed cytotoxic activity at nanomolar concentration against a wide panel of human cancer cell lines. Based on these very promising results, the investigation has been extended to the in vivo activity of compound 1 in a Lewis Lung Carcinoma (LLC) model and its suitability for oral administration. Compound 1 resulted to be remarkably stable in acidic conditions (pH 1.5 to mimic the stomach environment) undergoing a drop of the initial concentration to ~60% of the initial one only after 72 h incubation at 37 °C; thus resulting amenable for oral administration. Interestingly, in a murine model (2·106 LLC cells implanted i.m. into the right hind leg of 8-week old male and female C57BL mice), a comparable reduction of tumor mass (~75%) was observed by administering compound 1 by oral gavage and the standard drug cisplatin by intraperitoneal injection, thus indicating that, indeed, there is the possibility of oral administration for this dibenzoato prodrug of kiteplatin. Moreover, since the mechanism of action of Pt(IV) prodrugs involves an initial activation by chemical reduction to cytotoxic Pt(II) species, the reduction of 1 by two bioreductants (ascorbic acid/sodium ascorbate and glutathione) was investigated resulting to be rather slow (not complete after 120 h incubation at 37 °C). Finally, the neurotoxicity of 1 was evaluated using an in vitro assay.
Collapse
|
22
|
Verma PK, Singh RK, Kumar S, Shukla A, Kumar S, Gond MK, Bharty MK, Acharya A. Cobalt (III) complex exerts anti-cancer effects on T cell lymphoma through induction of cell cycle arrest and promotion of apoptosis. Daru 2022; 30:127-138. [PMID: 35296992 PMCID: PMC9114208 DOI: 10.1007/s40199-022-00439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Cobalt-based compounds are emerging as a non-platinum-based anti-cancer effective therapeutic agent. However, there is a limited study regarding the therapeutic efficacy of Cobalt-based drugs against Non-Hodgkin's Lymphoma (NHLs) such as T cell lymphoma. Therefore, in the present study we investigated the anti-tumor role of cobalt(III) complex [Co(ptsm)NH3(o-phen)]·CH3OH on Dalton's Lymphoma (DL) cells. MATERIALS AND METHODS Cytotoxicity of the cobalt complex was estimated by MTT assay. Analysis of mitochondrial membrane potential, cell cycle and Reactive oxygen species (ROS) generation, and Annexin V/PI staining was done by Flow cytometry, while AO/EtBr staining by fluorescence microscopy in cobalt complex treated DL cell. Expression of cell cycle and apoptosis regulatory protein was analyzed by Western blotting. In addition, in vivo study of the cobalt complex was evaluated in well-established DL bearing mice by monitoring physiological parameters and mean survival time. RESULTS Our study showed that cobalt complex triggered apoptosis and induced cell cycle arrest in DL cells. Furthermore, this also decreased mitochondrial membrane potential and increased intracellular ROS generation in cancer cells. In addition, changed expression of cell cycle and apoptosis regulatory protein was found with enhanced activity of caspase-3 and 9 in the treated cells. Additionally, administration of cobalt complex showed a significant increase in the survivability of tumor-bearing host, which was accomplished by decreasing physiological parameters. CONCLUSION Taken together, these data revealed anti-tumor potential of cobalt complex against DL cells through cell cycle arrest and mitochondrial-dependent apoptosis. Henceforth, cobalt-based drugs could be a new generation therapeutic drug to treat hematological malignancies.
