1
|
Huang L, Fantke P, Ritscher A, Jolliet O. Chemicals of concern in building materials: A high-throughput screening. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127574. [PMID: 34799153 DOI: 10.1016/j.jhazmat.2021.127574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 05/24/2023]
Abstract
Chemicals used in building materials can be a major passive emission source indoors, associated with the deterioration of indoor environmental quality. This study aims to screen the various chemicals used in building materials for potential near-field human exposures and related health risks, identifying chemicals and products of concern to inform risk reduction efforts. We propose a mass balance-based and high-throughput suited model for predicting chemical emissions from building materials considering indoor sorption. Using this model, we performed a screening-level human exposure assessment for chemicals in building materials, starting from product chemical composition data reported in the Pharos Building Products Database for the USA. Health risks and MAximum chemical Contents from High-Throughput Screening (MACHTS) were determined, combining exposure estimates with toxicity information. Exposures were estimated for > 300 unique chemical-product combinations from the Pharos databases, of which 73% (25%) had non-cancer (cancer) toxicity data available. We identified 55 substances as chemicals of high concern, with actual chemical contents exceeding MACHTS by up to a factor 105, in particular diisocyanates and formaldehyde. This stresses the need for more refined investigations to select safer alternatives. This study serves as a suitable starting point for prioritizing chemicals/products and thus developing safer and more sustainable building materials.
Collapse
Affiliation(s)
- Lei Huang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Amélie Ritscher
- Individual Contractor, Economy Division, United Nations Environment Programme, 8-14 Avenue de la Paix, CH-1211 Geneva 10, Switzerland
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Roseboom IC, Rosing H, Beijnen JH, Dorlo TPC. Skin tissue sample collection, sample homogenization, and analyte extraction strategies for liquid chromatographic mass spectrometry quantification of pharmaceutical compounds. J Pharm Biomed Anal 2020; 191:113590. [PMID: 33010602 DOI: 10.1016/j.jpba.2020.113590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
Quantification of pharmaceutical compounds in skin tissue is challenging because of low expected concentrations, small typical sample volumes, and the hard nature of the skin structure itself. This review provides a comprehensive overview of sample collection, sample homogenization and analyte extraction methods that have been used to quantify pharmaceutical compounds in skin tissue, obtained from animals and humans, using liquid chromatography-mass spectrometry. For each step in the process of sample collection to sample extraction, methods are compared to discuss challenges and provide practical guidance. Furthermore, liquid chromatographic-mass spectrometry considerations regarding the quality and complexity of skin tissue sample measurements are discussed, with emphasis on analyte recovery and matrix effects. Given that the true recovery of analytes from skin tissue is difficult to assess, the extent of homogenization plays a crucial role in the accuracy of quantification. Chemical or enzymatic solubilization of skin tissue samples would therefore be preferable as homogenization method.
Collapse
Affiliation(s)
- Ignace C Roseboom
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Scholten B, Kenny L, Duca RC, Pronk A, Santonen T, Galea KS, Loh M, Huumonen K, Sleeuwenhoek A, Creta M, Godderis L, Jones K. Biomonitoring for Occupational Exposure to Diisocyanates: A Systematic Review. Ann Work Expo Health 2020; 64:569-585. [PMID: 32313948 PMCID: PMC7328470 DOI: 10.1093/annweh/wxaa038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/14/2022] Open
Abstract
Diisocyanates are a group of chemicals that are widely used in occupational settings. They are known to induce various health effects, including skin- and respiratory tract sensitization resulting in allergic dermatitis and asthma. Exposure to diisocyanates has been studied in the past decades by using different types of biomonitoring markers and matrices. The aim of this review as part of the HBM4EU project was to assess: (i) which biomarkers and matrices have been used for biomonitoring diisocyanates and what are their strengths and limitations; (ii) what are (current) biomonitoring levels of the major diisocyanates (and metabolites) in workers; and (iii) to characterize potential research gaps. For this purpose we conducted a systematic literature search for the time period 2000-end 2018, thereby focussing on three types of diisocyanates which account for the vast majority of the total isocyanate market volume: hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), and 4,4'-methylenediphenyl diisocyanate (MDI). A total of 28 publications were identified which fulfilled the review inclusion criteria. The majority of these studies (93%) investigated the corresponding diamines in either urine or plasma, but adducts have also been investigated by several research groups. Studies on HDI were mostly in the motor vehicle repair industry [with urinary hexamethylene diamine result ranging from 0.03 to 146.5 µmol mol-1 creatinine]. For TDI, there is mostly data on foam production [results for urinary toluene diamine ranging from ~0.01 to 97 µmol mol-1 creatinine] whereas the available MDI data are mainly from the polyurethane industry (results for methylenediphenyl diamine range from 0.01 to 32.7 µmol mol-1 creatinine). About half of the studies published were prior to 2010 hence might not reflect current workplace exposure. There is large variability within and between studies and across sectors which could be potentially explained by several factors including worker or workplace variability, short half-lives of biomarkers, and differences in sampling strategies and analytical techniques. We identified several research gaps which could further be taken into account when studying diisocyanates biomonitoring levels: (i) the development of specific biomarkers is promising (e.g. to study oligomers of HDI which have been largely neglected to date) but needs more research before they can be widely applied, (ii) since analytical methods differ between studies a more uniform approach would make comparisons between studies easier, and (iii) dermal absorption seems a possible exposure route and needs to be further investigated. The use of MDI, TDI, and HDI has been recently proposed to be restricted in the European Union unless specific conditions for workers' training and risk management measures apply. This review has highlighted the need for a harmonized approach to establishing a baseline against which the success of the restriction can be evaluated.
