1
|
Nowicka D, Garbaczewski K, Łuczak T, Forte G, Consiglio G, Kubicki M, Patroniak V, Gorczyński A. Application of a simple copper(II) complex compound as an epinephrine selective voltammetric sensor in the presence of uric acid under aqueous conditions. Dalton Trans 2024. [PMID: 39618335 DOI: 10.1039/d4dt02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Developing sensors with high sensitivity and selectivity for detecting neurotransmitters under near-physiological conditions is a major challenge and is crucial for preventing diseases of the nervous, cardiovascular, and endocrine systems. Most existing systems that meet these requirements involve either complicated synthesis processes, require sulfur groups, or are not functional under aqueous conditions. Herein, we report that the self-organisation of a simple imine ligand L with copper(II) tetrafluoroborate leads to the formation of a [CuL2](BF4)2 complex (CuL2) with a 2 : 1 ligand-to-metal ratio, as confirmed by high-resolution electrospray ionization mass spectrometry (HR ESI-MS), Fourier-transform infrared (FT-IR) spectroscopy and single-crystal X-ray analysis. Surprisingly, modifying a gold surface with a self-assembled monolayer of the CuL2 complex created a stable sensor for selective detection of epinephrine (EP) using differential pulse voltammetry (DPV) in phosphate buffer solution (PBS) at pH 7.0. A linear correlation between the current response and the concentration of EP was observed with a detection limit of 0.03 μM, high reproducibility and good stability in the range of 0.0001 to 0.875 mM. These results show that the new sensor (Cu/Au) can serve as a reliable analytical tool to selectively detect EP alone and in a mixture with coexisting uric acid (UA) in tested samples.
Collapse
Affiliation(s)
- Daria Nowicka
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Karol Garbaczewski
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Teresa Łuczak
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Giuseppe Forte
- Department of Drug Science and Health, University of Catania, Via S. Sofia 64, 95125, Italy
| | - Giuseppe Consiglio
- Department of Chemical Science, University of Catania, Via S. Sofia 64, 95125, Italy
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz, University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Peteni S, Ozoemena OC, Khawula T, Haruna AB, Rawson FJ, Shai LJ, Ola O, Ozoemena KI. Electrochemical Immunosensor for Ultra-Low Detection of Human Papillomavirus Biomarker for Cervical Cancer. ACS Sens 2023. [PMID: 37384904 PMCID: PMC10391710 DOI: 10.1021/acssensors.3c00677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Human papillomavirus (HPV) is the causative agent for cervical cancer. Of the various types of HPV, the high-risk HPV-16 type is the most important antigenic high-risk HPV. In this work, the antigenic HPV-16 L1 peptide was immobilized on a glassy carbon electrode and used to detect several concentrations of the anti-HPV-16 L1 antibody, and vice versa. Two electrode platforms were used: onion-like carbon (OLC) and its polyacrylonitrile (OLC-PAN) composites. Both platforms gave a wide linear concentration range (1.95 fg/mL to 6.25 ng/mL), excellent sensitivity (>5.2 μA/log ([HPV-16 L1, fg/mL]), and extra-ordinarily low limit of detection (LoD) of 1.83 fg/mL (32.7 aM) and 0.61 fg/mL (10.9 aM) for OLC-PAN and OLC-based immunosensors, respectively. OLC-PAN modified with the HPV-16 L1 protein showed low LoD for the HPV-16 L1 antibody (2.54 fg/mL, i.e., 45.36 aM), proving its potential use for screening purposes. The specificity of detection was proven with the anti-ovalbumin antibody (anti-OVA) and native ovalbumin protein (OVA). An immobilized antigenic HPV-16 L1 peptide showed insignificant interaction with anti-OVA in contrast with the excellent interaction with anti-HPV-16 L1 antibody, thus proving high specificity. The application of the immunosensor as a potential point-of-care (PoC) diagnostic device was investigated with screen-printed carbon electrodes, which detected ultra-low (ca. 0.7 fg/mL ≈ 12.5 aM) and high (ca. 12 μg/mL ≈ 0.21 μM) concentrations. This study represents the lowest LoD reported for HPV-16 L1. It opens the door for further investigation with other electrode platforms and realization of PoC diagnostic devices for screening and testing of HPV biomarkers for cervical cancer.
