1
|
Porubský M, Hodoň J, Stanková J, Džubák P, Hajdúch M, Urban M, Hlaváč J. Near-infrared pH-switchable BODIPY photosensitizers for dual biotin/cRGD targeted photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113010. [PMID: 39141981 DOI: 10.1016/j.jphotobiol.2024.113010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Photodynamic therapy (PDT) is a clinically-approved cancer treatment that is based on production of cytotoxic reactive oxygen species to induce cell death. However, its efficiency depends on distribution of photosensitizer (PS) and depth of light penetration through the tissues. Tendency of pathological cancer tissues to exhibit lower pH than healthy tissues inspired us to explore dual-targeted pH-activatable photosensitizers based on tunable near-infrared (NIR) boron-dipyrromethene (BODIPY) dyes. Our BODIPY PSs were designed to carry three main attributes: (i) biotin or cRGD peptide as an effective cancer cell targeting unit, (ii) amino moiety that is protonated in acidic (pH <6.5) conditions for pH-activation of the PS based on photoinduced electron transfer (PET) and (iii) hydrophilic groups enhancing the water solubility of very hydrophobic BODIPY dyes. Illumination of such compounds with suitable light (>640nm) allowed for high phototoxicity against HeLa (αvβ3 integrin and biotin receptor positive) and A549 (biotin receptor positive) cells compared to healthy MRC-5 (biotin negative) cells. Moreover, no dark toxicity was observed on selected cell lines (>10 μM) providing promising photosensitizers for tumour-targeted photodynamic therapy.
Collapse
Affiliation(s)
- Martin Porubský
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Jiří Hodoň
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Jarmila Stanková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Milan Urban
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
3
|
Tiwari S, Rudani BA, Tiwari P, Bahadur P, Flora SJS. Photodynamic therapy of cancer using graphene nanomaterials. Expert Opin Drug Deliv 2024; 21:1331-1348. [PMID: 39205381 DOI: 10.1080/17425247.2024.2398604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION High incidence and fatality rates of cancer remain a global challenge. The success of conventional treatment modalities is being questioned on account of adverse effects. Photodynamic therapy (PDT) is a potential alternative. It utilizes a combination of photosensitizer (PS), light and oxygen to target the tissues locally, thereby minimizing the damage to neighboring healthy tissues. Conventional PSs suffer from poor selectivity, high hydrophobicity and sub-optimal yield of active radicals. Graphene nanomaterials (GNs) exhibit interesting particulate and photophysical properties in the context of their use in PDT. AREA COVERED We focus on describing the mechanistic aspects of PDT-mediated elimination of cancer cells and the subsequent development of adaptive immunity. After covering up-to-date literature on the significant enhancement of PDT capability with GNs, we have discussed the probability of combining PDT with chemo-, immuno-, and photothermal therapy to make the treatment more effective. EXPERT OPINION GNs can be synthesized in various size ranges, and their biocompatibility can be improved through surface functionalization and doping. These can be used as PS to generate ROS or conjugated with other PS molecules for treating deep-seated tumors. With increasing evidence on biosafety, such materials offer hope as antitumor therapeutics.
Collapse
Affiliation(s)
- Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Binny A Rudani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Priyanka Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Swaran J S Flora
- Era College of Pharmacy, Era Lucknow Medical University, Lucknow, India
| |
Collapse
|
4
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
5
|
Yang Y, Luo T, He Y, Deng Z, Li J, Liu H, Nie J, Wang D, Huang J, Zhong S. Nanoflare Couple: Multiplexed mRNA Imaging and Logic-Controlled Combinational Therapy. Anal Chem 2022; 94:12204-12212. [PMID: 36007146 DOI: 10.1021/acs.analchem.2c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Theranostics, which combines both diagnostic and therapeutic capabilities in one dose, has always been an intractable challenge in personalized cancer treatment. Herein, a versatile nanotheranostic platform "nanoflare couple (NC)" has been developed for in situ multiplex cancer-related mRNA imaging and subsequent logic-controlled aggregation of gold nanoparticles, leading to gene therapy and photothermal therapy upon irradiation with infrared light. As a proof of concept, TK1 and survivin mRNAs that are highly expressed in most tumor tissues are selected as endogenous cancer indicators and therapy triggers to design the NC. Mice bearing breast cancer cells MCF-7 are prepared as a model to test its efficacy. The in vitro and in vivo assays validate that the NC show the capability for multiplexed mRNA imaging and high efficiency for logic-controlled combinational therapy of breast cancer.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
6
|
Houska R, Stutz MB, Seitz O. Expanding the scope of native chemical ligation - templated small molecule drug synthesis via benzanilide formation. Chem Sci 2021; 12:13450-13457. [PMID: 34777764 PMCID: PMC8528049 DOI: 10.1039/d1sc00513h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
We describe a reaction system that enables the synthesis of Bcr–Abl tyrosine kinase inhibitors (TKI) via benzanilide formation in water. The reaction is based on native chemical ligation (NCL). In contrast to previous applications, we used the NCL chemistry to establish aromatic rather than aliphatic amide bonds in coupling reactions between benzoyl and o-mercaptoaniline fragments. The method was applied for the synthesis of thiolated ponatinib and GZD824 derivatives. Acid treatment provided benzothiazole structures, which opens opportunities for diversification. Thiolation affected the affinity for Abl1 kinase only moderately. Of note, a ponatinib-derived benzothiazole also showed nanomolar affinity. NCL-enabled benzanilide formation may prove useful for fragment-based drug discovery. To show that benzanilide synthesis can be put under the control of a template, we connected the benzoyl and o-mercaptoaniline fragments to DNA and peptide nucleic acid (PNA) oligomers. Complementary RNA templates enabled adjacent binding of reactive conjugates triggering a rapid benzoyl transfer from a thioester-linked DNA conjugate to an o-mercaptoaniline-DNA or -PNA conjugate. We evaluated the influence of linker length and unpaired spacer nucleotides within the RNA template on the product yield. The data suggest that nucleic acid-templated benzanilide formation could find application in the establishment of DNA-encoded combinatorial libraries (DEL). The templated native chemical ligation between benzoyl thioesters and o-mercaptoaniline fragments proceeds in water and provides benzanilides that have nanomolar affinity for Abl1 kinase.![]()