Collapse
Affiliation(s)
- Bernice Scholten
- Risk Assessment for Products in Development, TNO Quality of Life, Zeist, The Netherlands
| | - Laura Kenny
- Health and Safety Executive (HSE), Harpur Hill, Buxton, UK
| | - Radu-Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, Dudelange, Luxembourg
| | - Anjoeka Pronk
- Risk Assessment for Products in Development, TNO Quality of Life, Zeist, The Netherlands
| | | | - Karen S Galea
- Centre for Human Exposure Science (CHES), Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Miranda Loh
- Centre for Human Exposure Science (CHES), Institute of Occupational Medicine (IOM), Edinburgh, UK
| | | | - Anne Sleeuwenhoek
- Centre for Human Exposure Science (CHES), Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Matteo Creta
- Centre Environment and Health, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- Centre Environment and Health, KU Leuven, Leuven, Belgium
- External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Kate Jones
- Health and Safety Executive (HSE), Harpur Hill, Buxton, UK
| |
Collapse
|
4
|
Exposures and urinary biomonitoring of aliphatic isocyanates in construction metal structure coating. Int J Hyg Environ Health 2020; 226:113495. [PMID: 32120250 DOI: 10.1016/j.ijheh.2020.113495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Isocyanates are highly reactive chemicals used widely in metal structure coating applications in construction. Isocyanates are potent respiratory and skin sensitizers and a leading cause of occupational asthma. At present, there is no cure for isocyanate asthma and no biomarkers of early disease. Exposure reduction is considered the most effective preventive strategy. To date, limited data are available on isocyanate exposures and work practices in construction trades using isocyanates, including metal structure coatings. OBJECTIVES The primary objectives of this work were: i) to characterize isocyanate inhalation and dermal exposures among painters during metal structure coating tasks in construction; and ii) to assess the adequacy of existing work practices and exposure controls via urinary biomonitoring pre- and post-shift. METHODS Exposures to aliphatic isocyanates based on 1,6-hexamethylene diisocyanate (1,6-HDI) and its higher oligomers (biuret, isocyanurate and uretdione) were measured among 30 workers performing painting of bridges and other metal structures in several construction sites in the Northeastern USA. Exposure assessment included simultaneous measurement of personal inhalation exposures (n = 20), dermal exposures (n = 22) and body burden via urinary biomonitoring pre- and post-shift (n = 53). Contextual information was collected about tasks, processes, materials, work practices, personal protective equipment (PPEs) and exposure controls, work histories, and environmental conditions. RESULTS Breathing zone concentrations were the highest for biuret (median, 18.4 μg/m3), followed by 1,6-HDI monomer (median, 3.5 μg/m3), isocyanurate (median, 3.4 μg/m3) and uretdione (median, 1.7 μg/m3). The highest exposures, measured during painting inside an enclosed bridge on a hot summer day, were: 10,288 μg/m3 uretdione; 8,240 μg/m3 biuret; and 947 μg/m3 1,6-HDI. Twenty percent of samples were above the NIOSH ceiling exposure limit for 1,6- HDI (140 μg/m3) and 35% of samples were above the UK-HSE ceiling for total isocyanate group (70 μg NCO/m3). Isocyanate loading on the gloves was generally high, with a median of 129 μg biuret/pair and maximum of 60.8 mg biuret/pair. The most frequently used PPEs in the workplace were half-face organic vapor cartridge (OVC) respirators, disposable palmar dip-coated polymer gloves, and cotton coveralls. However, 32% of workers didn't wear any respirator, 47% wore standard clothing with short-sleeve shirts and 14% didn't wear any gloves while performing tasks involving isocyanates. Based on biomonitoring results, 58.4% of urine samples exceeded the biological monitoring guidance value (BMGV) of 1 μmol hexamethylene diamine (HDA)/mol creatinine. Post-shift geometric mean HDA normalized to specific gravity increased by 2.5-fold compared to pre-shift (GM, 4.7 vs. 1.9 ng/mL; p value, < 0.001), and only 1.4-fold when normalized to creatinine. CONCLUSIONS Exposure and biomonitoring results, coupled with field observations, support the overall conclusions that (i) substantial inhalation and dermal exposures to aliphatic isocyanates occur during industrial coating applications in construction trades; that (ii) the current work practices and exposure controls are not adequately protective. High urinary creatinine values in the majority of workers, coupled with significant cross-shift increases and filed observations, point to the need for further investigations on possible combined effects of heat stress, dehydration, and nutritional deficiencies on kidney toxicity. Implementation of comprehensive exposure control programs and increased awareness are warranted in order to reduce isocyanate exposures and associated health risks among this cohort of construction workers.
Collapse
|
5
|
Shakik S, Arrandale V, Holness DL, MacLeod JS, McLeod CB, Peter A, Demers PA. Dermatitis among workers in Ontario: results from the Occupational Disease Surveillance System. Occup Environ Med 2019; 76:625-631. [PMID: 31320492 PMCID: PMC6824611 DOI: 10.1136/oemed-2018-105667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/24/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022]
Abstract
Objectives Dermatitis is the most common occupational skin disease, and further evidence is needed regarding preventable risk factors. The Occupational Disease Surveillance System (ODSS) derived from administrative data was used to investigate dermatitis risk among industry and occupation groups in Ontario. Methods ODSS cohort members were identified from Workplace Safety and Insurance Board (WSIB) accepted lost time claims. A case was defined as having ≥2 dermatitis physician billing claims during a 12-month period within 3 years of cohort entry. A 3-year look-back period prior to cohort entry was used to exclude prevalent cases without a WSIB claim. Workers were followed for 3 years or until dermatitis diagnosis, age 65 years, emigration, death or end of follow-up (31 December 2016), whichever occurred first. Age-adjusted and sex-adjusted Cox proportional hazard models estimated HRs and 95% CIs. The risk of dermatitis was explored using a job exposure matrix that identifies exposure to asthmagens, many of which also cause contact dermatitis. Results Among 597 401 workers, 23 843 cases of new-onset dermatitis were identified. Expected elevated risks were observed among several groups including furniture and fixture industries, food and beverage preparation and chemicals, petroleum, rubber, plastic and related materials processing occupations and workers exposed to metal working fluids and organic solvents. Decreased risk was observed among farmers, nurses and construction industries, and occupations exposed to latex and indoor cleaning products. Conclusions ODSS can contribute to occupational dermatitis surveillance in Ontario by identifying occupational groups at risk of dermatitis that can then be prioritised for prevention activities.