Collapse
Affiliation(s)
- Praveen Kumar Verma
- Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rishi Kant Singh
- Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sandeep Kumar
- Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Alok Shukla
- Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjay Kumar
- Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Mannu Kumar Gond
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Manoj Kumar Bharty
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Arbind Acharya
- Immunology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
23
|
Morales K, Rodríguez-Calado S, Hernando J, Lorenzo J, Rodríguez-Diéguez A, Jaime C, Nolis P, Capdevila M, Palacios Ò, Figueredo M, Bayón P. Synthesis and In Vitro Studies of Photoactivatable Semisquaraine-type Pt(II) Complexes. Inorg Chem 2022; 61:7729-7745. [PMID: 35522899 PMCID: PMC9131461 DOI: 10.1021/acs.inorgchem.1c03957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The synthesis, full
characterization, photochemical properties,
and cytotoxic activity toward cisplatin-resistant cancer cell lines
of new semisquaraine-type Pt(II) complexes are presented. The synthesis
of eight semisquaraine-type ligands has been carried out by means
of an innovative, straightforward methodology. A thorough structural
NMR and X-ray diffraction analysis of the new ligands and complexes
has been done. Density functional theory calculations have allowed
to assign the trans configuration of the platinum
center. Through the structural modification of the ligands, it has
been possible to synthesize some complexes, which have turned out
to be photoactive at wavelengths that allow their activation in cell
cultures and, importantly, two of them show remarkable solubility
in biological media. Photodegradation processes have been studied
in depth, including the structural identification of photoproducts,
thus justifying the changes observed after irradiation. From biological
assessment, complexes C7 and C8 have been
demonstrated to behave as promising photoactivatable compounds in
the assayed cancer cell lines. Upon photoactivation, both complexes
are capable of inducing a higher cytotoxic effect on the tested cells
compared with nonphotoactivated compounds. Among the observed results,
it is remarkable to note that C7 showed a PI > 50
in
HeLa cells, and C8 showed a PI > 40 in A2780 cells,
being
also effective over cisplatin-resistant A2780cis cells (PI = 7 and
PI = 4, respectively). The mechanism of action of these complexes
has been studied, revealing that these photoactivated platinum complexes
would actually present a combined mode of action, a therapeutically
potential advantage. The
synthesis, full characterization, photochemical properties,
and cytotoxic activity toward cisplatin-resistant cancer cell lines
of new semisquaraine-type Pt(II) complexes are presented. Eight semisquaraine-type
ligands and their corresponding Pt(II) complexes have been studied.
These complexes have turned out to be photoactive at wavelengths that
allow their activation in cell cultures. Two of them display remarkable
solubility in biological media showing a promising behavior as photoactivatable
compounds against several cancer cell lines.
Collapse
Affiliation(s)
- Kevin Morales
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Sergi Rodríguez-Calado
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av/Severo Ochoa s/n, 18071 Granada, Spain
| | - Carlos Jaime
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pau Nolis
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Òscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Marta Figueredo
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pau Bayón
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
24
|
Mono- and Di-thiocarbonato complexes of ruthenium CpRu(CO)2SC(E)E′R (E, E′=O, S). Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
26
|
Kar B, Shanavas S, Nagendra AH, Das U, Roy N, Pete S, Sharma S A, De S, Kumar S K A, Vardhan S, Sahoo SK, Panda D, Shenoy S, Bose B, Paira P. Iridium(III)-Cp*-(imidazo[4,5- f][1,10]phenanthrolin-2-yl)phenol analogues as hypoxia active, GSH-resistant cancer cytoselective and mitochondria-targeting cancer stem cell therapeutic agents. Dalton Trans 2022; 51:5494-5514. [PMID: 35293923 DOI: 10.1039/d2dt00168c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we have introduced a series of iridium(III)-Cp*-(imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol complexes via a convenient synthetic methodology, which act as hypoxia active and glutathione-resistant anticancer metallotherapeutics. The [IrIII(Cp*)(L5)(Cl)](PF6) (IrL5) complex exhibited the best cytoselectivity, GSH resistance and hypoxia effectivity in HeLa and Caco-2 cells among the synthesized complexes. IrL5 also exhibited highly cytotoxic effects on the HCT-116 CSC cell line. This complex was localized in the mitochondria and subsequent mitochondrial dysfunction was observed via MMP alteration and ROS generation on colorectal cancer stem cells. Cell cycle analysis also established the potential of this complex in mediating G2/M phase cell cycle arrest.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Shanooja Shanavas
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Apoorva H Nagendra
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Sudhindra Pete
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Ajay Sharma S
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Sourav De
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Ashok Kumar S K
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Seshu Vardhan
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath, Surat, Gujrat-395007, India.
| | - Suban K Sahoo
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath, Surat, Gujrat-395007, India.
| | - Debashis Panda
- Department of Basic Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, An Institution of National Importance, Jais, Amethi-229304, Uttar Pradesh, India.
| | - Sudheer Shenoy
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
27
|
Ye M, Huang WQ, Li ZX, Wang CX, Liu T, Chen Y, Hor CHH, Man WL, Ni WX. Osmium(VI) nitride triggers mitochondria-induced oncosis and apoptosis. Chem Commun (Camb) 2022; 58:2468-2471. [PMID: 35024704 DOI: 10.1039/d1cc05148b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a new osmium(VI) nitrido complex bearing a nonplanar tetradentate ligand with potent anticancer activity. This complex causes mitochondrial damage, which induces liver cancer cell death via oncosis and apoptosis. This is the first osmium-based anticancer candidate that induces oncosis.