Collapse
Affiliation(s)
- Richard Houska
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Marvin Björn Stutz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
7
|
Liu M, Li C. Recent Advances in Activatable Organic Photosensitizers for Specific Photodynamic Therapy. Chempluschem 2021; 85:948-957. [PMID: 32401421 DOI: 10.1002/cplu.202000203] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/05/2020] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy is an alternative modality for the therapy of diseases such as cancer in a minimally invasive manner. The essential photosensitizer, which acts as a catalyst when absorbing light, converts oxygen into cytotoxic reactive oxygen species that ablate malignant cells through apoptosis and/or necrosis, destroy tumor microvasculature, and stimulate immunity. An activatable photosensitizer whose photoactivity could be turned on by a specific disease biomarker is capable of distinguishing healthy cells from diseased cells, thereby reducing off-target photodamage. In this Minireview, we highlight progress in activatable organic photosensitizers over the past five years, including: (i) biorthogonal activatable BODIPYs; (ii) activatable Se-rhodamine with single-cell resolution; (iii) silicon phthalocyanine targeting oxygen tension; (iv) general D-π-A scaffolds; and (v) AIEgens. The potential challenges and opportunities for developing new types of activatable organic photosensitizers to overcome the hypoxia dilemmas of photodynamic therapy are discussed.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
8
|
Lin Q, Cai S, Zhou B, Wang K, Jian L, Huang J. Dual-MicroRNA-regulation of singlet oxygen generation by a DNA-tetrahedron-based molecular logic device. Chem Commun (Camb) 2021; 57:3873-3876. [PMID: 33871506 DOI: 10.1039/d1cc00818h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endogenous miRNA expression patterns are extremely cell-type-specific, thereby offering high prediction accuracy for different cell identities. Here, a DNA-tetrahedron-based "AND" logic gate is utilized as a molecular device that recognizes dual-miRNA inputs through strand hybridization to activate a computation cascade that produces controlled singlet oxygen in live cells, resulting in the death of the target cell.
Collapse
Affiliation(s)
- Qing Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Shijun Cai
- College of Biology, Hunan University, Changsha, P. R. China
| | - Bing Zhou
- College of Biology, Hunan University, Changsha, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Lixin Jian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| |
Collapse
|
9
|
The Dark Side: Photosensitizer Prodrugs. Pharmaceuticals (Basel) 2019; 12:ph12040148. [PMID: 31590223 PMCID: PMC6958472 DOI: 10.3390/ph12040148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) and photodiagnosis (PD) are essential approaches in the field of biophotonics. Ideally, both modalities require the selective sensitization of the targeted disease in order to avoid undesired phenomena such as the destruction of healthy tissue, skin photosensitization, or mistaken diagnosis. To a large extent, the occurrence of these incidents can be attributed to “background” accumulation in non-target tissue. Therefore, an ideal photoactive compound should be optically silent in the absence of disease, but bright in its presence. Such requirements can be fulfilled using innovative prodrug strategies targeting disease-associated alterations. Here we will summarize the elaboration, characterization, and evaluation of approaches using polymeric photosensitizer prodrugs, nanoparticles, micelles, and porphysomes. Finally, we will discuss the use of 5-aminolevulinc acid and its derivatives that are selectively transformed in neoplastic cells into photoactive protoporphyrin IX.
Collapse
|
10
|
Harmatys KM, Overchuk M, Zheng G. Rational Design of Photosynthesis-Inspired Nanomedicines. Acc Chem Res 2019; 52:1265-1274. [PMID: 31021599 DOI: 10.1021/acs.accounts.9b00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sun is the most abundant source of energy on earth. Phototrophs have discovered clever strategies to harvest this light energy and convert it to chemical energy for biomass production. This is achieved in light-harvesting complexes, or antennas, that funnel the exciton energy into the reaction centers. Antennas contain an array of chlorophylls, linear tetrapyrroles, and carotenoid pigments spatially controlled by neighboring proteins. This fine-tuned regulation of protein-pigment arrangements is crucial for survival in the conditions of both excess and extreme light deficit. Photomedicine and photodiagnosis have long been utilizing naturally derived and synthetic monomer dyes for imaging, photodynamic and photothermal therapy; however, the precise regulation of damage inflicted by these therapies requires more complex architectures. In this Account, we discuss how two mechanisms found in photosynthetic systems, photoprotection and light harvesting, have inspired scientists to create nanomedicines for more effective and precise phototherapies. Researchers have been recapitulating natural photoprotection mechanisms by utilizing carotenoids and other quencher molecules toward the design of photodynamic molecular beacons (PDT beacons) for disease-specific photoactivation. We highlight the seminal studies describing peptide-linked porphyrin-carotenoid PDT beacons, which are locally activated by a disease-specific enzyme. Examples of more advanced constructs include tumor-specific mRNA-activatable and polyionic cell-penetrating PDT beacons. An alternative approach toward harnessing photosynthetic processes for biomedical applications includes the design of various nanostructures. This Account will primarily focus on organic lipid-based micro- and nanoparticles. The phenomenon of nonphotochemical quenching, or excess energy release in the form of heat, has been widely explored in the context of porphyrin-containing nanomedicines. These quenched nanostructures can be implemented toward photoacoustic imaging and photothermal therapy. Upon nanostructure disruption, as a result of tissue accumulation and subsequent cell uptake, activatable fluorescence imaging and photodynamic therapy can be achieved. Alternatively, processes found in nature for light harvesting under dim conditions, such as in the deep sea, can be harnessed to maximize light absorption within the tissue. Specifically, high-ordered dye aggregation that results in a bathochromic shift and increased absorption has been exploited for the collection of more light with longer wavelengths, characterized by maximum tissue penetration. Overall, the profound understanding of photosynthetic systems combined with rapid development of nanotechnology has yielded a unique field of nature-inspired photomedicine, which holds promise toward more precise and effective phototherapies.