Collapse
Affiliation(s)
- Sharara Shakik
- Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Arrandale
- Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Dorothy Linn Holness
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Occupational Health, St Michael's Hospital, Toronto, Ontario, Canada
| | - Jill S MacLeod
- Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Christopher B McLeod
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Peter
- Population Health and Prevention, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Paul A Demers
- Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Cui G, Wang J, Wang X, Li W, Zhang X. Preparation and Properties of Narrowly Dispersed Polyurethane Nanocapsules Containing Essential Oil via Phase Inversion Emulsification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10799-10807. [PMID: 30256627 DOI: 10.1021/acs.jafc.8b02406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Narrowly dispersed polyurethane (PU) nanocapsules containing lavender essential oil (LO) were fabricated by polyaddition of toluene diisocyanate (TDI) trimer with polyol using a phase inversion emulsification technique. The particle size distribution (PSD), surface morphology, structure, encapsulation parameters, release properties, and thermal stability of nanocapsules have been characterized using a laser particle size analyzer (LPSA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectrum (FTIR), and thermogravimetric analysis (TGA), respectively. Experimental results demonstrate that the nanocapsules have a smaller size (ca. 268 nm), regular sphericity, uniform particle size (polydispersity index, PDI = 0.078), clear core-shell structure, and smooth surface. When the ratio of LO to TDI trimer is 5:10, the yield, encapsulation efficiency, and loading capacity of the nanocapsules can reach a maximum of 70.7%, 98.6%, and 64.8%, respectively. Furthermore, the release experiments showed that the cumulative release of LO from nanocapsules was only about 17% at room temperature and about 32% at 50 °C even after 20 days.
Collapse
Affiliation(s)
- Guangwen Cui
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Jianping Wang
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Xuechen Wang
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Wei Li
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| | - Xingxiang Zhang
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , P. R. China
| |
Collapse
|
7
|
Hu J, Cantrell P, Nand A. Comprehensive Biological Monitoring to Assess Isocyanates and Solvents Exposure in the NSW Australia Motor Vehicle Repair Industry. Ann Work Expo Health 2018; 61:1015-1023. [PMID: 29028250 DOI: 10.1093/annweh/wxx064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
Urethane products that contain isocyanates are extensively used in the motor vehicle repair (MVR) industry and other industries such as furniture and cabinet-making as two-pack spray paints, clears, and adhesives. Attention has recently been refocussed on isocyanate-containing chemicals, particularly in paints. The spray painters in the MVR industry had a propensity to develop industrial asthma at a rate 80 times higher than the general public, which was previously reported in the UK. To track workers exposure to isocyanates, urine samples were collected from 196 spray painters who worked mainly in 78 MVR shops across 54 New South Wales (NSW) towns and suburbs. The biological monitoring also covered exposure testing to a wide variety of solvents including aromatic hydrocarbons, ketones, and alcohols. The main finding of the study was that 2.6% of the spray painters surveyed in the MVR industry in NSW that handled isocyanate-containing paints showed exposure to isocyanates; with 1.0% being moderately exposed, which is more than twice the current UK's Health and Safety Executive (HSE) Biological Monitoring Guidance Value (BMGV) of 1 µmol mol-1 creatinine. Potential exposures to toluene (a solvent often found in paint thinners) was monitored via hippuric acid (HA) urine levels and showed 2.6% of the spray painters surveyed to be over the US' American Conference of Government Industrial Hygienists (ACGIH) Biological Exposure Index (BEI) of 1010 mmol/mole creatinine for HA. The other solvents or their metabolites were all below their respective BEI; these comprised benzene, xylene, ethyl benzene, methyl ethyl ketone, acetone, methanol, and ethanol. These findings indicate that isocyanates and certain solvents exposure were occurring in the NSW Australia vehicle repair industry, albeit at lower levels than previous occupational biological monitoring studies that showed higher exposure levels, particularly for isocyanates. One reason for this could be the increasing use of water-based paints in the industry, resulting in lower than expected isocyanate and solvent metabolite levels detected in this more recent study. Further, the completion of sample context form, along with spot urine collection in relation to the isocyanate exposure monitoring work details will provide crucial information to interpret the biological analysis results. The development of new biomarkers of isocyanate oligomer-derived triamines should be incorporated in the assessment of isocyanate exposure in the MVR industry to provide a more complete picture of isocyanate exposure.
Collapse
Affiliation(s)
- Jimmy Hu
- Chemical Analysis Branch, TestSafe, SafeWork NSW, Australia
| | | | - Aklesh Nand
- Hygiene and Toxicology Unit, SafeWork NSW, Australia
| |
Collapse
|
8
|
Fabrication and characterization of core–shell novel PU microcapsule using TDI trimer for release system. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Ceballos DM, Sasakura M, Reeb-Whitaker C, Broadwater K, Milbauer M, Crampton R, Dills R, Yost MG. Testing of glove efficacy against sprayed isocyanate coatings utilizing a reciprocating permeation panel. ACTA ACUST UNITED AC 2013; 58:50-9. [PMID: 24366204 DOI: 10.1093/annhyg/met060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Modify a permeation panel to evaluate dermal protective clothing for resistance to sprayed coatings with minimal variability in spray paint loading across the test panel. Determine isocyanate protection effectiveness of natural rubber latex (5 mil or 0.13mm), nitrile rubber (5 mil or 0.13mm), and butyl rubber (13 mil or 0.33mm) glove materials against a commonly used automotive clear coat formulation. The latex and nitrile gloves were the type used by the local autobody spray painters. METHODS Glove materials were tested by spraying paint onto an automated reciprocating permeation panel (permeation panel II). Temperature, relative humidity, and spray conditions were controlled to optimize paint loading homogeneity as evaluated by gravimetric analysis. Isocyanate permeation was measured using 1-(2-pyridyl)-piperazine-coated fiber-glass filters analyzed by a modified version of the OSHA 42/PV2034 methods. RESULTS Latex exhibited a higher permeation rate compared with nitrile for isocyanates (1,6-hexamethylene diisocyanate (HDI) and isophorone diisocyanate monomers) and both materials presented permeation at all of the time points suggesting a fast isocyanate breakthrough. Butyl material exhibited no permeation or breakthrough for isocyanates under the tested conditions. The spray application at 69±8°F was optimally homogeneous at 45±0.5mg weight of dry clear coat per 5cm(2). CONCLUSIONS The permeation panel II is a reliable method to assess dermal protective clothing performance against polymerizing coatings. Commonly used 5-mil (0.13-mm) latex and nitrile gloves were determined to be ineffective barriers against the isocyanates found in a commonly used clear-coat formulation while butyl gloves were protective.