Collapse
Affiliation(s)
- Meng Ye
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Wan-Qiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Zi-Xin Li
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Chuan-Xian Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.
| | - YunZhou Chen
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | | | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
- Clinical Research Centre, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| |
Collapse
|
28
|
Sangeetha S, Murali M. Cytotoxic Ruthenium(II) Complexes Containing a Dangling Pyridine: Selectivity for Diseased Cells Mediated by pH-Dependent DNA Binding. Inorg Chem 2022; 61:2864-2882. [PMID: 35099196 DOI: 10.1021/acs.inorgchem.1c03399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium(II) complexes of the type [Ru(bpy)2(L1/L2/L3)]PF6 [where bpy = 2,2'-bipyridine, H(L1) = N-(pyrid-2-yl)salicylaldimine (1), H(L2) = N-(6-methylpyrid-2-yl)salicylaldimine (2), and H(L3) = N-(4,6-dimethylpyrid-2-yl)salicylaldimine (3)] have been isolated. The X-ray structures of 1-3 reveal distorted octahedral coordination geometry with a planar ruthenium phenolate moiety. They exhibit interpair dimeric association in their solid state such as (a) π-π-stacking interactions (1-3) and (b) C-H···π interactions (2). The 1H NMR spectral data shed light on the characteristics of metal-ligand bonding and chelate ring conformations. The complexes exhibit strong metal-to-ligand charge-transfer transitions in the visible region. The complexes also undergo two successive metal-based oxidative processes corresponding to the RuII/RuIII and RuIII/RuIV couples. Resonance Raman studies strongly suggest that the lowest unoccupied molecular orbital of 1-3 is localized at the bpy ligand. Absorption, emission, and circular dichroic spectral measurements for 1-3 with calf-thymus DNA reveal a groove binding mode of interaction. Interestingly, all of the complexes exhibit pH-dependent DNA damage, and the pH at which the damage is highest corresponds to the pH conditions of the cancer cells. The DNA damage is in the order of 3 > 2 > 1, in which a hydrolytic mechanism dominates. The protein binding properties of the complexes examined by the tryptophan quenching measurements suggest a static mechanism. The positive ΔH and ΔS values indicate that the force acting between the complexes and bovine serum albumin (BSA) is mainly a hydrophobic interaction, and thus BSA may act as a targeted drug-delivery vehicle for ruthenium(II) complexes (K ∼ 105). It is noteworthy that 3 exhibits selectivity with high cytotoxicity against breast cancer cells (EVSA-T and MCF-7), and its potency is comparable to that of cisplatin.
