1
|
Yang Z, Qiao Y, Strøbech E, Morth JP, Walther G, Jørgensen TS, Lum KY, Peschel G, Rosenbaum MA, Previtali V, Clausen MH, Lukassen MV, Gotfredsen CH, Kurzai O, Weber T, Ding L. Alligamycin A, an antifungal β-lactone spiroketal macrolide from Streptomyces iranensis. Nat Commun 2024; 15:9259. [PMID: 39461983 PMCID: PMC11513958 DOI: 10.1038/s41467-024-53695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Fungal infections pose a great threat to public health and there are only four main types of antifungal drugs, which are often limited with toxicity, drug-drug interactions and antibiotic resistance. Streptomyces is an important source of antibiotics, represented by the clinical drug amphotericin B. Here we report the discovery of alligamycin A (1) as an antifungal compound from the rapamycin-producer Streptomyces iranensis through genome-mining, genetics and natural product chemistry approaches. Alligamycin A harbors a unique chemical scaffold with 13 chiral centers, featuring a β-lactone moiety, a [6,6]-spiroketal ring, and an unreported 7-oxo-octylmalonyl-CoA extender unit incorporated by a potential crotonyl-CoA carboxylase/reductase. It is biosynthesized by a type I polyketide synthase which is confirmed through CRISPR-based gene editing. Alligamycin A displayed potent antifungal effects against numerous clinically relevant filamentous fungi, including resistant Aspergillus and Talaromyces species. β-Lactone ring is essential for the antifungal activity since alligamycin B (2) with disruption in the ring abolished the antifungal effect. Proteomics analysis revealed alligamycin A potentially disrupts the integrity of fungal cell walls and induces the expression of stress-response proteins in Aspergillus niger. Discovery of the potent antifungal candidate alligamycin A expands the limited antifungal chemical space.
Collapse
Affiliation(s)
- Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yijun Qiao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Emil Strøbech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Grit Walther
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kah Yean Lum
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Viola Previtali
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | - Oliver Kurzai
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
Son SY, Bae DW, Kim E, Jeong BG, Kim MY, Youn SY, Yi S, Kim G, Hahn JS, Lee NK, Yoon YJ, Cha SS. Structural investigation of the docking domain assembly from trans-AT polyketide synthases. Structure 2024; 32:1477-1487.e4. [PMID: 38908377 DOI: 10.1016/j.str.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
Docking domains (DDs) located at the C- and N-termini of polypeptides play a crucial role in directing the assembly of polyketide synthases (PKSs), which are multienzyme complexes. Here, we determined the crystal structure of a complex comprising the C-terminal DD (CDDMlnB) and N-terminal DD (NDDMlnC) of macrolactin trans-acyltransferase (AT) PKS that were fused to a functional enzyme, AmpC EC2 β-lactamase. Interface analyses of the CDDMlnB/NDDMlnC complex revealed the molecular intricacies in the core section underpinning the precise DD assembly. Additionally, circular dichroism and steady-state kinetics demonstrated that the formation of the CDDMlnB/NDDMlnC complex had no influence on the structural and functional fidelity of the fusion partner, AmpC EC2. This inspired us to apply the CDDMlnB/NDDMlnC assembly to metabolon engineering. Indeed, DD assembly induced the formation of a complex between 4-coumarate-CoA ligase and chalcone synthase both involved in flavonoid biosynthesis, leading to a remarkable increase in naringenin production in vitro.
Collapse
Affiliation(s)
- Se-Young Son
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Da-Woon Bae
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eunji Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bo-Gyeong Jeong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Myeong-Yeon Kim
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - So-Yeon Youn
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soojung Yi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyeongmin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
Huang S, Ji H, Zheng J. Structural and computational insights into the substrate specificity of acyltransferase domains from modular polyketide synthases. FEBS J 2024; 291:3839-3855. [PMID: 38922792 DOI: 10.1111/febs.17206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Polyketides are natural products synthesized by polyketide synthases (PKSs), where acyltransferase (AT) domains play a crucial role in selection of extender units. Engineering of AT domains enables the site-specific incorporation of non-natural extender units, leading to generation of novel derivatives. Here, we determined the crystal structures of AT domains from the fifth module of tylosin PKS (TylAT5) derived from Streptomyces fradiae and the eighth module of spinosad PKS (SpnAT8) derived from Saccharopolyspora spinosa, and combined them with molecular dynamics simulations and enzyme kinetic studies to elucidate the molecular basis of substrate selection. The ethylmalonyl-CoA-specific conserved motif TAGH of TylAT5 and the MMCoA-specific conserved motif YASH of SpnAT8 were identified within the substrate-binding pocket, and several key residues close to the substrate acyl moiety were located. Through site-directed mutagenesis of four residues near the active site, we successfully reprogrammed the specificity of these two AT domains toward malonyl-CoA. Mutations in TylAT5 enhanced its catalytic activity 2.6-fold toward malonyl-CoA, and mutations in SpnAT8 eliminated the substrate promiscuity. These results extend our understanding of AT substrate specificity and would benefit the engineering of PKSs.
Collapse
Affiliation(s)
- Shuxin Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, China
| |
Collapse
|
4
|
Grabski M, Gawor J, Cegłowska M, Gromadka R, Mazur-Marzec H, Węgrzyn G. Genome Mining of Pseudanabaena galeata CCNP1313 Indicates a New Scope in the Search for Antiproliferative and Antiviral Agents. Microorganisms 2024; 12:1628. [PMID: 39203471 PMCID: PMC11356792 DOI: 10.3390/microorganisms12081628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Compounds derived from natural sources pave the way for novel drug development. Cyanobacteria is an ubiquitous phylum found in various habitats. The fitness of those microorganisms, within different biotopes, is partially dependent on secondary metabolite production. Their enhanced production under biotic/abiotic stress factors accounts for better survival rates of cells, and thereby cyanobacteria are as an enticing source of bioactive compounds. Previous studies have shown the potent activity of extracts and fractions from Pseudanabaena galeata (Böcher 1949) strain CCNP1313 against cancer cells and viruses. However, active agents remain unknown, as the selected peptides had no effect on the tested cell lines. Here, we present a bottom-up approach, pinpointing key structures involved in secondary metabolite production. Consisting of six replicons, a complete genome sequence of P. galeata strain CCNP1313 was found to carry genes for non-ribosomal peptide/polyketide synthetases embedded within chromosome spans (4.9 Mbp) and for a ribosomally synthesized peptide located on one of the plasmids (0.2 Mbp). Elucidation of metabolite synthesis pathways led to prediction of their structure. While none of the synthesis-predicted products were found in mass spectrometry analysis, unexplored synthetases are characterized by structural similarities to those producing potent bioactive compounds.