Collapse
Affiliation(s)
- Diana M Ceballos
- Department of Environmental and Occupational Health Sciences, University of Washington, Box 357234, Seattle, WA 98195-7234, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Jones K, Cocker J, Piney M. Isocyanate exposure control in motor vehicle paint spraying: evidence from biological monitoring. ACTA ACUST UNITED AC 2012; 57:200-9. [PMID: 22986425 DOI: 10.1093/annhyg/mes056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS The purpose of this work was to assess the changes in control of exposure to hexamethylene diisocyanate based paints used in vehicle spraying after a Health & Safety Executive (HSE) national project. METHODS Paint sprayers and managers from motor vehicle repair (MVR) bodyshops across the UK, were invited to one of 32 Safety and Health Awareness Days (SHADs) to increase their understanding of the hazards, and practical ways of controlling of exposure to isocyanate based paints. Exposure measurement based on biological monitoring was offered, free of charge, to each of the roughly 4000 participants and used to assess the effectiveness of controls and methods of working. Results are compared with pre and post SHAD measurements. RESULTS Urine samples were received from 995 paint sprayers. Hexamethylene diamine (HDA) levels in urine, indicative of exposure to hexamethylene diisocyanate (HDI), were significantly lower (Mann-Whitney, p<0.0001) than had been seen in a wider population from previous HSE inspections and routine sampling. Where a sprayer's urinary HDA was above the quantification limit they were asked to send another sample after reviewing and improving exposure control measures. The results from these repeat samples were significantly lower than the original results. There was no difference in the exposures of sprayers using air-fed half-mask face-pieces compared with visor type air-fed breathing apparatus, or between spray booths and rooms. CONCLUSIONS The analysis of HDA in urine is a useful technique for assessing exposure to isocyanates in paint sprayers. The simplicity of this approach has allowed wide-scale use of biological monitoring in an industry dominated by small and micro businesses. Biological monitoring of exposure has enabled individual companies, and sprayers, to check that their control measures are working. This study showed overall lower levels of HDA in paint sprayers following SHADs. These lower levels have been maintained across a wider population of UK paint sprayers over the succeeding years. Whilst there may be many reasons for the reduction in exposure, the weight of evidence suggests that the key messages about exposure control measures, delivered through the SHADs and other means, were influential.
Collapse
Affiliation(s)
- Kate Jones
- Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JN, UK.
| | | | | |
Collapse
|
11
|
Arrandale V, Meijster T, Pronk A, Doekes G, Redlich CA, Holness DL, Heederik D. Skin symptoms in bakery and auto body shop workers: associations with exposure and respiratory symptoms. Int Arch Occup Environ Health 2012; 86:167-75. [PMID: 22411214 PMCID: PMC3555349 DOI: 10.1007/s00420-012-0760-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/01/2012] [Indexed: 11/25/2022]
Abstract
Purpose Despite the importance of skin exposure, studies of skin symptoms in relation to exposure and respiratory symptoms are rare. The goals of this study were to describe exposure–response relationships for skin symptoms, and to investigate associations between skin and respiratory symptoms in bakery and auto body shop workers. Methods Data from previous studies of bakery and auto body shop workers were analyzed. Average exposure estimates for wheat allergen and isocyanates were used. Generalized linear models were constructed to describe the relationships between exposure and skin symptoms, as well as between skin and respiratory symptoms. Results Data from 723 bakery and 473 auto body shop workers were analyzed. In total, 5.3 % of bakery and 6.1 % of auto body shop workers were female; subjects’ mean age was 39 and 38 years, respectively. Exposure–response relationships were observed in auto body shop workers for itchy or dry skin (PR 1.55, 95 % CI 1.2–2.0) and work-related itchy skin (PR 1.97, 95 % CI 1.2–3.3). A possible exposure–response relationship for work-related itchy skin in bakery workers did not reach statistical significance. In both groups, reporting skin symptoms was strongly and significantly associated with reporting respiratory symptoms, both work-related and non-work-related. Conclusions Exposure–response relationships were observed for skin symptoms in auto body shop workers. The lack of significant exposure–response associations in bakery workers should be interpreted cautiously. Workers who reported skin symptoms were up to four times more likely to report respiratory symptoms. Improved awareness of both skin and respiratory outcomes in exposed workers is needed. Electronic supplementary material The online version of this article (doi:10.1007/s00420-012-0760-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Victoria Arrandale
- Centre for Research Expertise in Occupational Disease, University of Toronto, 223 College St, Toronto, ON M5T 1R4, Canada.
| | | | | | | | | | | | | |
Collapse
|
12
|
Thomasen JM, Nylander-French LA. Penetration patterns of monomeric and polymeric 1,6-hexamethylene diisocyanate monomer in human skin. ACTA ACUST UNITED AC 2012; 14:951-60. [PMID: 22293954 DOI: 10.1039/c2em10546b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated penetration patterns of monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI), experimentally and as part of commercial products, in excised full-thickness human skin at 5, 10, 30, or 60 min after exposure. We observed that both monomeric and polymeric HDI were readily absorbed into the skin and that the clearcoat composition affects the penetration rate of the individual isocyanates. The short-term absorption rates for HDI monomer, biuret, and isocyanurate were determined and used to estimate the exposure time required to reach a body burden equal to the American Conference of Governmental Industrial Hygienists (ACGIH) inhalation threshold limit value (TLV) or Oregon State occupational exposure limit (OEL). Oregon is the only government entity in the United States to promulgate a short-term exposure limit (STEL) for HDI-based polyisocyanates biuret and isocyanurate. Based on these absorption rates for a slow-drying clearcoat after 10 min (1.33 μg cm(-2) h(-1)) or 60 min (0.219 μg cm(-2) h(-1)), we calculated that 6.5 and 40 min dermal exposure, respectively, is required to achieve a dose of HDI equivalent to the ACGIH TLV. For biuret, the time to achieve a dose equivalent to the Oregon OEL for slow-drying clearcoat was much shorter (<31 min) than that for fast-drying clearcoat (618 min). Isocyanurate had the shortest skin absorption times regardless of clearcoat formulation (14 s-1.7 min). These results indicate that the dose received through dermal exposure to HDI-containing clearcoats has a significant potential to exceed the dose equivalent to that received through inhalation exposure at established regulatory limits. A critical need exists to monitor dermal exposure quantitatively in exposed workers, to use proper protective equipment to reduce dermal exposure, and to re-evaluate regulatory exposure limits for isocyanates.