Collapse
Affiliation(s)
- Somasundaram Sangeetha
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli 620001, Tamil Nadu, India
| | - Mariappan Murali
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli 620001, Tamil Nadu, India
| |
Collapse
|
29
|
Shekhar B, Rajeshwari K, Jayasree B, Anantha Lakshmi PV. Novel Metformin complexes: Geometry Optimization, Non‐isothermal Kinetic Parameters, DNA binding, on‐off light switching and Docking studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- B. Shekhar
- Department of Chemistry University College of Science, Osmania University, Tarnaka Hyderabad Telangana State India
- Department of Chemistry Malla Reddy Engineering College (Autonomous), Maisammaguda Hyderabad
| | - K. Rajeshwari
- Department of Chemistry University College of Science, Osmania University, Tarnaka Hyderabad Telangana State India
| | - B. Jayasree
- Department of Chemistry University College of Science, Osmania University, Tarnaka Hyderabad Telangana State India
| | - P. V. Anantha Lakshmi
- Department of Chemistry University College of Science, Osmania University, Tarnaka Hyderabad Telangana State India
| |
Collapse
|
30
|
Affiliation(s)
- Xin‐Xin Peng
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Chengfu Road 292, Haidian district Beijing 100871 R. P. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Chengfu Road 292, Haidian district Beijing 100871 R. P. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Guangzhou 510641 P. R. China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Chengfu Road 292, Haidian district Beijing 100871 R. P. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| |
Collapse
|
31
|
Raičević V, Radulović N, Sakač M. Toward Selective Anticancer Agents: Ferrocene‐Steroid Conjugates. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Vidak Raičević
- Department of Chemistry, Biochemistry and Environmental Protection Faculty of Sciences University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| | - Niko Radulović
- Department of Chemistry, Faculty of Science and Mathematics University of Niš Višegradska 33 18000 Niš Serbia
| | - Marija Sakač
- Department of Chemistry, Biochemistry and Environmental Protection Faculty of Sciences University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| |
Collapse
|
32
|
Jakopec S, Pantalon Juraj N, Brozovic A, Jadreško D, Perić B, Kirin SI, Raić‐Malić S. Ferrocene conjugates linked by 1,2,3‐triazole and their Zn(II) and Cu(II) complexes: Synthesis, characterization and biological activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Silvio Jakopec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology University of Zagreb Zagreb Croatia
| | - Natalija Pantalon Juraj
- Laboratory for Solid‐State and Complex Compounds Chemistry, Division of Materials Chemistry Ruđer Bošković Institute Zagreb Croatia
| | - Anamaria Brozovic
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology Ruđer Bošković Institute Zagreb Croatia
| | - Dijana Jadreško
- Laboratory for Physical Chemistry of Traces, Division for Marine and Environmental Research Ruđer Bošković Institute Zagreb Croatia
| | - Berislav Perić
- Laboratory for Solid‐State and Complex Compounds Chemistry, Division of Materials Chemistry Ruđer Bošković Institute Zagreb Croatia
| | - Srećko I. Kirin
- Laboratory for Solid‐State and Complex Compounds Chemistry, Division of Materials Chemistry Ruđer Bošković Institute Zagreb Croatia
| | - Silvana Raić‐Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology University of Zagreb Zagreb Croatia
| |
Collapse
|
33
|
Dubey SK, Khatkar S, Trivedi M, Gulati S, Batra SK, Rath N, Kumar S, Lakia R, Raghav N, Kaur S. Syntheses, Structural and Serum Protein Protecting Activity of Ruthenium(II)-DMSO Complexes Containing Mercapto Ligand. NEW J CHEM 2022. [DOI: 10.1039/d2nj01363k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new ruthenium(II) complexes [Ru(mpt)2(DMSO)2] (1), [Ru(mpt)2(bpy)] (2), [Ru(mpt)2(phen)] (3) and [Ru(mpt)2(tptz)] (4) have been synthesized and characterized by elemental analyses, IR, 1H and 13C NMR, and electronic absorption spectroscopy....
Collapse
|
34
|
Selvam P, De S, Paira P, Kumar SKA, Kumar R S, Moorthy A, Ghosh A, Kuo YC, Banerjee S, Jenifer SK. In vitro studies on the selective cytotoxic effect of luminescent Ru( ii)- p-cymene complexes of imidazo-pyridine and imidazo quinoline ligands. Dalton Trans 2022; 51:17263-17276. [DOI: 10.1039/d2dt02237k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, Ru(ii) complexes have gained high importance in medicinal chemistry due to their significant anti-cancer activities, which are directly related to their DNA binding ability.