Collapse
Affiliation(s)
- Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdańsk, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
5
|
Tang H, Wei W, Wu J, Cui X, Wang W, Qian T, Wo J, Ye BC. Engineering Streptomyces albus B4 for Enhanced Production of ( R)-Mellein: A High-Titer Heterologous Biosynthesis Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17499-17509. [PMID: 39045837 DOI: 10.1021/acs.jafc.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The natural compound (R)-(-)-mellein exhibits antiseptic and fungicidal activities. We investigated its biosynthesis using the polyketide synthase encoded by SACE_5532 (pks8) from Saccharopolyspora erythraea heterologously expressed in Streptomyces albus B4, a chassis chosen for its fast growth, genetic manipulability, and ample large short-chain acyl-CoA precursor supply. High-level heterologous (R)-(-)-mellein yield was achieved by pks8 overexpression and duplication. The precursor supply pathways were strengthened by overexpression of SACE_0028 (encoding acetyl-CoA carboxylase) and four genes involved in β-oxidation (fadD, fadE, fadB, and fadA). Cell growth inhibition by (R)-(-)-mellein production at high concentration was relieved by in situ adsorption using Amberlite XAD16 resin. The final strain, B4mel12, produced (R)-(-)-mellein at 6395.2 mg/L in shake-flask fermentation. Overall, this is the first report of heterologous (R)-(-)-mellein synthesis in microorganism with a high titer. (R)-(-)-mellein prototype in this study opens a possibility for the overproduction of valuable melleins in S. albus B4.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xingjun Cui
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenzong Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wo
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Kudo F. Biosynthesis of macrolactam antibiotics with β-amino acid polyketide starter units. J Antibiot (Tokyo) 2024; 77:486-498. [PMID: 38816450 PMCID: PMC11284099 DOI: 10.1038/s41429-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Macrolactam antibiotics incorporating β-amino acid polyketide starter units, isolated primarily from Actinomycetes species, show significant biological activities. This review provides a detailed analysis into the biosynthetic studies of vicenistatin, a macrolactam antibiotic with a 3-aminoisobutyrate starter unit, as well as biosynthetic research on related macrolactam compounds. Firstly, the elucidation of a common mechanism for the incorporation of β-amino acid starter units into the polyketide synthase (PKS) is described. Secondly, the unique biosynthetic mechanisms of the β-amino acids that are used to supply the main macrolactam biosynthetic pathways with starter units are discussed. Thirdly, some distinctive post-PKS modification mechanisms that complete macrolactam antibiotic biosynthesis are summarized. Finally, future directions for creating new macrolactam compounds through engineered biosynthesis pathways are described.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
7
|
Wang W, Tang H, Cui X, Wei W, Wu J, Ye BC. Engineering of a TetR family transcriptional regulator BkdR enhances heterologous spinosad production in Streptomyces albus B4 chassis. Appl Environ Microbiol 2024; 90:e0083824. [PMID: 38904409 PMCID: PMC11267868 DOI: 10.1128/aem.00838-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
Precursor supply plays a significant role in the production of secondary metabolites. In Streptomyces bacteria, propionyl-, malonyl-, and methylmalonyl-CoA are the most common precursors used for polyketide biosynthesis. Although propionyl-CoA synthetases participate in the propionate assimilation pathway and directly convert propionate into propionyl-CoA, malonyl- and methylmalonyl-CoA cannot be formed using common acyl-CoA synthetases. Therefore, both acetyl- and propionyl-CoA carboxylation, catalyzed by acyl-CoA carboxylases, should be considered when engineering a microorganism chassis to increase polyketide production. In this study, we identified a transcriptional regulator of the TetR family, BkdR, in Streptomyces albus B4, which binds directly to the promoter region of the neighboring pccAB operon. This operon encodes acetyl/propionyl-CoA carboxylase and negatively regulates its transcription. In addition to acetate and propionate, the binding of BkdR to pccAB is disrupted by acetyl- and propionyl-CoA ligands. We identified a 16-nucleotide palindromic BkdR-binding motif (GTTAg/CGGTCg/TTAAC) in the intergenic region between pccAB and bkdR. When bkdR was deleted, we found an enhanced supply of malonyl- and methylmalonyl-CoA precursors in S. albus B4. In this study, spinosad production was detected in the recombinant strain after introducing the entire artificial biosynthesized gene cluster into S. albus B4. When supplemented with propionate to provide propionyl-CoA, the novel bkdR-deleted strain produced 29.4% more spinosad than the initial strain in trypticase soy broth (TSB) medium. IMPORTANCE In this study, we describe a pccAB operon involved in short-chain acyl-CoA carboxylation in S. albus B4 chassis. The TetR family regulator, BkdR, represses this operon. Our results show that BkdR regulates the precursor supply needed for heterologous spinosad biosynthesis by controlling acetyl- and propionyl-CoA assimilation. The deletion of the BkdR-encoding gene exerts an increase in heterologous spinosad yield. Our research reveals a regulatory mechanism in short-chain acyl-CoA metabolism and suggests new possibilities for S. albus chassis engineering to enhance heterologous polyketide yield.
Collapse
Affiliation(s)
- Wenzong Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xingjun Cui
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Yan D, Zhou M, Adduri A, Zhuang Y, Guler M, Liu S, Shin H, Kovach T, Oh G, Liu X, Deng Y, Wang X, Cao L, Sherman DH, Schultz PJ, Kersten RD, Clement JA, Tripathi A, Behsaz B, Mohimani H. Discovering type I cis-AT polyketides through computational mass spectrometry and genome mining with Seq2PKS. Nat Commun 2024; 15:5356. [PMID: 38918378 PMCID: PMC11199612 DOI: 10.1038/s41467-024-49587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Type 1 polyketides are a major class of natural products used as antiviral, antibiotic, antifungal, antiparasitic, immunosuppressive, and antitumor drugs. Analysis of public microbial genomes leads to the discovery of over sixty thousand type 1 polyketide gene clusters. However, the molecular products of only about a hundred of these clusters are characterized, leaving most metabolites unknown. Characterizing polyketides relies on bioactivity-guided purification, which is expensive and time-consuming. To address this, we present Seq2PKS, a machine learning algorithm that predicts chemical structures derived from Type 1 polyketide synthases. Seq2PKS predicts numerous putative structures for each gene cluster to enhance accuracy. The correct structure is identified using a variable mass spectral database search. Benchmarks show that Seq2PKS outperforms existing methods. Applying Seq2PKS to Actinobacteria datasets, we discover biosynthetic gene clusters for monazomycin, oasomycin A, and 2-aminobenzamide-actiphenol.
Collapse
Affiliation(s)
- Donghui Yan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Muqing Zhou
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abhinav Adduri
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yihao Zhuang
- Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA
| | - Mustafa Guler
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sitong Liu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hyonyoung Shin
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Torin Kovach
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gloria Oh
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiao Liu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yuting Deng
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaofeng Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Liu Cao
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - David H Sherman
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Schultz
- Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Ashootosh Tripathi
- Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Bahar Behsaz
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Chemia Biosciences Inc, Pittsburgh, PA, USA.
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
10
|
Morandini L, Caulier S, Bragard C, Mahillon J. Bacillus cereus sensu lato antimicrobial arsenal: An overview. Microbiol Res 2024; 283:127697. [PMID: 38522411 DOI: 10.1016/j.micres.2024.127697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.