Collapse
Affiliation(s)
- Jennifer M Thomasen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431, Rosenau Hall, Chapel Hill, NC, USA
| | | |
Collapse
|
13
|
De Vries TT, Bello D, Stowe MH, Harari H, Slade MD, Redlich CA. Transferability of aliphatic isocyanates from recently applied paints to the skin of auto body shop workers. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2012; 9:699-711. [PMID: 23067057 PMCID: PMC11635001 DOI: 10.1080/15459624.2012.728893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Isocyanates, the essential cross-linking chemicals used to make polyurethane, are potent sensitizers and a common cause of occupational asthma. In addition, isocyanate (NCO) skin contact may contribute to the development of isocyanate asthma. Prior work has shown that unbound NCO can persist on recently spray coated auto body parts after appearing dry. The purpose of this study was to assess whether isocyanate skin exposure can result from handling such surfaces. Quantitative surface and skin wipe sampling for total NCO was performed on test panels sprayed with aliphatic isocyanate coatings, and on paired skin samples obtained from participants who had rubbed the recently dried surfaces. Surface and skin samples, obtained from 18 workers in five auto body shops, were prepared following NIOSH method 5525 (modified for skin samples), and isocyanate species derived from hexamethylene diisocyanate and isophorone diisocyanate were analyzed using high-performance liquid chromatography with ultraviolet and fluorescence detectors. Quantifiable unbound NCO species were detected on 84.2% of all sprayed surfaces sampled after initially considered dry. Only 7 out of a total of 104 (6.7%) non-compounded skin samples obtained after contact with the recently dried coatings had detectable quantities of free NCO. The 7 positive samples, all obtained at the initial sampling time (t(0)), had a geometric mean of 0.016 μg NCO cm(-2) (range: 0.002-0.88 μg NCO cm(-2)). Only 1 of 12 (8.3%) of skin samples obtained after compounding contained detectable free NCO. The risk of substantial human isocyanate skin exposure from contact with the dry appearing (yet not fully cured) isocyanate coatings evaluated in this study appears to be low, although other isocyanate coatings and tasks may pose a greater risk of NCO skin exposure.
Collapse
Affiliation(s)
- Thomas T De Vries
- Yale Occupational and Environmental Medicine Program, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
14
|
MDHS 25 Revisited: Part 2, Modified Sampling and Analytical Procedures Applied to HDI-Based Isocyanates. ACTA ACUST UNITED AC 2011; 56:466-80. [DOI: 10.1093/annhyg/mer114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
15
|
Thomasen JM, Fent KW, Nylander-French LA. Development of a sampling patch to measure dermal exposures to monomeric and polymeric 1,6-hexamethylene diisocyanate: a pilot study. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2011; 8:709-717. [PMID: 22074266 DOI: 10.1080/15459624.2011.626744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The purpose of this study was to develop and evaluate a patch sampler to monitor dermal exposures to monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI) in the automotive refinishing industry. Different patch materials were used to construct the patches, and patches impregnated with a derivatizing solution were compared with those that were not impregnated. We observed that impregnated felt patches measured significantly more HDI monomer (p = 0.04) than non-impregnated patches in a controlled experiment. Both impregnated and non-impregnated patches were compared with the tape-strip method by monitoring three spray painters' dermal exposure to monomeric and polymeric HDI. Isocyanurate was the predominant species measured by all three sampler types with detectable levels in >86% of samples. Overall, tape-strips of exposed skin measured lower levels of monomeric and polymeric HDI than impregnated patch samplers at the same sampling site on the skin. Unlike tape-strips, impregnated patches are not as prone to evaporative or reactive losses or losses due to rapid penetration into the skin. Further investigations are warranted to evaluate these and other methods to measure dermal exposure to workers under occupational conditions to better understand the relationship between dermal exposure and internal dose.
Collapse
Affiliation(s)
- Jennifer M Thomasen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, North Carolina 27599-7431, USA
| | | | | |
Collapse
|
16
|
Ceballos DM, Fent KW, Whittaker SG, Gaines LGT, Thomasen JM, Flack SL, Nylander-French LA, Yost MG, Reeb-Whitaker CK. Survey of dermal protection in Washington State collision repair industry. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2011; 8:551-560. [PMID: 21830873 DOI: 10.1080/15459624.2011.602623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Substantial exposure to isocyanates may occur during spray painting in autobody shops, yet information is lacking on the efficacy of the protective clothing used during spray painting. We investigated the personal and workplace factors associated with painters' dermal protection use during a large-scale exposure assessment study. Survey data indicated that 69% of painters always used gloves, with latex gloves (47%) and nitrile gloves (34%) used most frequently. Among latex glove users, 53% used thin latex (0.05-0.13 mm), 6% used medium latex (0.15-0.20 mm), and 12% used thick latex (> 0.20 mm). Among nitrile glove users, 27% used thin nitrile and 45% used medium nitrile. Sixty-three percent of painters always used coveralls, 44% preferring one particular brand. Although overspray presents an opportunity for dermal exposure to the neck and face, only 19% of painters protected these areas with personal protective equipment. Painters who always used coveralls were more likely to use gloves (odds ratio = 7.9, p = 0.061). Painters who reported ever having smoked cigarettes used gloves (p = 0.05) and coveralls (p = 0.04) more frequently. Painters who sprayed more than 34 clear coat jobs per month used coveralls most frequently (p = 0.038). Exact logistic regressions along with random sample calculations indicated that the survey results were independent of the shops. Because of the small sample size in this study, future research is warranted to corroborate these results. Studying the effectiveness of gloves and coveralls against polyurethane paints and understanding the underlying motivators and preferences for painters and business owners is needed for the development of best practices for the selection and use of dermal protection.