Collapse
Affiliation(s)
- Siwaphiwe Peteni
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Okoroike C Ozoemena
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Tobile Khawula
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Aderemi B Haruna
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Frankie J Rawson
- School of Pharmacy, Biodiscovery Institute University of Nottingham, Nottingham NG7 2RD, U.K
| | - Leshweni J Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Kenneth I Ozoemena
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
3
|
pH sensitive thin films of iron phthalocyanines as electrocatalysts for the detection of neurotransmitters. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Novel covalent immobilization of cobalt (II) octa acyl chloride phthalocyanines onto phenylethylamine pre-grafted gold via spontaneous amidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Ogada JJ, Ipadeola AK, Mwonga PV, Haruna AB, Nichols F, Chen S, Miller HA, Pagliaro MV, Vizza F, Varcoe JR, Meira DM, Wamwangi DM, Ozoemena KI. CeO 2 Modulates the Electronic States of a Palladium Onion-Like Carbon Interface into a Highly Active and Durable Electrocatalyst for Hydrogen Oxidation in Anion-Exchange-Membrane Fuel Cells. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jimodo J. Ogada
- School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Adewale K. Ipadeola
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Patrick V. Mwonga
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Aderemi B. Haruna
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Forrest Nichols
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Hamish A. Miller
- Institute of Chemistry of Organometallic Compounds − National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - Maria V. Pagliaro
- Institute of Chemistry of Organometallic Compounds − National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - Francesco Vizza
- Institute of Chemistry of Organometallic Compounds − National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
| | - John R. Varcoe
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Debora Motta Meira
- CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Daniel M. Wamwangi
- School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Kenneth I. Ozoemena
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
6
|
Tshenkeng K, Mashazi P. Covalent attachment of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine onto pre-grafted gold electrode for the determination of catecholamine neurotransmitters. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Ipadeola AK, Mwonga PV, Ray SC, Maphanga RR, Ozoemena KI. Palladium/Stannic Oxide Interfacial Chemistry Promotes Hydrogen Oxidation Reactions in Alkaline Medium. ChemElectroChem 2020. [DOI: 10.1002/celc.202000952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adewale K. Ipadeola
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Patrick V. Mwonga
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Sekar C. Ray
- Department of Physics University of South Africa, Florida Campus Johannesburg 1709 South Africa
| | - Rapela R. Maphanga
- Next Generation Enterprises and Institutions Council for Scientific and Industrial Research (CSIR) P.O. Box 395 Pretoria 0001 South Africa
| | - Kenneth I. Ozoemena
- Molecular Sciences Institute, School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| |
Collapse
|
8
|
Mofokeng T, Ipadeola AK, Tetana ZN, Ozoemena KI. Defect-Engineered Nanostructured Ni/MOF-Derived Carbons for an Efficient Aqueous Battery-Type Energy Storage Device. ACS OMEGA 2020; 5:20461-20472. [PMID: 32832799 PMCID: PMC7439376 DOI: 10.1021/acsomega.0c02563] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
A Ni-based metal-organic framework (Ni-MOF) has been synthesized using a microwave-assisted strategy and converted to nanostructured Ni/MOF-derived mesoporous carbon (Ni/MOFDC) by carbonization and acid treatment (AT-Ni/MOFDC). The materials are well characterized with Raman, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET), revealing that chemical etching confers on the AT-Ni/MOFDC-reduced average nanoparticle size (high surface area) and structural defects including oxygen vacancies. AT-Ni/MOFDC displays low series resistances and a higher specific capacity (C s) of 199 mAh g-1 compared to Ni/MOFDC (92 mAh g-1). This study shows that the storage mechanism of the Ni-based electrode as a battery-type energy storage (BTES) system can be controlled by both non-faradic and faradic processes and dependent on the sweep rate or current density. AT-Ni/MOFDC reveals mixed contributions at different rates: 75.2% faradic and 24.8% non-faradic contributions at 5 mV s-1, and 34.1% faradic and 65.9% non-faradic at 50 mV s-1. The full BTES device was assembled with AT-Ni/MOFDC as the cathode and acetylene black (AB) as the anode. Compared to recent literature, the AT-Ni/MOFDC//AB BTES device exhibits high energy (33 Wh kg-1) and high power (983 W kg-1) with excellent cycling performance (about 88% capacity retention over 2000 cycles). This new finding opens a window of opportunity for the rational designing of next-generation energy storage devices, supercapatteries, that combine the characteristics of batteries (high energy) and supercapacitors (high power).