Collapse
Affiliation(s)
- Kara M. Harmatys
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Marta Overchuk
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
11
|
Luby BM, Walsh CD, Zheng G. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. Angew Chem Int Ed Engl 2019; 58:2558-2569. [DOI: 10.1002/anie.201805246] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/08/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin M. Luby
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Connor D. Walsh
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
12
|
Wang Y, Dong Z, Hu H, Yang Q, Hou X, Wu P. DNA-modulated photosensitization: current status and future aspects in biosensing and environmental monitoring. Anal Bioanal Chem 2019; 411:4415-4423. [PMID: 30734855 DOI: 10.1007/s00216-019-01605-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 01/22/2023]
Abstract
Recently, photosensitized oxidation has been explored in many fields of research and applications, such as photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT). Although the photosensitized generation of ROS features emerging applications, controllable management of the photosensitization process is still sometimes problematic. DNA has long been considered the carrier for genetic information. With the in-depth study of the chemical properties of DNA, the molecular function of DNA is gradually witnessed by the scientific community. Undoubtedly, the selective recognition nature of DNA endows them excellent candidate modulators for photosensitized oxidation. According to current research, reports on DNA regulation of photosensitized oxidation can be roughly divided into two categories in principle: P-Q quenching pair-switched photosensitization and host-guest interaction-switched photosensitization. In this review, the development status of these two analytical methods will be summarized, and the future development direction of DNA-modulated photosensitization in biosensing and environmental monitoring will also be prospected.
Collapse
Affiliation(s)
- Yanying Wang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhen Dong
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Hu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Qing Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| | - Xiandeng Hou
- College of Chemistry, Sichuan University, Chengdu, 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Peng Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, China. .,Analytical & Testing Center, Sichuan University, Chengdu, 610064, China. .,State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
13
|
Xiong M, Rong Q, Kong G, Yang C, Zhao Y, Qu FL, Zhang XB, Tan W. Hybridization chain reaction-based nanoprobe for cancer cell recognition and amplified photodynamic therapy. Chem Commun (Camb) 2019; 55:3065-3068. [DOI: 10.1039/c8cc10074h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a hybridization chain reaction-based nanoprobe for selective and sensitive cancer cell recognition and amplified photodynamic therapy.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Qiming Rong
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Gezhi Kong
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Chan Yang
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Yan Zhao
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Feng-Li Qu
- The Key Laboratory of Life-Organic Analysis
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| |
Collapse
|
14
|
Luby BM, Walsh CD, Zheng G. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805246] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Benjamin M. Luby
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Connor D. Walsh
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna InstituteUniversity Health Network 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
15
|
Callaghan S, Senge MO. The good, the bad, and the ugly - controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem Photobiol Sci 2018; 17:1490-1514. [PMID: 29569665 DOI: 10.1039/c8pp00008e] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Singlet oxygen, although integral to photodynamic therapy, is notoriously uncontrollable, suffers from poor selectivity and has fast decomposition rates in biological media. Across the scientific community, there is a conscious effort to refine singlet oxygen interactions and initiate selective and controlled release to produce a consistent and reproducible therapeutic effect in target tissue. This perspective aims to provide an insight into the contemporary design principles behind photosensitizers and drug delivery systems that depend on a singlet oxygen response or controlled release. The discussion will be accompanied by in vitro and in vivo examples, in an attempt to highlight advancements in the field and future prospects for the more widespread application of photodynamic therapy.
Collapse
Affiliation(s)
- Susan Callaghan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland and Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
16
|
Dembska A, Kierzek E, Juskowiak B. Studying the influence of stem composition in pH-sensitive molecular beacons onto their sensing properties. Anal Chim Acta 2017; 990:157-167. [PMID: 29029739 DOI: 10.1016/j.aca.2017.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/21/2017] [Accepted: 07/17/2017] [Indexed: 01/04/2023]
Abstract
Intracellular sensing using fluorescent molecular beacons is a potentially useful strategy for real-time, in vivo monitoring of important cellular events. This work is focused on evaluation of pyrene excimer signaling molecular beacons (MBs) for the monitoring of pH changes in vitro as well as inside living cells. The recognition element in our MB called pHSO (pH-sensitive oligonucleotide) is the loop enclosing cytosine-rich fragment that is able to form i-motif structure in a specific pH range. However, alteration of a sequence of the 6 base pairs containing stem of MB allowed the design of pHSO probes that exhibited different dynamic pH range and possessed slightly different transition midpoint between i-motif and open loop configuration. Moreover, this conformational transition was accompanied by spectral changes showing developed probes different pyrene excimer-monomer emission ratio triggered by pH changes. The potential of these MBs for intracellular pH sensing is demonstrated on the example of HeLa cells line.
Collapse
Affiliation(s)
- Anna Dembska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Bernard Juskowiak
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
| |
Collapse
|
17
|
Krasheninina OA, Fishman VS, Novopashina DS, Venyaminova AG. 5′-Bispyrene molecular beacons for RNA detection. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017030086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Hu H, Zhang J, Ding Y, Zhang X, Xu K, Hou X, Wu P. Modulation of the Singlet Oxygen Generation from the Double Strand DNA-SYBR Green I Complex Mediated by T-Melamine-T Mismatch for Visual Detection of Melamine. Anal Chem 2017; 89:5101-5106. [DOI: 10.1021/acs.analchem.7b00666] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | | | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | | | | | | |
Collapse
|
19
|
Pogue BW, Paulsen KD, Samkoe KS, Elliott JT, Hasan T, Strong TV, Draney DR, Feldwisch J. Vision 20/20: Molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention. Med Phys 2017; 43:3143-3156. [PMID: 27277060 DOI: 10.1118/1.4951732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents.