Collapse
Affiliation(s)
- Diana M Ceballos
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thomasen JM, Fent KW, Reeb-Whitaker C, Whittaker SG, Nylander-French LA. Field comparison of air sampling methods for monomeric and polymeric 1,6-hexamethylene diisocyanate. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2011; 8:161-178. [PMID: 21347958 DOI: 10.1080/15459624.2011.555711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study was to critically compared 13 different air samplers for their ability to monitor air exposures to monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI) in the automotive refinishing industry. Using both fast- and slow-drying clearcoat, we tested the following types of samplers: single- and dual-stage 37-mm polypropylene (PP) and polystyrene (PS) samplers (open- and closed-face), IOM (with plastic and stainless steel inserts), OSHA42, IsoChek, and WA-DOSH samplers. Midget impingers with frit were used as reference samplers. We observed the PP, PS, and IOM samplers to measure greater levels of HDI monomer and biuret when a fast-drying clearcoat was applied compared with a slow-drying clearcoat. When a slow-drying clearcoat was applied, the open-face PP and PS samplers measured significantly more monomeric and polymeric HDI (2-fold; p < 0.003) than the closed-face PP and PS samplers. We determined that significantly more monomeric and polymeric HDI were measured by impingers (1.3-1.9-fold) compared with single-stage PP/PS (N = 59), dual-stage PP/PS (N = 59), or IOM (N = 24) samplers. However, when stratified by cassette characteristics, the open-face single-stage PP and PS samplers performed equally to the impingers for HDI monomer when a fast-drying clearcoat was applied, and for all analytes when a slow-drying clearcoat was applied. Significantly higher HDI monomer concentrations (1.2-3.1-fold; p = 0.001) were measured with OSHA42 compared with the impinger. The IsoChek did not detect HDI monomer, and of the three samplers analyzed by laboratories other than UNC (i.e., OSHA42, IsoChek, and WA-DOSH), the WA-DOSH was in the best agreement with the impingers. The influence of clearcoat drying time on the sampler's ability to measure monomeric and polymeric HDI emphasizes the importance of the speciation of diisocyanates in chemical analysis and the careful consideration for the selection of the air sampler to be used when measuring exposures during automotive spray painting.
Collapse
Affiliation(s)
- Jennifer M Thomasen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Isocyanates are reactive chemicals and thousands of workers may be exposed to them during their manufacture and use in a wide range of products. They are classed as sensitizers and are a major cause of occupational asthma in the UK. Workplace exposure limits are low and control of exposure often depends on personal respiratory protection. Biological monitoring is increasingly used to assess exposure and the efficacy of control measures, including the behavioural aspects of controls. Biological monitoring methods are available for the most common isocyanates hexamethylene diisocyanate, toluene diisocyanate, isophorone diisocyanate, and methylenediphenyl diisocyanate. They are based on the analysis of hexamethylene diamine, toluene diamine, isopherone diamine, and methylenediamine released after hydrolysis of isocyanate-protein adducts in urine or blood. Volunteer and occupational studies show good correlations between inhalation exposure to isocyanate monomers and isocyanate-derived diamines in urine or blood. However, occupational exposure to isocyanates is often to a mixture of monomers and oligomers so there is some uncertainty comparing biological monitoring results with airborne exposure to 'total NCO'. Nevertheless, there is a substantial body of work demonstrating the utility of biological monitoring as a tool to assess exposure and the efficacy of controls, including how they are used in practice. Non-health-based biological monitoring guidance values are available to help target when and where further action is required. Occupational hygienists will need to use their knowledge and experience to determine the relative contributions of different routes of exposure and how controls can be improved to reduced the risk of ill health.
Collapse
Affiliation(s)
- John Cocker
- Health and Safety Laboratory, Harpur Hill Buxton S10 3PT, UK.
| |
Collapse
|
19
|
Gaines LGT, Fent KW, Flack SL, Thomasen JM, Whittaker SG, Nylander-French LA. Factors affecting variability in the urinary biomarker 1,6-hexamethylene diamine in workers exposed to 1,6-hexamethylene diisocyanate. ACTA ACUST UNITED AC 2010; 13:119-27. [PMID: 20978689 DOI: 10.1039/c0em00122h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although urinary 1,6-hexamethylene diamine (HDA) is a useful biomarker of exposure to 1,6-hexamethylene diisocyanate (HDI), a large degree of unexplained intra- and inter-individual variability exists between estimated HDI exposure and urine HDA levels. We investigated the effect of individual and workplace factors on urine HDA levels using quantitative dermal and inhalation exposure data derived from a survey of automotive spray painters exposed to HDI. Painters' dermal and breathing-zone HDI-exposures were monitored over an entire workday for up to three separate workdays, spaced approximately one month apart. One urine sample was collected before the start of work with HDI-containing paints, and multiple samples were collected throughout the workday. Using mixed effects multiple linear regression modeling, coverall use resulted in significantly lower HDA levels (p = 0.12), and weekday contributed to significant variability in HDA levels (p = 0.056). We also investigated differences in urine HDA levels stratified by dichotomous and classification covariates using analysis of variance. Use of coveralls (p = 0.05), respirator type worn (p = 0.06), smoker status (p = 0.12), paint-booth type (p = 0.02), and more than one painter at the shop (p = 0.10) were all found to significantly affect urine HDA levels adjusted for creatinine concentration. Coverall use remained significant (p = 0.10), even after adjusting for respirator type. These results indicate that the variation in urine HDA level is mainly due to workplace factors and that appropriate dermal and inhalation protection is required to prevent HDI exposure.
Collapse
Affiliation(s)
- Linda G T Gaines
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, CB #7431, Rosenau Hall, Chapel Hill, NC 27599-7431, USA
| | | | | | | | | | | |
Collapse
|
20
|
Flack SL, Ball LM, Nylander-French LA. Occupational exposure to HDI: progress and challenges in biomarker analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2635-42. [PMID: 20176515 PMCID: PMC2889189 DOI: 10.1016/j.jchromb.2010.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/08/2009] [Accepted: 01/07/2010] [Indexed: 11/25/2022]
Abstract
1,6-Hexamethylene diisocyanate (HDI) is extensively used in the automotive repair industry and is a commonly reported cause of occupational asthma in industrialized populations. However, the exact pathological mechanism remains uncertain. Characterization and quantification of biomarkers resulting from HDI exposure can fill important knowledge gaps between exposure, susceptibility, and the rise of immunological reactions and sensitization leading to asthma. Here, we discuss existing challenges in HDI biomarker analysis including the quantification of N-acetyl-1,6-hexamethylene diamine (monoacetyl-HDA) and N,N'-diacetyl-1,6-hexamethylene diamine (diacetyl-HDA) in urine samples based on previously established methods for HDA analysis. In addition, we describe the optimization of reaction conditions for the synthesis of monoacetyl-HDA and diacetyl-HDA, and utilize these standards for the quantification of these metabolites in the urine of three occupationally exposed workers. Diacetyl-HDA was present in untreated urine at 0.015-0.060 μg/l. Using base hydrolysis, the concentration range of monoacetyl-HDA in urine was 0.19-2.2 μg/l, 60-fold higher than in the untreated samples on average. HDA was detected only in one sample after base hydrolysis (0.026 μg/l). In contrast, acid hydrolysis yielded HDA concentrations ranging from 0.36 to 10.1 μg/l in these three samples. These findings demonstrate HDI metabolism via N-acetylation metabolic pathway and protein adduct formation resulting from occupational exposure to HDI.