Collapse
Affiliation(s)
- Thapelo
Prince Mofokeng
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South
Africa
- DSI-NRF
Centre of Excellence in Strong Materials, School of Chemistry, University of the Witwatersrand, Private Bag 3,
PO Wits, Johannesburg 2050, South Africa
| | - Adewale Kabir Ipadeola
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South
Africa
| | - Zikhona Nobuntu Tetana
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South
Africa
- DSI-NRF
Centre of Excellence in Strong Materials, School of Chemistry, University of the Witwatersrand, Private Bag 3,
PO Wits, Johannesburg 2050, South Africa
| | - Kenneth Ikechukwu Ozoemena
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South
Africa
- DSI-NRF
Centre of Excellence in Strong Materials, School of Chemistry, University of the Witwatersrand, Private Bag 3,
PO Wits, Johannesburg 2050, South Africa
| |
Collapse
|
9
|
Li D, Ge S, Xiang Y, Gong J, Liu C, Sun G, Xu J, Fa W, Ma J. A simple and facile bioinspired catalytic strategy to decolorize dye wastewater by using metal octacarboxyphthalocyanine particles. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120842. [PMID: 31326831 DOI: 10.1016/j.jhazmat.2019.120842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
To explore the simple, facile, environmental friendly and low cost catalytic technique to decolorize harmful dye contaminants in solution and understand the mechanism is an interesting and practical research. In this paper, we provide a highly efficient and convenient method for fast decolorization of dyes (methylene blue and rhodamine B) in aqueous solution catalyzed by iron octacarboxyphthalocyanine (FeOCPc) or cobalt octacarboxyphthalocyanine (CoOCPc). Compared to the traditional methods, our method is very simple. The 30 mg/L methylene blue could be decolorized almost absolutely less than 30 min just by dispersing FeOCPc powders into the dye solution. The decolorization of rhodamine B at high concentration (30 mg/L) could be achieved to 100% decolorization degree less than 20 min in the presence of FeOCPc and tert-butyl hydroperoxide (BuOOH). Moreover, the ESR and HPLC-MS measurement were performed to determine the active radicals and various intermediates in decolorization processes and the possible catalytic mechanism was proposed. It is noted that both FeOCPc and CoOCPc catalysts show the different catalytic oxidation behaviors depending on the oxidant (O2 or BuOOH). Our investigation provides a novel, low cost and convenient strategy to purify the environmental pollutions.
Collapse
Affiliation(s)
- Dapeng Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Xuchang University, Henan, 461000, PR China
| | - Suxiang Ge
- Institute of Surface Micro and Nano Materials, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University, Henan, 461000, PR China.
| | - Yingcheng Xiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Xuchang University, Henan, 461000, PR China; School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Henan, 450011, PR China
| | - Jingjing Gong
- School of Chemistry, The University of Edinburgh, Scotland, eh9 3fj, The United Kingdom of Great Britain and Northern Ireland, United Kingdom
| | - Chunhui Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Xuchang University, Henan, 461000, PR China.