Collapse
Affiliation(s)
- Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Surgery, Dartmouth College, Hanover, New Hampshire 03755
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Department of Surgery, Dartmouth College, Hanover, New Hampshire 03755; and Department of Diagnostic Radiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Surgery, Dartmouth College, Hanover, New Hampshire 03755
| | - Jonathan T Elliott
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 and Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Theresa V Strong
- Vector Production Facility, Division of Hematology Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | |
Collapse
|
20
|
Göksel M, Durmuş M, Atilla D. Synthesis and photophysicochemical properties of a set of asymmetrical peptide conjugated zinc(II) phthalocyanines bearing different fluorophore units. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Ding Q, Zhan Q, Zhou X, Zhang T, Xing D. Theranostic Upconversion Nanobeacons for Tumor mRNA Ratiometric Fluorescence Detection and Imaging-Monitored Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5944-5953. [PMID: 27647762 DOI: 10.1002/smll.201601724] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Remote optical detection and imaging of specific tumor-related biomarkers and simultaneous activation of therapy according to the expression level of the biomarkers in tumor site with theranostic probes should be an effective modality for treatment of cancers. Herein, an upconversion nanobeacon (UCNPs-MB/Dox) is proposed as a new theranostic nanoprobe to ratiometrically detect and visualize the thymidine kinase 1 (TK1) mRNA that can simultaneously trigger the Dox release to activate the chemotherapy accordingly. UCNPs-MB/Dox is constructed with the conjugation of a TK1 mRNA-specific molecular beacon (MB) bearing a quencher (BHQ-1) and an alkene handle modified upconversion nanoparticle (UCNP) through click reaction and subsequently loading with a chemotherapy drug (Dox). With this nanobeacon, quantitative ratiometric upconversion detection of the target with high sensitivity and selectivity as well as the target triggered Dox release in vitro is demonstrated. The sensitive and selective ratiometric detection and imaging of TK1 mRNA under the irradiation of near infrared light (980 nm) and the mRNA-dependent release of Dox for chemotherapy in the tumor MCF-7 cells and A549 cells are also shown. This work provides a smart and robust platform for gene-related tumor theranostics.
Collapse
Affiliation(s)
- Qianwen Ding
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| |
Collapse
|
22
|
Westberg M, Bregnhøj M, Blázquez-Castro A, Breitenbach T, Etzerodt M, Ogilby PR. Control of singlet oxygen production in experiments performed on single mammalian cells. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
|
24
|
Ng KK, Zheng G. Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications. Chem Rev 2015; 115:11012-42. [PMID: 26244706 DOI: 10.1021/acs.chemrev.5b00140] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kenneth K Ng
- Princess Margaret Cancer Centre and Techna Institute, University Health Network , Toronto, Ontario M5G 2C4, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna Institute, University Health Network , Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
25
|
Wu D, Song G, Li Z, Zhang T, Wei W, Chen M, He X, Ma N. A two-dimensional molecular beacon for mRNA-activated intelligent cancer theranostics. Chem Sci 2015; 6:3839-3844. [PMID: 29218154 PMCID: PMC5707452 DOI: 10.1039/c4sc03894k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/29/2015] [Indexed: 12/28/2022] Open
Abstract
A two-dimensional quantum dot molecular beacon with interconnected imaging and therapy modalities is developed for intelligent cancer theranostics.
Ideal theranostics should possess directly correlated imaging and therapy modalities that could be simultaneously activated in the disease site to generate high imaging contrast and therapeutic efficacy with minimal side effects. However, so far it still remains challenging to engineer all these characteristics into a single theranostic probe. Herein, we report a new type of photosensitizer (PS)-derived “two-dimensional” molecular beacon (TMB) that could be specifically activated within tumor cells to exhibit both high imaging contrast and therapeutic efficacy that outperforms conventional photosensitizers for cancer theranostics. The TMB is constructed by integrating a photosensitizer (chlorin e6 (Ce6)), a quantum dot (QD), and a dark quencher (BHQ3) into a hairpin DNA molecule to generate multiple synergistic FRET modes. The imaging modality and therapy modality, which are mediated by FRET between the QD and BHQ3 and FRET between the QD and Ce6 respectively, are interconnected within the TMB and could be simultaneously activated by tumor mRNA molecules. We show that highly effective cancer imaging and therapy could be achieved for cancer cell lines and xenografted tumor models. The reported TMB represents an unprecedented theranostic platform for intelligent cancer theranostics.
Collapse
Affiliation(s)
- Dan Wu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou , 215123 , P. R. China .
| | - Guofen Song
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou , 215123 , P. R. China .
| | - Zhi Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou , 215123 , P. R. China .
| | - Tao Zhang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou , 215123 , P. R. China .
| | - Wei Wei
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou , 215123 , P. R. China .
| | - Muzi Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou , 215123 , P. R. China .