Collapse
Affiliation(s)
- Sheila L Flack
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431, Rosenau Hall, Chapel Hill, NC 27599-7431, USA
| | | | | |
Collapse
|
21
|
Gaines LGT, Fent KW, Flack SL, Thomasen JM, Ball LM, Richardson DB, Ding K, Whittaker SG, Nylander-French LA. Urine 1,6-hexamethylene diamine (HDA) levels among workers exposed to 1,6-hexamethylene diisocyanate (HDI). ACTA ACUST UNITED AC 2010; 54:678-91. [PMID: 20530123 DOI: 10.1093/annhyg/meq041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Urinary 1,6-hexamethylene diamine (HDA) may serve as a biomarker for systemic exposure to 1,6-hexamethylene diisocyanate (HDI) in occupationally exposed populations. However, the quantitative relationships between dermal and inhalation exposure to HDI and urine HDA levels have not been established. We measured acid-hydrolyzed urine HDA levels along with dermal and breathing-zone levels of HDI in 48 automotive spray painters. These measurements were conducted over the course of an entire workday for up to three separate workdays that were spaced approximately 1 month apart. One urine sample was collected before the start of work with HDI-containing paints and subsequent samples were collected during the workday. HDA levels varied throughout the day and ranged from nondetectable to 65.9 microg l(-1) with a geometric mean and geometric standard deviation of 0.10 microg l(-1) +/- 6.68. Dermal exposure and inhalation exposure levels, adjusted for the type of respirator worn, were both significant predictors of urine HDA levels in the linear mixed models. Creatinine was a significant covariate when used as an independent variable along with dermal and respirator-adjusted inhalation exposure. Consequently, exposure assessment models must account for the water content of a urine sample. These findings indicate that HDA exhibits a biphasic elimination pattern, with a half-life of 2.9 h for the fast elimination phase. Our results also indicate that urine HDA level is significantly associated with systemic HDI exposure through both the skin and the lungs. We conclude that urinary HDA may be used as a biomarker of exposure to HDI, but biological monitoring should be tailored to reliably capture the intermittent exposure pattern typical in this industry.
Collapse
Affiliation(s)
- Linda G T Gaines
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gaines LGT, Fent KW, Flack SL, Thomasen JM, Ball LM, Zhou H, Whittaker SG, Nylander-French LA. Effect of creatinine and specific gravity normalization on urinary biomarker 1,6-hexamethylene diamine. ACTA ACUST UNITED AC 2010; 12:591-9. [PMID: 20445846 DOI: 10.1039/b921073c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Urine amine levels used as biomarkers of diisocyanate exposure have usually been normalized with creatinine concentration. The suitability of using creatinine concentration or specific gravity for these biomarkers in exposure assessment has not been established. We investigated the effect of creatinine concentration and specific gravity on urine 1,6-hexamethylene diamine (HDA) levels in multiple mixed linear regression models using quantitative dermal and inhalation exposure data derived from a survey of automotive spray painters occupationally exposed to 1,6-hexamethylene diisocyanate (HDI). Painters' dermal and breathing-zone HDI exposure were monitored for an entire workday for up to three workdays spaced approximately one month apart. One urine sample was collected before the start of work with HDI-containing paints, and multiple samples were collected throughout the workday. Both creatinine concentration and specific gravity were highly significant predictors (p < 0.0001) of urine HDA levels. When these two were used together in the same model, creatinine remained highly significant (p < 0.0001), but specific gravity decreased in significance (p-values 0.10-0.17). We used different individual factors to determine which affected creatinine and specific gravity. Urine collection time was a highly significant predictor of specific gravity (p = 0.003) and creatinine concentration (p = 0.001). Smoker status was significant (p = 0.026) in the creatinine model. The findings indicate that creatinine concentration is more appropriate to account for urine water content than specific gravity and that creatinine is best used as an independent variable in HDI exposure assessment models instead of traditional urine normalization with creatinine concentration.
Collapse
Affiliation(s)
- Linda G T Gaines
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fent KW, Trelles Gaines LG, Thomasen JM, Flack SL, Ding K, Herring AH, Whittaker SG, Nylander-French LA. Quantification and statistical modeling--part II: dermal concentrations of monomeric and polymeric 1,6-hexamethylene diisocyanate. THE ANNALS OF OCCUPATIONAL HYGIENE 2009; 53:691-702. [PMID: 19635734 PMCID: PMC2758669 DOI: 10.1093/annhyg/mep048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 04/26/2009] [Indexed: 11/13/2022]
Abstract
We conducted a quantitative dermal and inhalation exposure assessment of monomeric and polymeric 1,6-hexamethylene diisocyanates (HDI) in 47 automotive spray painters from North Carolina and Washington State. We report here the use of linear mixed modeling (LMM) to identify the primary determinants of dermal exposure. Dermal concentrations of HDI, uretidone, biuret, and isocyanurate were significantly higher in 15 painters who did not wear coveralls or gloves (N = 51 paint tasks) than in 32 painters who did wear coveralls and gloves (N = 192 paint tasks) during spray painting. Regardless of whether protective clothing was worn, isocyanurate was the predominant species measured in the skin [geometric mean (GM) = 33.8 ng mm(-3)], with a 95% detection rate. Other polyisocyanates (GM < or = 0.17 ng mm(-3)) were detected in skin during <23% of the paint tasks. According to marginal R(2) statistics, mixed models generated in this study described no <36% of the variability in dermal concentrations of the different polyisocyanates measured in painters who did not wear protective clothing. These models also described 55% of the variability in dermal concentrations of isocyanurate measured in all painters (N = 288 paint tasks). The product of analyte-specific breathing-zone concentration (BZC) and paint time was the most significant variable in all the models. Through LMM, a better understanding of the exposure pathways governing individual polyisocyanate exposures may be achieved. In particular, we were able to establish a link between BZC and dermal concentration, which may be useful for exposure reconstruction and quantitatively characterizing the protective effect of coveralls and gloves. This information can be used to reduce dermal exposures and better protect automotive spray painters from potential adverse health effects.