Collapse
Affiliation(s)
- Pravinkumar Selvam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Sourav De
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - S. K. Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Selva Kumar R
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai – 602105, Tamil Nadu, India
| | - Anbalagan Moorthy
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Arjita Ghosh
- Department of Biotechnology, School of Bioscience & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences. Asansol-713301, West Bengal, India
| | - Shantha Kumar Jenifer
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600 036, India
| |
Collapse
|
35
|
Khan RA, BinSharfan II, Alterary SS, Alsaeedi H, Qais FA, AlFawaz A, Hadi AD, Alsalme A. Organometallic (η
6
‐
p
‐cymene)ruthenium(II) complexes with thiazolyl‐based organic twigs: En route towards targeted delivery via human serum albumin of the potential anticancer agents. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Ibtisam I. BinSharfan
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Seham S. Alterary
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Huda Alsaeedi
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences Aligarh Muslim University Aligarh India
| | - Amal AlFawaz
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Arman D. Hadi
- Department of Chemistry University of Texas at San Antonio San Antonio TX USA
| | - Ali Alsalme
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| |
Collapse
|
36
|
Green LPM, Steel TR, Riisom M, Hanif M, Söhnel T, Jamieson SMF, Wright LJ, Crowley JD, Hartinger CG. Synthetic Strategy Towards Heterodimetallic Half-Sandwich Complexes Based on a Symmetric Ditopic Ligand. Front Chem 2021; 9:786367. [PMID: 34926406 PMCID: PMC8677676 DOI: 10.3389/fchem.2021.786367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Multimetallic complexes have been shown in several examples to possess greater anticancer activity than their monometallic counterparts. The increased activity has been attributed to altered modes of action. We herein report the synthesis of a series of heterodimetallic compounds based on a ditopic ligand featuring 2-pyridylimine chelating motifs and organometallic half-sandwich moieties. The complexes were characterized by a combination of 1H NMR spectroscopy, electrospray ionization mass spectrometry, elemental analysis and single crystal X-ray diffraction. Investigations into the stability of representative complexes in DMSO-d6 and 10% DMSO-d6/D2O revealed the occurrence of solvent-chlorido ligand exchange. Proliferation assays in four human cancer cell lines showed that the Os-Rh complex possessed minimal activity, while all other complexes were inactive.
Collapse
Affiliation(s)
- Lewis P M Green
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tasha R Steel
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
37
|
Scattolin T, Valente G, Luzietti L, Piva M, Demitri N, Lampronti I, Gambari R, Visentin F. Synthesis and anticancer activity of Pt(0)‐olefin complexes bearing 1,3,5‐triaza‐7‐phosphaadamantane and
N
‐heterocyclic carbene ligands. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia‐Mestre Italy
| | - Giorgia Valente
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia‐Mestre Italy
| | - Lara Luzietti
- Dipartimento di Scienze della Vita e Biotecnologie Università degli Studi di Ferrara Ferrara Italy
| | - Michele Piva
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia‐Mestre Italy
| | - Nicola Demitri
- S.S. 14 Km 163.5 in Area Science Park Elettra–Sincrotrone Trieste Trieste Italy
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie Università degli Studi di Ferrara Ferrara Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie Università degli Studi di Ferrara Ferrara Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia‐Mestre Italy
| |
Collapse
|
38
|
A novel Au(III) complex with the 5,5′-dimethyl-2,2′-bipyridine ligand: Synthesis, characterization, X-ray crystal structure and biological evaluation. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
K.M. PK, B.C. VK, M.N. SK, P. RK, S. D, R.J. B, H.D. R. Synthesis, structural characterization, CT-DNA interaction study and antithrombotic activity of new ortho-vanillin-based chiral (Se,N,O) donor ligands and their Pd complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Bjelosevic A, Sakoff J, Gilbert J, Zhang Y, McGhie B, Gordon C, Aldrich-Wright JR. Synthesis, characterisation and biological activity of the ruthenium(II) complexes of the N 4-tetradentate (N 4-T L), 1,6-di(2'-pyridyl)-2,5-dibenzyl-2,5-diazahexane (picenBz 2). J Inorg Biochem 2021; 226:111629. [PMID: 34740037 DOI: 10.1016/j.jinorgbio.2021.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
A series of complexes of the type rac-cis-β-[Ru(N4-TL)(N2-bidentates)]2+ (where N4-TL = 1,6-di(2'-pyridyl)-2,5-dibenzyl-2,5-diazahexane (picenBz2, N4-TL-2) and N2-bidentates = 1,10-phenanthroline (phen, Ru-2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, Ru-3), 7,8-dimethyl-dipyrido[3,2-a:2',3'-c] phenazine (dppzMe2,Ru-4), 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBz, Ru-5), 2-(p-tolyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBzMe, Ru-6), 2-(4-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBzNO2,Ru-7), were synthesised and characterised and X-ray crystallography of Ru-5 obtained. The in vitro cytotoxicity assays revealed that Ru-6 was 5, 2 and 19-fold more potent than oxaliplatin, cisplatin, and carboplatin, respectively displaying an average GI50 value of ≈ 0.76 μM against a panel of 11 cancer cell lines.