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou , 215123 , P. R. China .
| | - Nan Ma
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou College of Chemistry , Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou , 215123 , P. R. China .
| |
Collapse
|
26
|
Huang H, Song W, Rieffel J, Lovell JF. Emerging applications of porphyrins in photomedicine. FRONTIERS IN PHYSICS 2015; 3:23. [PMID: 28553633 PMCID: PMC5445930 DOI: 10.3389/fphy.2015.00023] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomedical applications of porphyrins and related molecules have been extensively pursued in the context of photodynamic therapy. Recent advances in nanoscale engineering have opened the door for new ways that porphyrins stand to potentially benefit human health. Metalloporphyrins are inherently suitable for many types of medical imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new classes of porphyrin nanostructures are being developed, such as smart materials that are activated by specific biochemicals encountered at disease sites. Techniques have been developed that improve treatments by combining biomaterials with photosensitizers and functional moieties such as peptides, DNA and antibodies. Compared to simpler structures, these more complex and functional designs can potentially decrease side effects and lead to safer and more efficient phototherapies. This review examines recent research on porphyrin-derived materials in multimodal imaging, drug delivery, bio-sensing, phototherapy and probe design, demonstrating their bright future for biomedical applications.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Wentao Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - James Rieffel
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
27
|
Jin CS, Cui L, Wang F, Chen J, Zheng G. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Adv Healthc Mater 2014; 3:1240-9. [PMID: 24464930 DOI: 10.1002/adhm.201300651] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/16/2013] [Indexed: 01/01/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) possess advantages over the conventional therapies with additional treatment selectivity achieved with local laser irradiation. Comparing to PTT that ablates target tissue via thermal necrosis, PDT induces target cell death via singlet oxygen without damaging the underling connective tissue, thus preserving its biological function. Activatable photosensitizers provide an additional level of treatment selectivity via the disease-associated activation mechanism. In this study, folate-conjugated porphysomes are introduced as targeting-triggered activatable nano-sized beacons for PDT. Porphysomes are reported previously as the most stable and efficient delivery system of porphyrin, but their nanostructure converts the singlet oxygen generation mechanism to thermal ablation mechanism. By folate-receptor-mediated endocytosis, folate-porphysomes are internalized into cells rapidly and resulted in efficient disruption of nanostructures, thus switching back on the photodynamic activity of the densely packed porphyrins for effective PDT. In both in vitro and in vivo studies, folate-porphysomes can achieve folate receptor-selective PDT efficacy, which proves the robustness of targeting-triggered PDT activation of porphysome nanostructure for highly selective tumor ablation. The formulation of porphysomes can be modified with other targeting ligands as activatable photosensitizers for personalized treatment in future.
Collapse
Affiliation(s)
- Cheng S. Jin
- Ontario Cancer Institute and Techna Institute; University Health Network; 101 College Street Toronto Ontario M5G 1L7 Canada
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy; University of Toronto; 101 College Street Toronto Ontario M5G 1L7 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; 101 College Street Toronto Ontario M5G 1L7 Canada
| | - Liyang Cui
- Ontario Cancer Institute and Techna Institute; University Health Network; 101 College Street Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; 101 College Street Toronto Ontario M5G 1L7 Canada
- Medical Isotopes Research Center; Peking University; 38 Xueyuan Road Beijing 10010 China
| | - Fan Wang
- Medical Isotopes Research Center; Peking University; 38 Xueyuan Road Beijing 10010 China
| | - Juan Chen
- Ontario Cancer Institute and Techna Institute; University Health Network; 101 College Street Toronto Ontario M5G 1L7 Canada
| | - Gang Zheng
- Ontario Cancer Institute and Techna Institute; University Health Network; 101 College Street Toronto Ontario M5G 1L7 Canada
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy; University of Toronto; 101 College Street Toronto Ontario M5G 1L7 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; 101 College Street Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; 101 College Street Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
28
|
Tørring T, Helmig S, Ogilby PR, Gothelf KV. Singlet oxygen in DNA nanotechnology. Acc Chem Res 2014; 47:1799-806. [PMID: 24712829 DOI: 10.1021/ar500034y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONSPECTUS: Singlet oxygen ((1)O2), the first excited electronic state of molecular oxygen, is a significant molecule, despite its minute size. For more than half a century, the molecule has been widely used and studied in organic synthesis, due to its characteristic oxygenation reactions. Furthermore, (1)O2 plays a key role in mechanisms of cell death, which has led to its use in therapies for several types of cancer and other diseases. The high abundance of oxygen in air provides a wonderful source of molecules that can be excited to the reactive singlet state, for example, by UV/vis irradiation of a photosensitizer molecule. Although convenient, this oxygen abundance also presents some challenges for purposes that require (1)O2 to be generated in a controlled manner. In the past decade, we and others have employed DNA nanostructures to selectively control and investigate the generation, lifetime, and reactions of (1)O2. DNA-based structures are one of the most powerful tools for controlling distances between molecules on the nanometer length scale, in particular for systems that closely resemble biological settings, due to their inherent ability to specifically form duplex structures with well-defined and predictable geometries. Here, we present some examples of how simple DNA structures can be employed to regulate (1)O2 production by controlling the behavior of (1)O2-producing photosensitizers through their interactions with independent quencher molecules. We have developed different DNA-based systems in which (1)O2 production can be switched ON or OFF in the presence of specific DNA sequences or by changing the pH of the solution. To further illustrate the interplay between DNA structures and (1)O2, we present three pieces of research, in which (1)O2 is used to activate or deactivate DNA-based systems based on the reaction between (1)O2 and cleavable linkers. In one example, it is demonstrated how a blocked oligonucleotide can be released upon irradiation with light of a specific wavelength. In more complex systems, DNA origami structures composed of more than 200 individual oligonucleotides were employed to study (1)O2 reactions in spatially resolved experiments on the nanoscale.