Collapse
Affiliation(s)
- Kenneth W. Fent
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Linda G. Trelles Gaines
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer M. Thomasen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sheila L. Flack
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai Ding
- Department of Biostatistics and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy H. Herring
- Department of Biostatistics and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen G. Whittaker
- Safety and Health Assessment and Research for Prevention Program, Washington State Department of Labor and Industries, Olympia, WA, USA
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Fent KW, Gaines LGT, Thomasen JM, Flack SL, Ding K, Herring AH, Whittaker SG, Nylander-French LA. Quantification and statistical modeling--part I: breathing-zone concentrations of monomeric and polymeric 1,6-hexamethylene diisocyanate. THE ANNALS OF OCCUPATIONAL HYGIENE 2009; 53:677-89. [PMID: 19622637 PMCID: PMC2758668 DOI: 10.1093/annhyg/mep046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 04/26/2009] [Indexed: 11/14/2022]
Abstract
We conducted a repeated exposure-assessment survey for task-based breathing-zone concentrations (BZCs) of monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI) during spray painting on 47 automotive spray painters from North Carolina and Washington State. We report here the use of linear mixed modeling to identify the primary determinants of the measured BZCs. Both one-stage (N = 98 paint tasks) and two-stage (N = 198 paint tasks) filter sampling was used to measure concentrations of HDI, uretidone, biuret, and isocyanurate. The geometric mean (GM) level of isocyanurate (1410 microg m(-3)) was higher than all other analytes (i.e. GM < 7.85 microg m(-3)). The mixed models were unique to each analyte and included factors such as analyte-specific paint concentration, airflow in the paint booth, and sampler type. The effect of sampler type was corroborated by side-by-side one- and two-stage personal air sampling (N = 16 paint tasks). According to paired t-tests, significantly higher concentrations of HDI (P = 0.0363) and isocyanurate (P = 0.0035) were measured using one-stage samplers. Marginal R(2) statistics were calculated for each model; significant fixed effects were able to describe 25, 52, 54, and 20% of the variability in BZCs of HDI, uretidone, biuret, and isocyanurate, respectively. Mixed models developed in this study characterize the processes governing individual polyisocyanate BZCs. In addition, the mixed models identify ways to reduce polyisocyanate BZCs and, hence, protect painters from potential adverse health effects.
Collapse
Affiliation(s)
- Kenneth W. Fent
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Linda G. Trelles Gaines
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Jennifer M. Thomasen
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Sheila L. Flack
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Kai Ding
- Department of Biostatistics and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420, USA
| | - Amy H. Herring
- Department of Biostatistics and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420, USA
| | - Stephen G. Whittaker
- Safety & Health Assessment and Research for Prevention Program, Washington State Department of Labor and Industries, Olympia, WA 98504-4330, USA
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
25
|
Liljelind I, Norberg C, Egelrud L, Westberg H, Eriksson K, Nylander-French LA. Dermal and inhalation exposure to methylene bisphenyl isocyanate (MDI) in iron foundry workers. ACTA ACUST UNITED AC 2009; 54:31-40. [PMID: 19783835 DOI: 10.1093/annhyg/mep067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diisocyanates are a group of chemically reactive agents, which are used in the production of coatings, adhesives, polyurethane foams, and parts for the automotive industry and as curing agents for cores in the foundry industry. Dermal and inhalation exposure to methylene bisphenyl isocyanate (MDI) is associated with respiratory sensitization and occupational asthma. However, limited research has been performed on the quantitative evaluation of dermal and inhalation exposure to MDI in occupationally exposed workers. The objective of this research was to quantify dermal and inhalation exposure levels in iron foundry workers. Workers involved in mechanized moulding and mechanized production of cores were monitored: 12 core makers, 2 core-sand preparers, and 5 core installers. Personal breathing-zone levels of MDI were measured using impregnated filter sampling. Dermal exposure to MDI was measured using a tape-strip technique. Three or five consecutive tape-strip samples were collected from five exposed skin areas (right and left forefingers, left and right wrists, and forehead). The average personal air concentration was 0.55 microg m(-3), 50-fold lower than the Swedish occupational exposure limit of 30 microg m(-3). The core makers had an average exposure of 0.77 microg m(-3), which was not significantly different from core installers' and core-sand preparers' average exposure of 0.16 microg m(-3) (P = 0.059). Three core makers had a 10-fold higher inhalation exposure than the other core makers. The core makers' mean dermal exposure at different skin sites varied from 0.13 to 0.34 microg while the two other groups' exposure ranged from 0.006 to 0.062 microg. No significant difference was observed in the MDI levels between the skin sites in a pairwise comparison, except for left forefinger compared to left and right wrist (P < 0.05). In addition, quantifiable but decreasing levels of MDI were observed in the consecutive tape strip per site indicating MDI penetration into the skin. This study indicates that exposure to MDI can be quantified on workers' skin even if air levels are close to unquantifiable. Thus, the potential for uncured MDI to deposit on and penetrate into the skin is demonstrated. Therefore, dermal exposure along with inhalation exposure to MDI should be measured in the occupational settings where MDI is present in order to shed light on their roles in the development of occupational isocyanate asthma.
Collapse
Affiliation(s)
- I Liljelind
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
26
|
Gallardo E, Barroso M, Queiroz JA. LC-MS: a powerful tool in workplace drug testing. Drug Test Anal 2009; 1:109-15. [DOI: 10.1002/dta.26] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Maestrelli P, Boschetto P, Fabbri LM, Mapp CE. Mechanisms of occupational asthma. J Allergy Clin Immunol 2009; 123:531-42; quiz 543-4. [DOI: 10.1016/j.jaci.2009.01.057] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 11/29/2022]
|
28
|
Bachelder EM, Beaudette TT, Broaders KE, Paramonov SE, Dashe J, Fréchet JMJ. Acid-degradable polyurethane particles for protein-based vaccines: biological evaluation and in vitro analysis of particle degradation products. Mol Pharm 2008; 5:876-84. [PMID: 18710254 DOI: 10.1021/mp800068x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation byproduct of the particles was synthesized and tested in vitro for toxicity indicating an LC 50 of 12,500 microg/mL. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation byproduct inside RAW macrophages was at its highest level after 24 h of culture and was efficiently exocytosed until it was no longer detectable after 4 days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with nontoxic byproducts, which may find use in various biomedical applications including protein-based vaccines.
Collapse
Affiliation(s)
- Eric M Bachelder
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
| | | | | | | | | | | |
Collapse
|