Collapse
Affiliation(s)
| | - Simon Caulier
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Claude Bragard
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | | |
Collapse
|
11
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
12
|
Yang M, Hao Y, Liu G, Wen Y. Enhancement of acyl-CoA precursor supply for increased avermectin B1a production by engineering meilingmycin polyketide synthase and key primary metabolic pathway genes. Microb Biotechnol 2024; 17:e14470. [PMID: 38683675 PMCID: PMC11057500 DOI: 10.1111/1751-7915.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Avermectins (AVEs), a family of macrocyclic polyketides produced by Streptomyces avermitilis, have eight components, among which B1a is noted for its strong insecticidal activity. Biosynthesis of AVE "a" components requires 2-methylbutyryl-CoA (MBCoA) as starter unit, and malonyl-CoA (MalCoA) and methylmalonyl-CoA (MMCoA) as extender units. We describe here a novel strategy for increasing B1a production by enhancing acyl-CoA precursor supply. First, we engineered meilingmycin (MEI) polyketide synthase (PKS) for increasing MBCoA precursor supply. The loading module (using acetyl-CoA as substrate), extension module 7 (using MMCoA as substrate) and TE domain of MEI PKS were assembled to produce 2-methylbutyrate, providing the starter unit for B1a production. Heterologous expression of the newly designed PKS (termed Mei-PKS) in S. avermitilis wild-type (WT) strain increased MBCoA level, leading to B1a titer 262.2 μg/mL - 4.36-fold higher than WT value (48.9 μg/mL). Next, we separately inhibited three key nodes in essential pathways using CRISPRi to increase MalCoA and MMCoA levels in WT. The resulting strains all showed increased B1a titer. Combined inhibition of these key nodes in Mei-PKS expression strain increased B1a titer to 341.9 μg/mL. Overexpression of fatty acid β-oxidation pathway genes in the strain further increased B1a titer to 452.8 μg/mL - 8.25-fold higher than WT value. Finally, we applied our precursor supply strategies to high-yield industrial strain A229. The strategies, in combination, led to B1a titer 8836.4 μg/mL - 37.8% higher than parental A229 value. These findings provide an effective combination strategy for increasing AVE B1a production in WT and industrial S. avermitilis strains, and our precursor supply strategies can be readily adapted for overproduction of other polyketides.
Collapse
Affiliation(s)
- Mengyao Yang
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yi Hao
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Gang Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
13
|
Ali I, Wei DQ, Khan A, Feng Y, Waseem M, Hussain Z, Iqbal A, Ali SS, Mohammad A, Zheng J. Improving the substrate binding of acetyl-CoA carboxylase (AccB) from Streptomyces antibioticus through computational enzyme engineering. Biotechnol Appl Biochem 2024; 71:402-413. [PMID: 38287712 DOI: 10.1002/bab.2548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.
Collapse
Affiliation(s)
- Imtiaz Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Yuanyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Zahid Hussain
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
14
|
Walesch S, Garcia R, Mahmoud AB, Panter F, Bollenbach S, Mäser P, Kaiser M, Krug D, Müller R. New myxobacteria of the Myxococcaceae clade produce angiolams with antiparasitic activities. Microbiol Spectr 2024; 12:e0368923. [PMID: 38298128 PMCID: PMC10913735 DOI: 10.1128/spectrum.03689-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
In the past century, microbial natural products have proven themselves to be substantial and fruitful sources of anti-infectives. In addition to the well-studied Actinobacteria, understudied bacterial taxa like the Gram-negative myxobacteria have increasingly gained attention in the ongoing search for novel and biologically active natural products. In the course of a regional sampling campaign to source novel myxobacteria, we recently uncovered new myxobacterial strains MCy12716 and MCy12733 belonging to the Myxococcaceae clade. Early bioactivity screens of the bacterial extracts revealed the presence of bioactive natural products that were identified as angiolam A and several novel derivatives. Sequencing of the corresponding producer strains allowed the identification of the angiolam biosynthetic gene cluster, which was verified by targeted gene inactivation. Based on bioinformatic analysis of the biosynthetic gene cluster, a concise biosynthesis model was devised to explain angiolam biosynthesis. Importantly, novel angiolam derivatives uncovered in this study named angiolams B, C, and D were found to display promising antiparasitic activities against the malaria pathogen Plasmodium falciparum in the 0.3-0.8 µM range.IMPORTANCEThe COVID-19 pandemic and continuously emerging antimicrobial resistance (AMR) have recently raised awareness about limited treatment options against infectious diseases. However, the shortage of treatment options against protozoal parasitic infections, like malaria, is much more severe, especially for the treatment of so-called neglected tropical diseases. The detection of anti-parasitic bioactivities of angiolams produced by MCy12716 and MCy12733 displays the hidden potential of scarcely studied natural products to have promising biological activities in understudied indications. Furthermore, the improved biological activities of novel angiolam derivatives against Plasmodium falciparum and the evaluation of its biosynthesis display the opportunities of the angiolam scaffold on route to treat protozoal parasitic infections as well as possible ways to increase the production of derivatives with improved bioactivities.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Ronald Garcia
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Abdelhalim B. Mahmoud
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
- Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Fabian Panter
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany
| | - Sophie Bollenbach
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Daniel Krug
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- DZIF-German Center for Infection Research, partner site Hannover-Braunschweig, Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany
| |
Collapse
|
15
|
Reed JH, Seebeck FP. Reagent Engineering for Group Transfer Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202311159. [PMID: 37688533 DOI: 10.1002/anie.202311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
Biocatalysis has become a major driver in the innovation of preparative chemistry. Enzyme discovery, engineering and computational design have matured to reliable strategies in the development of biocatalytic processes. By comparison, substrate engineering has received much less attention. In this Minireview, we highlight the idea that the design of synthetic reagents may be an equally fruitful and complementary approach to develop novel enzyme-catalysed group transfer chemistry. This Minireview discusses key examples from the literature that illustrate how synthetic substrates can be devised to improve the efficiency, scalability and sustainability, as well as the scope of such reactions. We also provide an opinion as to how this concept might be further developed in the future, aspiring to replicate the evolutionary success story of natural group transfer reagents, such as adenosine triphosphate (ATP) and S-adenosyl methionine (SAM).
Collapse
Affiliation(s)
- John H Reed
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| |
Collapse
|
16
|
Seo K, Shu W, Rückert-Reed C, Gerlinger P, Erb TJ, Kalinowski J, Wittmann C. From waste to health-supporting molecules: biosynthesis of natural products from lignin-, plastic- and seaweed-based monomers using metabolically engineered Streptomyces lividans. Microb Cell Fact 2023; 22:262. [PMID: 38114944 PMCID: PMC10731712 DOI: 10.1186/s12934-023-02266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Transforming waste and nonfood materials into bulk biofuels and chemicals represents a major stride in creating a sustainable bioindustry to optimize the use of resources while reducing environmental footprint. However, despite these advancements, the production of high-value natural products often continues to depend on the use of first-generation substrates, underscoring the intricate processes and specific requirements of their biosyntheses. This is also true for Streptomyces lividans, a renowned host organism celebrated for its capacity to produce a wide array of natural products, which is attributed to its genetic versatility and potent secondary metabolic activity. Given this context, it becomes imperative to assess and optimize this microorganism for the synthesis of natural products specifically from waste and nonfood substrates. RESULTS We metabolically engineered S. lividans to heterologously produce the ribosomally synthesized and posttranslationally modified peptide bottromycin, as well as the polyketide pamamycin. The modified strains successfully produced these compounds using waste and nonfood model substrates such as protocatechuate (derived from lignin), 4-hydroxybenzoate (sourced from plastic waste), and mannitol (from seaweed). Comprehensive transcriptomic and metabolomic analyses offered insights into how these substrates influenced the cellular metabolism of S. lividans. In terms of production efficiency, S. lividans showed remarkable tolerance, especially in a fed-batch process using a mineral medium containing the toxic aromatic 4-hydroxybenzoate, which led to enhanced and highly selective bottromycin production. Additionally, the strain generated a unique spectrum of pamamycins when cultured in mannitol-rich seaweed extract with no additional nutrients. CONCLUSION Our study showcases the successful production of high-value natural products based on the use of varied waste and nonfood raw materials, circumventing the reliance on costly, food-competing resources. S. lividans exhibited remarkable adaptability and resilience when grown on these diverse substrates. When cultured on aromatic compounds, it displayed a distinct array of intracellular CoA esters, presenting promising avenues for polyketide production. Future research could be focused on enhancing S. lividans substrate utilization pathways to process the intricate mixtures commonly found in waste and nonfood sources more efficiently.