Collapse
Affiliation(s)
- Thomas Tørring
- Center for DNA Nanotechnology (CDNA) at the Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Sarah Helmig
- Center for DNA Nanotechnology (CDNA) at the Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Peter R. Ogilby
- Center
for Oxygen Microscopy and Imaging (COMI) at the
Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kurt V. Gothelf
- Center for DNA Nanotechnology (CDNA) at the Interdisciplinary
Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
29
|
Li L, Cho H, Yoon KH, Kang HC, Huh KM. Antioxidant-photosensitizer dual-loaded polymeric micelles with controllable production of reactive oxygen species. Int J Pharm 2014; 471:339-48. [PMID: 24939615 DOI: 10.1016/j.ijpharm.2014.05.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL) micelles dually loaded with both pheophorbide a (PhA) as a photosensitizer and β-carotene (CAR) as a singlet oxygen ((1)O2) scavenger were designed to control photodynamic therapy (PDT) activity in cancer treatment. The CAR in the PhA/CAR micelles significantly diminished PhA-generated (1)O2 through direct (1)O2 scavenging, whereas the CAR molecules lost their (1)O2 scavenging activity when the PhA and CAR were spatially isolated by the disintegration of the PEG-b-PCL micelles. In cell-culture systems, light irradiation at a post-treatment time that corresponded to the presence of the micelles in the blood environment induced negligible phototoxicity, whereas light irradiation at a post-treatment time that corresponded to the presence of the micelles in the intracellular environment induced remarkable phototoxicity. In addition, a longer post-treatment time induced greater internalization of PhA/CAR micelles, which resulted in higher phototoxicity, suggesting an increase in photo killing activity against the tumor cells of interest. Thus, the co-loading of a (1)O2 generator and a (1)O2 scavenger into a single micelle is a potential strategy that may be useful in facilitating more accurate and reliable PDT with site-specific controllable production of singlet oxygen species for cancer treatment.
Collapse
Affiliation(s)
- Li Li
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Hana Cho
- Department of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Kwon Hyeok Yoon
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
30
|
Sadhu KK, Röthlingshöfer M, Winssinger N. DNA as a Platform to Program Assemblies with Emerging Functions in Chemical Biology. Isr J Chem 2013. [DOI: 10.1002/ijch.201200100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kalyan K. Sadhu
- Institut de Science et Ingénierie Supramoléculaires (ISIS – UMR 7006), Université de Strasbourg – CNRS, 8 allée Gaspard Monge, F67000 Strasbourg (France)
| | - Manuel Röthlingshöfer
- Institut de Science et Ingénierie Supramoléculaires (ISIS – UMR 7006), Université de Strasbourg – CNRS, 8 allée Gaspard Monge, F67000 Strasbourg (France)
| | - Nicolas Winssinger
- Institut de Science et Ingénierie Supramoléculaires (ISIS – UMR 7006), Université de Strasbourg – CNRS, 8 allée Gaspard Monge, F67000 Strasbourg (France)
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH‐1211 Geneva 4 (Switzerland) phone: +41‐22‐379‐61‐05 fax: +41‐22‐379‐32‐15
| |
Collapse
|
31
|
Lau JTF, Jiang XJ, Ng DKP, Lo PC. A disulfide-linked conjugate of ferrocenyl chalcone and silicon(iv) phthalocyanine as an activatable photosensitiser. Chem Commun (Camb) 2013; 49:4274-6. [DOI: 10.1039/c2cc37251g] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Thrombin-sensitive dual fluorescence imaging and therapeutic agent for detection and treatment of synovial inflammation in murine rheumatoid arthritis. J Control Release 2012; 163:178-86. [DOI: 10.1016/j.jconrel.2012.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/14/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022]
|
33
|
Yoo JO, Ha KS. New insights into the mechanisms for photodynamic therapy-induced cancer cell death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:139-74. [PMID: 22449489 DOI: 10.1016/b978-0-12-394306-4.00010-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) is a promising therapeutic modality for cancer treatment; however, a more detailed understanding is needed to improve the clinical use of this therapy. PDT induces cancer cell death by apoptosis, necrosis, and autophagy, and these mechanisms can be concurrently occurred. PDT destroys cancer cells by inducing apoptosis through diverse signaling pathways coupled with Bcl-2 family members, caspases, and apopotosis-inducing factor. When the apoptotic pathway is unavailable, PDT can cause cancer cell death through induction of a necrotic or autophagic mechanism. Autophagy is occurred in a Bax-independent manner and can be stimulated in parallel with apoptosis. PDT directly destroys cancer cells by inducing either apoptotic or necrotic death. PDT also can induce autophagy as a death or a survival mechanism. These mechanisms are dependent on a variety of parameters including the nature of the photosensitizer, PDT dose, and cell genotype. Understanding the complex cross talk between these pathways may improve the effectiveness of PDT. Here, we discuss the interplay between these mechanisms based on recent evidence and suggest prospects with regard to advances in PDT.
Collapse
Affiliation(s)
- Je-Ok Yoo
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, South Korea
| | | |
Collapse
|
34
|
Huang K, Martí AA. Recent trends in molecular beacon design and applications. Anal Bioanal Chem 2011; 402:3091-102. [PMID: 22159461 DOI: 10.1007/s00216-011-5570-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/26/2022]
Abstract
A molecular beacon (MB) is a hairpin-structured oligonucleotide probe containing a photoluminescent species (PLS) and a quencher at different ends of the strand. In a recognition and detection process, the hybridization of MBs with target DNA sequences restores the strong photoluminescence, which is quenched before hybridization. Making better MBs involves reducing the background photoluminescence and increasing the brightness of the PLS, which therefore involves the development of new PLS and quenchers, as well as innovative PLS-quencher systems. Heavy-metal complexes, nanocrystals, pyrene compounds, and other materials with excellent photophysical properties have been applied as PLS of MBs. Nanoparticles, nanowires, graphene, metal films, and many other media have also been introduced to quench photoluminescence. On the basis of their high specificity, selectivity, and sensitivity, MBs are developed as a general platform for sensing, producing, and carrying molecules other than oligonucleotides.
Collapse
Affiliation(s)
- Kewei Huang
- Department of Chemistry, Rice University, 6100 South Main Street, Houston, TX 77005, USA
| | | |
Collapse
|
35
|
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61:250-81. [PMID: 21617154 PMCID: PMC3209659 DOI: 10.3322/caac.20114] [Citation(s) in RCA: 3356] [Impact Index Per Article: 258.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment.