Collapse
Affiliation(s)
- Aleksandra Bjelosevic
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia
| | - Jennette Sakoff
- Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Yingjie Zhang
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Brondwyn McGhie
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia
| | - Christopher Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia; School of Medicine, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia.
| |
Collapse
|
41
|
Kanchanadevi S, Fronczek FR, Mahalingam V. Ruthenium(III) hydrazone complexes with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA/BSA binding, antioxidative and cytotoxic activity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Abdou SN. Ultrasonic Assisted Nano-structures of Novel Organotin Supramolecular Coordination Polymers as Potent Antitumor Agents. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Rubio AR, González R, Busto N, Vaquero M, Iglesias AL, Jalón FA, Espino G, Rodríguez AM, García B, Manzano BR. Anticancer Activity of Half-Sandwich Ru, Rh and Ir Complexes with Chrysin Derived Ligands: Strong Effect of the Side Chain in the Ligand and Influence of the Metal. Pharmaceutics 2021; 13:1540. [PMID: 34683834 PMCID: PMC8537477 DOI: 10.3390/pharmaceutics13101540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
An important challenge in the field of anticancer chemotherapy is the search for new species to overcome the resistance of standard drugs. An interesting approach is to link bioactive ligands to metal fragments. In this work, we have synthesized a set of p-cymene-Ru or cyclopentadienyl-M (M = Rh, Ir) complexes with four chrysin-derived pro-ligands with different -OR substituents at position 7 of ring A. The introduction of a piperidine ring on chrysin led to the highly cytotoxic pro-ligand HL4 and its metal complexes L4-M (SW480 and A549 cell lines, cytotoxic order: L4-Ir > L4-Ru ≈ L4-Rh). HL4 and its complexes induce apoptosis and can overcome cis-platinum resistance. However, HL4 turns out to be more cytotoxic in healthy than in tumor cells in contrast to its metal complexes which displayed higher selectivity than cisplatin towards cancer cells. All L4-M complexes interact with double stranded DNA. Nonetheless, the influence of the metal is clear because only complex L4-Ir causes DNA cleavage, through the generation of highly reactive oxygen species (1O2). This result supports the hypothesis of a potential dual mechanism consisting of two different chemical pathways: DNA binding and ROS generation. This behavior provides this complex with a great effectivity in terms of cytotoxicity.
Collapse
Affiliation(s)
- Ana R. Rubio
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Rocío González
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Mónica Vaquero
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Ana L. Iglesias
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
- Facultad de Ciencias de la Ingeniería y Tecnología (FCITEC), Universidad Autónoma de Baja California, Blvd. Universitario # 1000, Unidad Valle de las Palmas, Baja California, Tijuana 21500, Mexico
| | - Félix A. Jalón
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela 2, 13071 Ciudad Real, Spain;
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Blanca R. Manzano
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| |
Collapse
|
45
|
Mahmud KM, Niloy MS, Shakil MS, Islam MA. Ruthenium Complexes: An Alternative to Platinum Drugs in Colorectal Cancer Treatment. Pharmaceutics 2021; 13:1295. [PMID: 34452256 PMCID: PMC8398452 DOI: 10.3390/pharmaceutics13081295] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the intimidating causes of death around the world. CRC originated from mutations of tumor suppressor genes, proto-oncogenes and DNA repair genes. Though platinum (Pt)-based anticancer drugs have been widely used in the treatment of cancer, their toxicity and CRC cells' resistance to Pt drugs has piqued interest in the search for alternative metal-based drugs. Ruthenium (Ru)-based compounds displayed promising anticancer activity due to their unique chemical properties. Ru-complexes are reported to exert their anticancer activities in CRC cells by regulating different cell signaling pathways that are either directly or indirectly associated with cell growth, division, proliferation, and migration. Additionally, some Ru-based drug candidates showed higher potency compared to commercially available Pt-based anticancer drugs in CRC cell line models. Meanwhile Ru nanoparticles coupled with photosensitizers or anticancer agents have also shown theranostic potential towards CRC. Ru-nanoformulations improve drug efficacy, targeted drug delivery, immune activation, and biocompatibility, and therefore may be capable of overcoming some of the existing chemotherapeutic limitations. Among the potential Ru-based compounds, only Ru (III)-based drug NKP-1339 has undergone phase-Ib clinical trials in CRC treatment.