Collapse
Affiliation(s)
- Kyoyoung Seo
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | | | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
17
|
Tan Z, Li J, Hou J, Gonzalez R. Designing artificial pathways for improving chemical production. Biotechnol Adv 2023; 64:108119. [PMID: 36764336 DOI: 10.1016/j.biotechadv.2023.108119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Metabolic engineering exploits manipulation of catalytic and regulatory elements to improve a specific function of the host cell, often the synthesis of interesting chemicals. Although naturally occurring pathways are significant resources for metabolic engineering, these pathways are frequently inefficient and suffer from a series of inherent drawbacks. Designing artificial pathways in a rational manner provides a promising alternative for chemicals production. However, the entry barrier of designing artificial pathway is relatively high, which requires researchers a comprehensive and deep understanding of physical, chemical and biological principles. On the other hand, the designed artificial pathways frequently suffer from low efficiencies, which impair their further applications in host cells. Here, we illustrate the concept and basic workflow of retrobiosynthesis in designing artificial pathways, as well as the most currently used methods including the knowledge- and computer-based approaches. Then, we discuss how to obtain desired enzymes for novel biochemistries, and how to trim the initially designed artificial pathways for further improving their functionalities. Finally, we summarize the current applications of artificial pathways from feedstocks utilization to various products synthesis, as well as our future perspectives on designing artificial pathways.
Collapse
Affiliation(s)
- Zaigao Tan
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
18
|
Liu L, Wang W, Chen M, Zhang Y, Mao H, Wang D, Chen Y, Li P. Characterization of three succinyl-CoA acyltransferases involved in polyketide chain assembly. Appl Microbiol Biotechnol 2023; 107:2403-2412. [PMID: 36929192 DOI: 10.1007/s00253-023-12481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Polyketides are a class of natural products with astonishing structural diversities, fascinating biological activities, and a versatile of applications. In polyketides biosynthesis, acyltransferases (ATs) are the 'gatekeeping' enzymes selecting the specific CoA-activated acyl groups as building blocks and transferring them onto the phosphopantetheine arm of acyl carrier proteins (ACPs) to enable the following condensation reactions to assemble the polyketide chain. Herein, the Art2 protein from aurantinins, a group of the antibacterial polyketides, is characterized in vitro as an AT that can load a CoA-activated succinyl unit onto the first ACP domain of Art17 (ACPArt17-1). In addition, another two proteins, GbnB and EtnB, involved in the biosynthesis of gladiolin and etnangien respectively, were traced by literature mining, homologous searching, and product structure analysis and then identified as functional succinyl-CoA ATs by the ACPArt17-1 assays. Taken together, by the assay method employing ACPArt17-1 as an acyl acceptor, we identified three ATs that can introduce a succinyl unit into the polyketide assembly line, which enriches the toolbox of polyketide biosynthetic enzymes and sets a stage for incorporating a succinyl unit into polyketide backbones in synthetic biological manners. KEY POINTS: • Three acyltransferases that are able to load ACP with a succinyl unit were characterized in vitro. • ACPArt17-1 can be used as an acceptor to assay succinyl-CoA AT from different polyketides. • The succinyl unit can be incorporated into polyketides assembly process.
Collapse
Affiliation(s)
- Lilu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijin Mao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dacheng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
19
|
Kudo F, Kishikawa K, Tsuboi K, Kido T, Usui T, Hashimoto J, Shin-Ya K, Miyanaga A, Eguchi T. Acyltransferase Domain Exchange between Two Independent Type I Polyketide Synthases in the Same Producer Strain of Macrolide Antibiotics. Chembiochem 2023; 24:e202200670. [PMID: 36602093 DOI: 10.1002/cbic.202200670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Streptomyces graminofaciens A-8890 produces two macrolide antibiotics, FD-891 and virustomycin A, both of which show significant biological activity. In this study, we identified the virustomycin A biosynthetic gene cluster, which encodes type I polyketide synthases (PKSs), ethylmalonyl-CoA biosynthetic enzymes, methoxymalony-acyl carrier protein biosynthetic enzymes, and post-PKS modification enzymes. Next, we demonstrated that the acyltransferase domain can be exchanged between the Vsm PKSs and the PKSs involved in FD-891 biosynthesis (Gfs PKSs), without any supply problems of the unique extender units. We exchanged the malonyltransferase domain in the loading module of Gfs PKS with the ethylmalonyltransferase domain and the methoxymalonyltransferase domain of Vsm PKSs. Consequently, the expected two-carbon-elongated analog 26-ethyl-FD-891 was successfully produced with a titer comparable to FD-891 production by the wild type; however, exchange with the methoxymalonyltransferase domain did not produce any FD-891 analogs. Furthermore, 26-ethyl-FD-891 showed potent cytotoxic activity against HeLa cells, like natural FD-891.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Kosuke Kishikawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Kazuma Tsuboi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Takafusa Kido
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| |
Collapse
|
20
|
Mrudulakumari Vasudevan U, Mai DHA, Krishna S, Lee EY. Methanotrophs as a reservoir for bioactive secondary metabolites: Pitfalls, insights and promises. Biotechnol Adv 2023; 63:108097. [PMID: 36634856 DOI: 10.1016/j.biotechadv.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Methanotrophs are potent natural producers of several bioactive secondary metabolites (SMs) including isoprenoids, polymers, peptides, and vitamins. Cryptic biosynthetic gene clusters identified from these microbes via genome mining hinted at the vast and hidden SM biosynthetic potential of these microbes. Central carbon metabolism in methanotrophs offers rare pathway intermediate pools that could be further diversified using advanced synthetic biology tools to produce valuable SMs; for example, plant polyketides, rare carotenoids, and fatty acid-derived SMs. Recent advances in pathway reconstruction and production of isoprenoids, squalene, ectoine, polyhydroxyalkanoate copolymer, cadaverine, indigo, and shinorine serve as proof-of-concept. This review provides theoretical guidance for developing methanotrophs as microbial chassis for high-value SMs. We summarize the distinct secondary metabolic potentials of type I and type II methanotrophs, with specific attention to products relevant to biomedical applications. This review also includes native and non-native SMs from methanotrophs, their therapeutic potential, strategies to induce silent biosynthetic gene clusters, and challenges.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dung Hoang Anh Mai
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
21
|
Diehl C, Gerlinger PD, Paczia N, Erb TJ. Synthetic anaplerotic modules for the direct synthesis of complex molecules from CO 2. Nat Chem Biol 2023; 19:168-175. [PMID: 36470994 PMCID: PMC9889269 DOI: 10.1038/s41589-022-01179-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/22/2022] [Indexed: 12/12/2022]
Abstract
Anaplerosis is an essential feature of metabolism that allows the continuous operation of natural metabolic networks, such as the citric acid cycle, by constantly replenishing drained intermediates. However, this concept has not been applied to synthetic in vitro metabolic networks, thus far. Here we used anaplerotic strategies to directly access the core sequence of the CETCH cycle, a new-to-nature in vitro CO2-fixation pathway that features several C3-C5 biosynthetic precursors. We drafted four different anaplerotic modules that use CO2 to replenish the CETCH cycle's intermediates and validated our designs by producing 6-deoxyerythronolide B (6-DEB), the C21-macrolide backbone of erythromycin. Our best design allowed the carbon-positive synthesis of 6-DEB via 54 enzymatic reactions in vitro at yields comparable to those with isolated 6-DEB polyketide synthase (DEBS). Our work showcases how new-to-nature anaplerotic modules can be designed and tailored to enhance and expand the synthetic capabilities of complex catalytic in vitro reaction networks.