Collapse
Affiliation(s)
- Patrizia Agostinis
- Department of Molecular Cell Biology, Cell Death Research & Therapy Laboratory, Catholic University of Leuven, B-3000 Leuven, Belgium,
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Thomas H. Foster
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA,
| | - Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA,
| | - Sandra O. Gollnick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA,
| | - Stephen M. Hahn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI 48201, USA,
| | | | - Johan Moan
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
- Institute of Physics, University of Oslo, Blindern 0316 Oslo, Norway;
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
| | - Dominika Nowis
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology & Immunology, University of Liège, B-4000 Liège Belgium,
| | - Brian C. Wilson
- Ontario Cancer Institute/University of Toronto, Toronto, ON M5G 2M9, Canada,
| | - Jakub Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
- Institute of Physical Chemistry, Polish Academy of Sciences, Department 3, Warsaw, Poland
| |
Collapse
|
36
|
Bugaj AM. Targeted photodynamic therapy--a promising strategy of tumor treatment. Photochem Photobiol Sci 2011; 10:1097-109. [PMID: 21547329 DOI: 10.1039/c0pp00147c] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Targeted therapy is a new promising therapeutic strategy, created to overcome growing problems of contemporary medicine, such as drug toxicity and drug resistance. An emerging modality of this approach is targeted photodynamic therapy (TPDT) with the main aim of improving delivery of photosensitizer to cancer tissue and at the same time enhancing specificity and efficiency of PDT. Depending on the mechanism of targeting, we can divide the strategies of TPDT into "passive", "active" and "activatable", where in the latter case the photosensitizer is activated only in the target tissue. In this review, contemporary strategies of TPDT are described, including new innovative concepts, such as targeting assisted by peptides and aptamers, multifunctional nanoplatforms with navigation by magnetic field or "photodynamic molecular beacons" activatable by enzymes and nucleic acid. The imperative of introducing a new paradigm of PDT, focused on the concepts of heterogeneity and dynamic state of tumor, is also called for.
Collapse
|
37
|
Gao Y, Qiao G, Zhuo L, Li N, Liu Y, Tang B. A tumor mRNA-mediated bi-photosensitizer molecular beacon as an efficient imaging and photosensitizing agent. Chem Commun (Camb) 2011; 47:5316-8. [DOI: 10.1039/c1cc10557d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Lovell JF, Chen J, Huynh E, Jarvi MT, Wilson BC, Zheng G. Facile synthesis of advanced photodynamic molecular beacon architectures. Bioconjug Chem 2010; 21:1023-5. [PMID: 20509598 DOI: 10.1021/bc100178z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleic acid photodynamic molecular beacons (PMBs) are a class of activatable photosensitizers that increase singlet oxygen generation upon binding a specific target sequence. Normally, PMBs are functionalized with multiple solution-phase labeling and purification steps. Here, we make use of a flexible solid-phase approach for completely automated synthesis of PMBs. This enabled the creation of a new type of molecular beacon that uses a linear superquencher architecture. The 3' terminus was labeled with a photosensitizer by generating pyropheophorbide-labeled solid-phase support. The 5' terminus was labeled with up to three consecutive additions of a dark quencher phosphoramidite. These photosensitizing and quenching moieties were stable in the harsh DNA synthesis environment and their hydrophobicity facilitated PMB purification by HPLC. Linear superquenchers exhibited highly efficient quenching. This fully automated synthesis method simplifies not only the synthesis and purification of PMBs, but also the creation of new activatable photosensitizer designs.
Collapse
Affiliation(s)
- Jonathan F Lovell
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Ontario
| | | | | | | | | | | |
Collapse
|
39
|
Tørring T, Toftegaard R, Arnbjerg J, Ogilby PR, Gothelf KV. Reversible pH-Regulated Control of Photosensitized Singlet Oxygen Production Using a DNA i-Motif. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Tørring T, Toftegaard R, Arnbjerg J, Ogilby PR, Gothelf KV. Reversible pH-Regulated Control of Photosensitized Singlet Oxygen Production Using a DNA i-Motif. Angew Chem Int Ed Engl 2010; 49:7923-5. [DOI: 10.1002/anie.201003612] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Lovell JF, Liu TWB, Chen J, Zheng G. Activatable photosensitizers for imaging and therapy. Chem Rev 2010; 110:2839-57. [PMID: 20104890 DOI: 10.1021/cr900236h] [Citation(s) in RCA: 1249] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan F Lovell
- Institute of Biomaterials and Biomedical Engineering, Ontario Cancer Institute, University of Toronto, Ontario M5G 1L7, Canada
| | | | | | | |
Collapse
|
42
|
Ogilby PR. Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev 2010; 39:3181-209. [PMID: 20571680 DOI: 10.1039/b926014p] [Citation(s) in RCA: 843] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Singlet oxygen, O(2)(a(1)Delta(g)), the lowest excited electronic state of molecular oxygen, has been known to the scientific community for approximately 80 years. It has a characteristic chemistry that sets it apart from the triplet ground state of molecular oxygen, O(2)(X(3)Sigma), and is important in fields that range from atmospheric chemistry and materials science to biology and medicine. For such a "mature citizen", singlet oxygen nevertheless remains at the cutting-edge of modern science. In this critical review, recent work on singlet oxygen is summarized, focusing primarily on systems that involve light. It is clear that there is indeed still something new under the sun (243 references).