Collapse
Affiliation(s)
- Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Mahruba Sultana Niloy
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Md Salman Shakil
- Department of Pharmacology & Toxicology, University of Otago, Dunedin 9016, New Zealand
- Department of Biochemistry, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
46
|
Dömötör O, Pivarcsik T, Mészáros JP, Szatmári I, Fülöp F, Enyedy ÉA. Critical factors affecting the albumin binding of half-sandwich Ru(ii) and Rh(iii) complexes of 8-hydroxyquinolines and oligopyridines. Dalton Trans 2021; 50:11918-11930. [PMID: 34374386 DOI: 10.1039/d1dt01700d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is significant interest today in the interaction of half-sandwich anticancer organometallic complexes with proteins. It is considered as a crucial factor in the transport and mode of action of these compounds; thus it can affect their overall pharmacological and toxicological profiles. Albumin binding of high stability Ru(ii)(η6-p-cymene) and Rh(iii)(η5-C5Me5) complexes formed with 8-hydroxyquinoline, its 5-chloro-7-((proline-1-yl)methyl) substituted derivative, 2,2'-bipyridine and 1,10-phenanthroline is discussed herein. The interaction with human serum albumin in terms of kinetic aspects, binding strength and possible binding sites was studied in detail by means of various methods such as 1H NMR spectroscopy, UV-visible spectrophotometry, steady-state and time-resolved fluorometry, ultrafiltration and capillary zone electrophoresis. Ru(ii)(η6-p-cymene)(2,2'-bipyridine) and Ru(ii)(η6-p-cymene)(1,10-phenanthroline) complexes do not bind to the protein measurably, most probably due to kinetic reasons. However, other complexes bind significantly to albumin with fairly different kinetics to albumin. The binding affinity towards hydrophobic binding pockets shows correlation with lipophilicity along with the actual charge of the respective complexes. The studied complexes preserve their original structure upon interaction with albumin. Formation constants computed for the binding of these metal complexes to histidine-containing model oligopeptides demonstrated significant ternary complex formation, pointing out the importance of histidine coordination in the binding of these types of complexes.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
47
|
Kar B, Das U, De S, Pete S, Sharma S A, Roy N, S K AK, Panda D, Paira P. GSH-resistant and highly cytoselective ruthenium(II)- p-cymene-(imidazo[4,5- f][1,10]phenanthrolin-2-yl)phenol complexes as potential anticancer agents. Dalton Trans 2021; 50:10369-10373. [PMID: 34308466 DOI: 10.1039/d1dt01604k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To avoid the side effects of the current popular platinum-based anticancer drugs, researchers have made tireless attempts to design appropriate GSH-resistant Ru(ii)-arene complexes. In this regard, luminescent ruthenium(ii)-p-cymene-imidazophenanthroline complexes were developed as promising highly cytoselective cancer theraputic agents for HeLa and Caco-2 cells.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Sourav De
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Sudhindra Pete
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Ajay Sharma S
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Ashok Kumar S K
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Debashis Panda
- Department of Basic Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, An Institution of National Importance, Jais, Amethi-229304, Uttar Pradesh, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
48
|
|
49
|
Steel TR, Walsh F, Wieczorek-Błauż A, Hanif M, Hartinger CG. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213890] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
N-Heterocyclic Carbene-Gold(I) Complexes Targeting Actin Polymerization. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transition metal complexes are attracting attention because of their various chemical and biological properties. In particular, the NHC-gold complexes represent a productive field of research in medicinal chemistry, mostly as anticancer tools, displaying a broad range of targets. In addition to the already known biological targets, recently, an important activity in the organization of the cell cytoskeleton was discovered. In this paper, we demonstrated that two NHC-gold complexes (namely AuL4 and AuL7) possessing good anticancer activity and multi-target properties, as stated in our previous studies, play a major role in regulating the actin polymerization, by the means of in silico and in vitro assays. Using immunofluorescence and direct enzymatic assays, we proved that both the complexes inhibited the actin polymerization reaction without promoting the depolymerization of actin filaments. Our outcomes may contribute toward deepening the knowledge of NHC-gold complexes, with the objective of producing more effective and safer drugs for treating cancer diseases.
Collapse
|