Collapse
Affiliation(s)
- Christoph Diehl
- grid.419554.80000 0004 0491 8361Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Patrick D. Gerlinger
- grid.419554.80000 0004 0491 8361Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- grid.419554.80000 0004 0491 8361Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J. Erb
- grid.419554.80000 0004 0491 8361Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany ,grid.452532.7SYNMIKRO Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
22
|
Zheng M, Zhang J, Zhang W, Yang L, Yan X, Tian W, Liu Z, Lin Z, Deng Z, Qu X. An Atypical Acyl‐CoA Synthetase Enables Efficient Biosynthesis of Extender Units for Engineering a Polyketide Carbon Scaffold. Angew Chem Int Ed Engl 2022; 61:e202208734. [DOI: 10.1002/anie.202208734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Wan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xiaoli Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zhihao Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
23
|
Ageenko NV, Kiselev KV, Odintsova NA. Quinoid Pigments of Sea Urchins Scaphechinus mirabilis and Strongylocentrotus intermedius: Biological Activity and Potential Applications. Mar Drugs 2022; 20:611. [PMID: 36286435 PMCID: PMC9605347 DOI: 10.3390/md20100611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
This review presents literature data: the history of the discovery of quinoid compounds, their biosynthesis and biological activity. Special attention is paid to the description of the quinoid pigments of the sea urchins Scaphechinus mirabilis (from the family Scutellidae) and Strongylocentrotus intermedius (from the family Strongylocentrotidae). The marine environment is considered one of the most important sources of natural bioactive compounds with extremely rich biodiversity. Primary- and some secondary-mouthed animals contain very high concentrations of new biologically active substances, many of which are of significant potential interest for medical purposes. The quinone pigments are products of the secondary metabolism of marine animals, can have complex structures and become the basis for the development of new natural products in echinoids that are modulators of chemical interactions and possible active ingredients in medicinal preparations. More than 5000 chemical compounds with high pharmacological potential have been isolated and described from marine organisms. There are three well known ways of naphthoquinone biosynthesis-polyketide, shikimate and mevalonate. The polyketide pathway is the biosynthesis pathway of various quinones. The shikimate pathway is the main pathway in the biosynthesis of naphthoquinones. It should be noted that all quinoid compounds in plants and animals can be synthesized by various ways of biosynthesis.
Collapse
Affiliation(s)
- Natalya V. Ageenko
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Federal State Budgetary Institution of Science, The Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), 690041 Vladivostok, Russia
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Federal State Budgetary Institution of Science, FEB RAS, 690022 Vladivostok, Russia
| | - Nelly A. Odintsova
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Federal State Budgetary Institution of Science, The Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), 690041 Vladivostok, Russia
| |
Collapse
|
24
|
Wei J, Chen B, Dong J, Wang X, Li Y, Liu Y, Guan W. Salinomycin biosynthesis reversely regulates the β-oxidation pathway in Streptomyces albus by carrying a 3-hydroxyacyl-CoA dehydrogenase gene in its biosynthetic gene cluster. Microb Biotechnol 2022; 15:2890-2904. [PMID: 36099515 PMCID: PMC9733648 DOI: 10.1111/1751-7915.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Streptomyces is well known for synthesis of many biologically active secondary metabolites, such as polyketides and non-ribosomal peptides. Understanding the coupling mechanisms of primary and secondary metabolism can help develop strategies to improve secondary metabolite production in Streptomyces. In this work, Streptomyces albus ZD11, an oil-preferring industrial Streptomyces strain, was proved to have a remarkable capability to generate abundant acyl-CoA precursors for salinomycin biosynthesis with the aid of its enhanced β-oxidation pathway. It was found that the salinomycin biosynthetic gene cluster contains a predicted 3-hydroxyacyl-CoA dehydrogenase (FadB3), which is the third enzyme of β-oxidation cycle. Deletion of fadB3 significantly reduced the production of salinomycin. A variety of experimental evidences showed that FadB3 was mainly involved in the β-oxidation pathway rather than ethylmalonyl-CoA biosynthesis and played a very important role in regulating the rate of β-oxidation in S. albus ZD11. Our findings elucidate an interesting coupling mechanism by which a PKS biosynthetic gene cluster could regulate the β-oxidation pathway by carrying β-oxidation genes, enabling Streptomyces to efficiently synthesize target polyketides and economically utilize environmental nutrients.