Collapse
Affiliation(s)
- Peter R Ogilby
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, DK-8000, Arhus, Denmark.
| |
Collapse
|
43
|
Liu TWB, Chen J, Zheng G. Peptide-based molecular beacons for cancer imaging and therapy. Amino Acids 2010; 41:1123-34. [DOI: 10.1007/s00726-010-0499-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/25/2010] [Indexed: 11/28/2022]
|
44
|
Ogilby PR. Singlet oxygen: there is still something new under the sun, and it is better than ever. Photochem Photobiol Sci 2010; 9:1543-60. [DOI: 10.1039/c0pp00213e] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
O'Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009; 85:1053-74. [PMID: 19682322 DOI: 10.1111/j.1751-1097.2009.00585.x] [Citation(s) in RCA: 822] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) is now a well-recognized modality for the treatment of cancer. While PDT has developed progressively over the last century, great advances have been observed in the field in recent years. The concept of dual selectivity of PDT agents is now widely accepted due to the relative specificity and selectivity of PDT along with the absence of harmful side effects often encountered with chemotherapy or radiotherapy. Traditionally, porphyrin-based photosensitizers have dominated the PDT field but these first generation photosensitizers have several disadvantages, with poor light absorption and cutaneous photosensitivity being the predominant side effects. As a result, the requirement for new photosensitizers, including second generation porphyrins and porphyrin derivatives as well as third generation photosensitizers has arisen, with the aim of alleviating the problems encountered with first generation porphyrins and improving the efficacy of PDT. The investigation of nonporphyrin photosensitizers for the development of novel PDT agents has been considerably less extensive than porphyrin-based compounds; however, structural modification of nonporphyrin photosensitizers has allowed for manipulation of the photochemotherapeutic properties. The aim of this review is to provide an insight into PDT photosensitizers clinically approved for application in oncology, as well as those which show significant potential in ongoing preclinical studies.
Collapse
Affiliation(s)
- Aisling E O'Connor
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
46
|
Lo PC, Chen J, Stefflova K, Warren MS, Navab R, Bandarchi B, Mullins S, Tsao M, Cheng JD, Zheng G. Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers. J Med Chem 2009; 52:358-68. [PMID: 19093877 DOI: 10.1021/jm801052f] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibroblast activation protein (FAP) is a cell-surface serine protease highly expressed on cancer-associated fibroblasts of human epithelial carcinomas but not on normal fibroblasts, normal tissues, and cancer cells. We report herein a novel FAP-triggered photodynamic molecular beacon (FAP-PPB) comprising a fluorescent photosensitizer and a black hole quencher 3 linked by a peptide sequence (TSGPNQEQK) specific to FAP. FAP-PPB was effectively cleaved by both human FAP and murine FAP. By use of the HEK293 transfected cells (HEK-mFAP, FAP(+); HEK-vector, FAP(-)), systematic in vitro and in vivo experiments validated the FAP-specific activation of FAP-PPB in cancer cells and mouse xenografts, respectively. FAP-PPB was cleaved by FAP, allowing fluorescence restoration in FAP-expressing cells while leaving non-expressing FAP cells undetectable. Moreover, FAP-PPB showed FAP-specific photocytotoxicity toward HEK-mFAP cells whereas it was non-cytotoxic toward HEK-Vector cells. This study suggests that the FAP-PPB is a potentially useful tool for epithelial cancer detection and treatment.
Collapse
Affiliation(s)
- Pui-Chi Lo
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lovell JF, Chen J, Jarvi MT, Cao WG, Allen AD, Liu Y, Tidwell TT, Wilson BC, Zheng G. FRET Quenching of Photosensitizer Singlet Oxygen Generation. J Phys Chem B 2009; 113:3203-11. [DOI: 10.1021/jp810324v] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jonathan F. Lovell
- Institute of Biomaterials and Biomedical Engineering, Department of Medical Biophysics and Department of Chemistry, University of Toronto, Canada, Division of Biophysics and Bioimaging, Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada, and Department of Chemistry, Shanghai University, China
| | - Juan Chen
- Institute of Biomaterials and Biomedical Engineering, Department of Medical Biophysics and Department of Chemistry, University of Toronto, Canada, Division of Biophysics and Bioimaging, Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada, and Department of Chemistry, Shanghai University, China
| | - Mark T. Jarvi
- Institute of Biomaterials and Biomedical Engineering, Department of Medical Biophysics and Department of Chemistry, University of Toronto, Canada, Division of Biophysics and Bioimaging, Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada, and Department of Chemistry, Shanghai University, China
| | - Wei-Guo Cao
- Institute of Biomaterials and Biomedical Engineering, Department of Medical Biophysics and Department of Chemistry, University of Toronto, Canada, Division of Biophysics and Bioimaging, Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada, and Department of Chemistry, Shanghai University, China
| | - Annette D. Allen
- Institute of Biomaterials and Biomedical Engineering, Department of Medical Biophysics and Department of Chemistry, University of Toronto, Canada, Division of Biophysics and Bioimaging, Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada, and Department of Chemistry, Shanghai University, China
| | - Yuanqin Liu
- Institute of Biomaterials and Biomedical Engineering, Department of Medical Biophysics and Department of Chemistry, University of Toronto, Canada, Division of Biophysics and Bioimaging, Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada, and Department of Chemistry, Shanghai University, China
| | - Thomas T. Tidwell
- Institute of Biomaterials and Biomedical Engineering, Department of Medical Biophysics and Department of Chemistry, University of Toronto, Canada, Division of Biophysics and Bioimaging, Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada, and Department of Chemistry, Shanghai University, China
| | - Brian C. Wilson
- Institute of Biomaterials and Biomedical Engineering, Department of Medical Biophysics and Department of Chemistry, University of Toronto, Canada, Division of Biophysics and Bioimaging, Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada, and Department of Chemistry, Shanghai University, China
| | - Gang Zheng
- Institute of Biomaterials and Biomedical Engineering, Department of Medical Biophysics and Department of Chemistry, University of Toronto, Canada, Division of Biophysics and Bioimaging, Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada, and Department of Chemistry, Shanghai University, China
| |
Collapse
|