| | - Guofu Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Xuchang University, Henan, 461000, PR China
| | - Jingli Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Xuchang University, Henan, 461000, PR China
| | - Wenjun Fa
- Institute of Surface Micro and Nano Materials, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University, Henan, 461000, PR China
| | - Juntao Ma
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Henan, 450011, PR China
| |
Collapse
|
10
|
Li N, Lu P, He C, Lu W, Chen W. Catalytic degradation of sulfaquinoxalinum by polyester/poly-4-vinylpyridine nanofibers-supported iron phthalocyanine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5902-5910. [PMID: 29235030 DOI: 10.1007/s11356-017-0943-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Iron (II) phthalocyanine (FePc) supported on electrospun polyester/poly-4-vinylpyridine nanofibers (PET/P4VP NFs) was prepared by stirring in tetrahydrofuran. The resulting product was confirmed and characterized by ultraviolet-visible diffuse reflectance spectroscopy, attenuated total reflection Fourier transform infrared spectra, X-ray photoelectron spectroscopy, gas chromatography/mass spectrometry, and ultra-performance liquid chromatography. More than 95% of sulfaquinoxalinum (SQX) could be removed by the activation of hydrogen peroxide in the presence of FePc-P4VP/PET with a PET and P4VP mass ratio of 1:1. This system exhibited a high catalytic activity across a wide pH and temperature range. The degradation rates of SQX achieved 100, 95, and 78% at a pH of 3, 7, and 9, respectively, and the degradation rates of SQX are more than 80% at the temperature ranging from 35 to 65 °C. DMSO2 could be detected by gas chromatography/mass spectrometry after the addition of DMSO, suggesting the formation of the high-valent iron intermediates in this catalytic system. In addition, the electron paramagnetic resonance experiments proved that free radicals did not dominate the reaction in our system. Therefore, the high-valent iron intermediates were proposed to the main active species in the FePc-P4VP/PET/hydrogen peroxide system. In summary, the heterogeneous catalytic processes with non-radical catalytic mechanism might have better catalytic performance for the removal of organic pollutants, which can potentially be used in wastewater treatment.
Collapse
Affiliation(s)
- Nan Li
- National Engineering Laboratory for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Panting Lu
- National Engineering Laboratory for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cuixia He
- National Engineering Laboratory for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wangyang Lu
- National Engineering Laboratory for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Wenxing Chen
- National Engineering Laboratory for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
11
|
Li X, Cao L, Zhang Y, Yan P, Kirk DW. Fabrication and Modeling of an Ultrasensitive Label Free Impedimetric Immunosensor for Aflatoxin B1 based on Protein A Self-assembly Modified Gold 3D Nanotube Electrode ensembles. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ni D, Zhang J, Wang X, Qin D, Li N, Lu W, Chen W. Hydroxyl Radical-Dominated Catalytic Oxidation in Neutral Condition by Axially Coordinated Iron Phthalocyanine on Mercapto-Functionalized Carbon Nanotubes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dongjing Ni
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinfei Zhang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiyi Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dandan Qin
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nan Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
13
|
Miller HA, Bellini M, Oberhauser W, Deng X, Chen H, He Q, Passaponti M, Innocenti M, Yang R, Sun F, Jiang Z, Vizza F. Heat treated carbon supported iron(ii)phthalocyanine oxygen reduction catalysts: elucidation of the structure–activity relationship using X-ray absorption spectroscopy. Phys Chem Chem Phys 2016; 18:33142-33151. [DOI: 10.1039/c6cp06798k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correlation between atomic structure and oxygen reduction activity by X-ray absorption spectroscopy.