Collapse
Affiliation(s)
- Jiaxiu Wei
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Binbin Chen
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhouChina
| | - Jianxin Dong
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Xueyu Wang
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Yongquan Li
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Yingchun Liu
- Department of ChemistryZhejiang UniversityHangzhouChina
| | - Wenjun Guan
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| |
Collapse
|
25
|
Zheng M, Zhang J, Zhang W, Yang L, Yan X, Tian W, Liu Z, Lin Z, Deng Z, Qu X. An Atypical Acyl‐CoA Synthetase Enables Efficient Biosynthesis of Extender Units for Engineering a Polyketide Carbon Scaffold. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mengmeng Zheng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Jun Zhang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Wan Zhang
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Lu Yang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xiaoli Yan
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Wenya Tian
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zhihao Liu
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhi Lin
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zixin Deng
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xudong Qu
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology 800 Dongchuan Rd. 200240 Shanghai CHINA
| |
Collapse
|
26
|
Guo S, Sun X, Li R, Zhang T, Hu F, Liu F, Hua Q. Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR-Cas9. BIORESOUR BIOPROCESS 2022; 9:90. [PMID: 38647752 PMCID: PMC10991131 DOI: 10.1186/s40643-022-00583-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR-Cas9apre system was developed from pCRISPR-Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR-Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a "glycolate" extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR-Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR-Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tianyao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
27
|
Shakour ZT, Farag MA. Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: Current status and future perspectives. J Adv Res 2022; 39:257-273. [PMID: 35660073 PMCID: PMC9263761 DOI: 10.1016/j.jare.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite, a large number of bioactive anthraquinones (AQs) isolated from host-living fungi, only plant-derived AQs were introduced in the global consumer markets. Host-living fungi represents renewable and extendible resources of diversified metabolites to be exploited for bioactives production. Unique classes of AQs from fungi include halogenated and steroidal AQs, and absent from planta are of potential to explore for biological activity against urging diseases such as cancer and multidrug-resistant pathogens. The structural diversity of fungal AQs, monomers, dimers, trimers, halogenated, etc… results in a vast range of pharmacological activities. AIM OF REVIEW The current study capitalizes on uncovering the diversity and distribution of host-living fungal systems producing AQs in different terrestrial ecosystems ranging from plant endophytes, lichens, animals and insects. Furthermore, the potential bioactivities of fungal derived AQs i.e., antibacterial, antifungal, antiviral (anti-HIV), anticancer, antioxidant, diuretic and laxative activities are assembled in relation to their structure activity relationship (SAR). Analyzing for structure-activity relationship among fungal AQs may facilitate bioengineering of more potential analogues. Withal, elucidation of AQs biosynthetic pathways in fungi is discussed from different fungal hosts to open up new possibilities for potential biotechnological applications. Such comprehensive review unravels terrestrial host-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries. KEY SCIENTIFIC CONCEPTS OF REVIEW Such comprehensive review unravels terrestrialhost-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
28
|
Zhang C, Chen M, Yang L, Cheng Y, Qin Y, Zang Y, Wang B, Sun B, Wang C. Effects of mokF gene deletion and overexpression on the Monacolin K metabolism yields of Monascus purpureus. Appl Microbiol Biotechnol 2022; 106:3069-3080. [PMID: 35435455 DOI: 10.1007/s00253-022-11913-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/27/2022]
Abstract
Monascus purpureus is a fungus known for producing various physiologically active secondary metabolites. Of these, Monacolin K, a compound with hypocholesterolemic effects, is controlled by the biosynthetic gene mokF. Here, mokF deletion and overexpression strains (F2 and C3, respectively) were constructed using genetic engineering and compared with the M. purpureus wild strain (M1). The results showed that Monacolin K production was reduced by 50.86% in F2 and increased by 74.19% in C3. Of the three strains, C3 showed the highest production of Monacolin K and the most abnormal morphology. In addition, mokF influenced the expression level of mokA-mokI and might play an important role in regulating the biosynthesis of secondary metabolites in M. purpureus. Overall, our study verified the function of mokF in M. purpureus using gene deletion and overexpression technology. KEY POINTS: • The deletion and overexpression strains of mokF gene were successfully constructed. • The deletion or overexpression of mokF gene directly affected Monacolin K production. •The mokF gene had little effect on Monascus pigments and cell biomass.
Collapse
Affiliation(s)
- Chan Zhang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Mengxue Chen
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Le Yang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Ying Cheng
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Yuhui Qin
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Yueming Zang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Bei Wang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Baoguo Sun
- Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Chengtao Wang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
29
|
Choi Y, Kim YH. Regulatory role of cysteines in (2R, 3R)-butanediol dehydrogenase BdhA of Bacillus velezensis strain GH1-13. J Microbiol 2022; 60:411-418. [DOI: 10.1007/s12275-022-2018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
|
30
|
Avermectin B1a production in Streptomyces avermitilis is enhanced by engineering aveC and precursor supply genes. Appl Microbiol Biotechnol 2022; 106:2191-2205. [PMID: 35258669 DOI: 10.1007/s00253-022-11854-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Avermectins (AVEs) are economically potent anthelmintic agents produced by Streptomyces avermitilis. Among eight AVE components, B1a exhibits the highest insecticidal activity. The purpose of this study was to enhance B1a production, particularly in the high-yielding industrial strain A229, by a combination strategy involving the following steps. (i) aveC gene was engineered to increase B1a:B2a ratio. Three aveC variants (aveC2m, aveC5m, and aveC8m, respectively encoding two, five, and eight amino acid mutations) were synthesized by fusion PCR. B1a:B2a ratio in A229 derivative having kasOp*-controlled aveC8m reached 1.33 (B1a and B2a titers were 8120 and 6124 μg/mL). Corresponding values in A229 were 0.99 and 6447 and 6480 μg/mL. (ii) β-oxidation pathway genes fadD and fadAB were overexpressed in wild-type (WT) strain and A229 to increase supply of acyl-CoA precursors for AVE production. The resulting strains all showed increased B1a titer. Co-overexpression of pkn5p-driven fadD and fadAB in A229 led to B1a titer of 8537 μg/mL. (iii) Genes bicA and ecaA involved in cyanobacterial CO2-concentrating mechanism (CCM) were introduced into WT and A229 to enhance carboxylation velocity of acetyl-CoA and propionyl-CoA carboxylases, leading to increased supply of malonyl- and methylmalonyl-CoA precursors and increased B1a titer. Co-expression of bicA and ecaA in A229 led to B1a titer of 8083 μg/mL. (iv) aveC8m, fadD-fadAB, and bicA-ecaA were co-overexpressed in A229, resulting in maximal B1a titer (9613 μg/mL; 49.1% increase relative to A229). Our findings demonstrate that the combination strategy we provided here is an efficient approach for improving B1a production in industrial strains.Key points• aveC mutation increased avermectin B1a:B2a ratio and B1a titer.• Higher levels of acyl-CoA precursors contributed to enhanced B1a production.• B1a titer in an industrial strain was increased by 49.1% via a combination strategy.
Collapse
|
31
|
C C, A V, B A, J L, G F, L FO, S M, T C. Nitrogen source as a modulator of the metabolic activity of Pedobacter lusitanus NL19: a transcriptomic approach. Appl Microbiol Biotechnol 2022; 106:1583-1597. [PMID: 35122154 DOI: 10.1007/s00253-022-11796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
Secondary metabolites (SMs) are compounds with relevant biological activities. Their production under laboratory conditions, especially in broth, is still challenging. An example is the pedopeptins, which are nonribosomal peptides active against some bacteria listed by the WHO for which new antibiotics are urgently needed. Their biosynthesis is inhibited by high concentrations of peptone from casein (PC) in tryptic soy broth (TSB), and we applied a RNA-seq approach to identify Pedobacter lusitanus NL19 cellular pathways modulated by this condition. Results were validated by qPCR and revealed 261 differentially expressed genes (DEGs), 46.3% of them with a predicted biological function. Specifically, high concentration of PC significantly repressed the de novo biosynthesis of biotin (- 60X) and the production of nonribosomal peptide synthetases (NRPS) of pedopeptins (about - 14X), but no effect was observed on the expression of other NRPS. Transcription of a L-Dap synthesis operon that includes a protein with a σ70-like domain was also reduced (about - 7X). High concentrations of PC led to a significant overexpression of MFS and RND efflux pumps and a ferrous iron uptake system, suggesting the redirection of cell machinery to export compounds such as amino acids, sugars and metal divalent cations, alongside with a slight increase of iron import. KEY POINTS: • Higher concentrations of phosphate sources highly repress many operons • High concentrations of peptone from casein (PC) cause biotin's operon repression • High concentrations of PC downregulate the production of peptides of unknown function.