Collapse
|
14
|
Pillay S, Pillay J, Ejikeme PM, Makgopa K, Ozoemena KI. Nanostructured Cobalt(II) Tetracarboxyphthalocyanine Complex Supported Within the MWCNT Frameworks: Electron Transport and Charge Storage Capabilities. ELECTROANAL 2015. [DOI: 10.1002/elan.201500012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine. Talanta 2014; 125:352-60. [DOI: 10.1016/j.talanta.2014.03.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 11/23/2022]
|
16
|
Bandyopadhyay S, Mukherjee S, Dey A. Modular synthesis, spectroscopic characterization and in situ functionalization using “click” chemistry of azide terminated amide containing self-assembled monolayers. RSC Adv 2013. [DOI: 10.1039/c3ra43415j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Li H, Xu Z, Li K, Hou X, Cao G, Zhang Q, Cao Z. Modification of multi-walled carbon nanotubes with cobalt phthalocyanine: effects of the templates on the assemblies. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02156c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N, Nyokong T. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.06.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Pillay J, Ozoemena KI, Tshikhudo RT, Moutloali RM. Monolayer-protected clusters of gold nanoparticles: impacts of stabilizing ligands on the heterogeneous electron transfer dynamics and voltammetric detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9061-9068. [PMID: 20496956 DOI: 10.1021/la904463g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Surface electrochemistry of novel monolayer-protected gold nanoparticles (MPCAuNPs) is described. Protecting ligands, (1-sulfanylundec-11-yl)tetraethylene glycol (PEG-OH) and (1-sulfanylundec-11-yl)poly(ethylene glycol)ic acid (PEG-COOH), of three different percent ratios (PEG-COOH:PEG-OH), 1:99 (MPCAuNP-COOH(1%)), 50:50 (MPCAuNP-COOH(50%)), and 99:1 (MPCAuNP-COOH(99%)), were studied. The electron transfer rate constants (k(et)/s(-1)) in organic medium decreased as the concentration of the surface-exposed -COOH group in the protecting monolayer ligand is increased: MPCAuNP-COOH(1%) (approximately 5 s(-1)) > MPCAuNP-COOH(50%) (approximately 4 s(-1)) > MPCAuNP-COOH(99%) (approximately 0.5 s(-1)). In aqueous medium, the trend is reversed. The surface pK(a) was estimated as approximately 8.2 for the MPCAuNP-COOH(1%), while both MPCAuNP-COOH(50%) and MPCAuNP-COOH(99%) showed two pK(a) values of about 5.0 and approximately 8.0. These results have been interpreted in terms of the quasi-solidity and quasi-liquidity of the terminal -OH and -COOH head groups, respectively. MPCAuNP-COOH(99%) excellently suppressed the voltammetric response of the ascorbic acid but enhanced the electrocatalytic detection of epinephrine compared to the other MPCAuNPs studied. This study reveals important factors that should be considered when designing electrode devices that employ monolayer-protected gold nanoparticles and possibly for some other redox-active metal nanoparticles.
Collapse
Affiliation(s)
- Jeseelan Pillay
- Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | |
Collapse
|
20
|
Ozoemena KI, Mathebula NS, Pillay J, Toschi G, Verschoor JA. Electron transfer dynamics across self-assembled N-(2-mercaptoethyl) octadecanamide/mycolic acid layers: impedimetric insights into the structural integrity and interaction with anti-mycolic acid antibodies. Phys Chem Chem Phys 2010; 12:345-57. [DOI: 10.1039/b915930d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Nkosi D, Pillay J, Ozoemena KI, Nouneh K, Oyama M. Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers. Phys Chem Chem Phys 2010; 12:604-13. [DOI: 10.1039/b918754e] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N. Iron(ii) tetrakis(diaquaplatinum)octacarboxyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm02210a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Pillay J, Ozoemena KI. Layer-by-layer self-assembled nanostructured phthalocyaninatoiron(II)/SWCNT-poly(m-aminobenzenesulfonic acid) hybrid system on gold surface: Electron transfer dynamics and amplification of H2O2 response. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.12.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Pillay J, Agboola BO, Ozoemena KI. Electrochemistry of 2-dimethylaminoethanethiol SAM on gold electrode: Interaction with SWCNT-poly(m-aminobenzene sulphonic acid), electric field-induced protonation–deprotonation, and surface pKa. Electrochem commun 2009. [DOI: 10.1016/j.elecom.2009.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
25
|
Mathebula NS, Pillay J, Toschi G, Verschoor JA, Ozoemena KI. Recognition of anti-mycolic acid antibody at self-assembled mycolic acid antigens on a gold electrode: a potential impedimetric immunosensing platform for active tuberculosis. Chem Commun (Camb) 2009:3345-7. [DOI: 10.1039/b905192a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Agboola B, Ozoemena K. Efficient Electrocatalytic Detection of Epinephrine at Gold Electrodes Modified with Self-Assembled Metallo-Octacarboxyphthalocyanine Complexes. ELECTROANAL 2008. [DOI: 10.1002/elan.200804240] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|