Collapse
Affiliation(s)
- Covas C
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Vaz A
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Almeida B
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Lourenço J
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Figueiredo G
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Franco O L
- S-Inova Biotech, Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Mendo S
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| | - Caetano T
- CESAM and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
32
|
Morgan KD, Williams DE, Ryan KS, Andersen RJ. Dentigerumycin F and G: dynamic structures retrieved through a genome-mining/nitrogen-NMR methodology. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Ma GL, Candra H, Pang LM, Xiong J, Ding Y, Tran HT, Low ZJ, Ye H, Liu M, Zheng J, Fang M, Cao B, Liang ZX. Biosynthesis of Tasikamides via Pathway Coupling and Diazonium-Mediated Hydrazone Formation. J Am Chem Soc 2022; 144:1622-1633. [DOI: 10.1021/jacs.1c10369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Juan Xiong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yichen Ding
- Temasek Life Sciences Laboratory Limited, Research Link, National University of Singapore, 117604 Singapore
| | - Hoa Thi Tran
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Zhen Jie Low
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Hong Ye
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Jie Zheng
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
34
|
Peng X, Zhou S, Liu J, Gao Y, Chang J, Ruan H. (±)-Usphenethylones A-C, three pairs of heterodimeric polyketide enantiomers from Aspergillus ustus 3.3904. Org Biomol Chem 2022; 20:694-700. [PMID: 34989382 DOI: 10.1039/d1ob02006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three pairs of new heterodimeric polyketide enantiomers, (±)-usphenethylones A-C (1-3), were isolated from the culture extract of Aspergillus ustus 3.3904. Compounds 1-3 present two heterodimerization patterns by a phenylethyl unit connected to an α-pyrone moiety, of which usphenethylones A-B (1-2) feature a 2,6,18-trioxa-tetracyclo-[8.8.0.03,8.011,16]octadecane core and usphenethylone C (3) possesses a 2-phenyl-3,4-dihydro-pyrano[4,3-b]pyran-5-one scaffold. The structures of (±)-1-3 were elucidated based on spectroscopic data analyses, and their absolute configurations were determined by single-crystal X-ray diffraction analysis and ECD calculation. Plausible biosynthetic pathways for 1-3 were proposed. Compounds (+)-3 and (-)-3 exhibited moderate inhibitory effects against ConA-induced T cell and LPS-induced B cell proliferation.
Collapse
Affiliation(s)
- Xiaogang Peng
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Shuang Zhou
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Junjun Liu
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Ying Gao
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Jinling Chang
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Hanli Ruan
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| |
Collapse
|
35
|
Cross-Tolerance and Autoimmunity as Missing Links in Abiotic and Biotic Stress Responses in Plants: A Perspective toward Secondary Metabolic Engineering. Int J Mol Sci 2021; 22:ijms222111945. [PMID: 34769374 PMCID: PMC8584326 DOI: 10.3390/ijms222111945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
Plants employ a diversified array of defense activities when they encounter stress. Continuous activation of defense pathways that were induced by mutation or altered expression of disease resistance genes and mRNA surveillance mechanisms develop abnormal phenotypes. These plants show continuous defense genes' expression, reduced growth, and also manifest tissue damage by apoptosis. These macroscopic abrasions appear even in the absence of the pathogen and can be attributed to a condition known as autoimmunity. The question is whether it is possible to develop an autoimmune mutant that does not fetch yield and growth penalty and provides enhanced protection against various biotic and abiotic stresses via secondary metabolic pathways' engineering. This review is a discussion about the common stress-fighting mechanisms, how the concept of cross-tolerance instigates propitious or protective autoimmunity, and how it can be achieved by engineering secondary metabolic pathways.
Collapse
|
36
|
Polyketide Starter and Extender Units Serve as Regulatory Ligands to Coordinate the Biosynthesis of Antibiotics in Actinomycetes. mBio 2021; 12:e0229821. [PMID: 34579580 PMCID: PMC8546615 DOI: 10.1128/mbio.02298-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Polyketides are one of the largest categories of secondary metabolites, and their biosynthesis is initiated by polyketide synthases (PKSs) using coenzyme A esters of short fatty acids (acyl-CoAs) as starter and extender units. In this study, we discover a universal regulatory mechanism in which the starter and extender units, beyond direct precursors of polyketides, function as ligands to coordinate the biosynthesis of antibiotics in actinomycetes. A novel acyl-CoA responsive TetR-like regulator (AcrT) is identified in an erythromycin-producing strain of Saccharopolyspora erythraea. AcrT shows the highest binding affinity to the promoter of the PKS-encoding gene eryAI in the DNA affinity capture assay (DACA) and directly represses the biosynthesis of erythromycin. Propionyl-CoA (P-CoA) and methylmalonyl-CoA (MM-CoA) as the starter and extender units for erythromycin biosynthesis can serve as the ligands to release AcrT from PeryAI, resulting in an improved erythromycin yield. Intriguingly, anabolic pathways of the two acyl-CoAs are also suppressed by AcrT through inhibition of the transcription of acetyl-CoA (A-CoA) and P-CoA carboxylase genes and stimulation of the transcription of citrate synthase genes, which is beneficial to bacterial growth. As P-CoA and MM-CoA accumulate, they act as ligands in turn to release AcrT from those targets, resulting in a redistribution of more A-CoA to P-CoA and MM-CoA against citrate. Furthermore, based on analyses of AcrT homologs in Streptomyces avermitilis and Streptomyces coelicolor, it is believed that polyketide starter and extender units have a prevalent, crucial role as ligands in modulating antibiotic biosynthesis in actinomycetes.
Collapse
|
37
|
Zhang J, Zheng M, Yan J, Deng Z, Zhu D, Qu X. A Permissive Medium Chain Acyl-CoA Carboxylase Enables the Efficient Biosynthesis of Extender Units for Engineering Polyketide Carbon Scaffolds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
| | - Dongqing Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
38
|
Ma S, Chen H, Li H, Ji X, Deng Z, Ding W, Zhang Q. Post-Translational Formation of Aminomalonate by a Promiscuous Peptide-Modifying Radical SAM Enzyme. Angew Chem Int Ed Engl 2021; 60:19957-19964. [PMID: 34164914 DOI: 10.1002/anie.202107192] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Indexed: 11/12/2022]
Abstract
Aminomalonate (Ama) is a widespread structural motif in Nature, whereas its biosynthetic route is only partially understood. In this study, we show that a radical S-adenosylmethionine (rSAM) enzyme involved in cyclophane biosynthesis exhibits remarkable catalytic promiscuity. This enzyme, named three-residue cyclophane forming enzyme (3-CyFE), mainly produces cyclophane in vivo, whereas it produces formylglycine (FGly) as a major product and barely produce cyclophane in vitro. Importantly, the enzyme can further oxidize FGly to produce Ama. Bioinformatic study revealed that 3-CyFEs have evolved from a common ancestor with anaerobic sulfatase maturases (anSMEs), and possess a similar set of catalytic residues with anSMEs. Remarkably, the enzyme does not need leader peptide for activity and is fully active on a truncated peptide containing only 5 amino acids of the core sequence. Our work discloses the first ribosomal path towards Ama formation, providing a possible hint for the rich occurrence of Ama in Nature.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Heng Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - He Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
39
|
Ma S, Chen H, Li H, Ji X, Deng Z, Ding W, Zhang Q. Post‐Translational Formation of Aminomalonate by a Promiscuous Peptide‐Modifying Radical SAM Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Suze Ma
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Heng Chen
- Department of Chemistry Fudan University Shanghai 200433 China
| | - He Li
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
40
|
Amiri Moghaddam J, Jautzus T, Alanjary M, Beemelmanns C. Recent highlights of biosynthetic studies on marine natural products. Org Biomol Chem 2021; 19:123-140. [PMID: 33216100 DOI: 10.1039/d0ob01677b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Marine bacteria are excellent yet often underexplored sources of structurally unique bioactive natural products. In this review we cover the diversity of marine bacterial biomolecules and highlight recent studies on structurally novel natural products. We include different compound classes and discuss the latest progress related to their biosynthetic pathway analysis and engineering: examples range from fatty acids over terpenes to PKS, NRPS and hybrid PKS-NRPS biomolecules.
Collapse
Affiliation(s)
- Jamshid Amiri Moghaddam
- Junior Research Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
41
|
Atanasoff-Kardjalieff AK, Lünne F, Kalinina S, Strauss J, Humpf HU, Studt L. Biosynthesis of Fusapyrone Depends on the H3K9 Methyltransferase, FmKmt1, in Fusarium mangiferae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:671796. [PMID: 37744112 PMCID: PMC10512364 DOI: 10.3389/ffunb.2021.671796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/09/2021] [Indexed: 09/26/2023]
Abstract
The phytopathogenic fungus Fusarium mangiferae belongs to the Fusarium fujikuroi species complex (FFSC). Members of this group cause a wide spectrum of devastating diseases on diverse agricultural crops. F. mangiferae is the causal agent of the mango malformation disease (MMD) and as such detrimental for agriculture in the southern hemisphere. During plant infection, the fungus produces a plethora of bioactive secondary metabolites (SMs), which most often lead to severe adverse defects on plants health. Changes in chromatin structure achieved by posttranslational modifications (PTM) of histones play a key role in regulation of fungal SM biosynthesis. Posttranslational tri-methylation of histone 3 lysine 9 (H3K9me3) is considered a hallmark of heterochromatin and established by the SET-domain protein Kmt1. Here, we show that FmKmt1 is involved in H3K9me3 in F. mangiferae. Loss of FmKmt1 only slightly though significantly affected fungal hyphal growth and stress response and is required for wild type-like conidiation. While FmKmt1 is largely dispensable for the biosynthesis of most known SMs, removal of FmKMT1 resulted in an almost complete loss of fusapyrone and deoxyfusapyrone, γ-pyrones previously only known from Fusarium semitectum. Here, we identified the polyketide synthase (PKS) FmPKS40 to be involved in fusapyrone biosynthesis, delineate putative cluster borders by co-expression studies and provide insights into its regulation.
Collapse
Affiliation(s)
- Anna K. Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Friederike Lünne
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Svetlana Kalinina
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| |
Collapse
|
42
|
Robbe-Saule M, Foulon M, Poncin I, Esnault L, Varet H, Legendre R, Besnard A, Grzegorzewicz AE, Jackson M, Canaan S, Marsollier L, Marion E. Transcriptional adaptation of Mycobacterium ulcerans in an original mouse model: New insights into the regulation of mycolactone. Virulence 2021; 12:1438-1451. [PMID: 34107844 PMCID: PMC8204960 DOI: 10.1080/21505594.2021.1929749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Varet
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | | | - Anna E Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | | | | | | |
Collapse
|
43
|
Schühle K, Saft M, Vögeli B, Erb TJ, Heider J. Benzylmalonyl-CoA dehydrogenase, an enzyme involved in bacterial auxin degradation. Arch Microbiol 2021; 203:4149-4159. [PMID: 34059946 PMCID: PMC8360864 DOI: 10.1007/s00203-021-02406-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Abstract
A novel acyl-CoA dehydrogenase involved in degradation of the auxin indoleacetate by Aromatoleum aromaticum was identified as a decarboxylating benzylmalonyl-CoA dehydrogenase (IaaF). It is encoded within the iaa operon coding for enzymes of indoleacetate catabolism. Using enzymatically produced benzylmalonyl-CoA, the reaction was characterized as simultaneous oxidation and decarboxylation of benzylmalonyl-CoA to cinnamoyl-CoA and CO2. Oxygen served as electron acceptor and was reduced to H2O2, whereas electron transfer flavoprotein or artificial dyes serving as electron acceptors for other acyl-CoA dehydrogenases were not used. The enzyme is homotetrameric, contains an FAD cofactor and is enantiospecific in benzylmalonyl-CoA turnover. It shows high catalytic efficiency and strong substrate inhibition with benzylmalonyl-CoA, but otherwise accepts only a few medium-chain alkylmalonyl-CoA compounds as alternative substrates with low activities. Its reactivity of oxidizing 2-carboxyacyl-CoA with simultaneous decarboxylation is unprecedented and indicates a modified reaction mechanism for acyl-CoA dehydrogenases, where elimination of the 2-carboxy group replaces proton abstraction from C2.
Collapse
Affiliation(s)
- Karola Schühle
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Martin Saft
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Bastian Vögeli
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Marburg, Germany
| | - Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany. .,LOEWE-Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
44
|
Engineering the precursor pool to modulate the production of pamamycins in the heterologous host S. albus J1074. Metab Eng 2021; 67:11-18. [PMID: 34051369 DOI: 10.1016/j.ymben.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022]
Abstract
Pamamycins, a group of polyketides originally discovered in Streptomyces alboniger, induce sporulation in Streptomyces and inhibit the growth of Gram-positive bacteria, Mycobacterium tuberculosis and fungi. The pamamycin biosynthetic gene cluster encodes 6 ketosynthases that utilize a variety of three-carbon to five-carbon CoA thioesters as starter and extender units. This promiscuity in production results in an up to 18 different derivatives during fermentation. For more-selective production and simplified purification, we aimed to modify the precursor supply to narrow the spectrum of the produced derivatives. Eight genes potentially responsible for the supply of two major precursors, 2-S-methylmalonyl-CoA and 2-S-ethylmalonyl-CoA, were identified using the NCBI Basic Local Alignment Search Tool (BLAST) against the genome of the heterologous host S. albus J1074. Knockout mutants of the identified genes were constructed and their impact on intracellular CoA ester concentrations and on the production of pamamycins was determined. The created mutants enabled us to conclusively identify the ethylmalonyl-CoA supplying routes and their impact on the production of pamamycin. Furthermore, we gained significant information on the origin of the methylmalonyl-CoA supply in Streptomyces albus.
Collapse
|
45
|
A native conjugative plasmid confers potential selective advantages to plant growth-promoting Bacillus velezensis strain GH1-13. Commun Biol 2021; 4:582. [PMID: 33990691 PMCID: PMC8121941 DOI: 10.1038/s42003-021-02107-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
The conjugative plasmid (pBV71) possibly confers a selective advantage to Bacillus velezensis strain GH1-13, although a selective marker gene is yet to be identified. Here we show that few non-mucoid wild-type GH1-13 cells are spontaneously converted to mucoid variants with or without the loss of pBV71. Mucoid phenotypes, which contain or lack the plasmid, become sensitive to bacitracin, gramicidin, selenite, and tellurite. Using the differences in antibiotic resistance and phenotype, we isolated a reverse complement (COM) and a transconjugant of strain FZB42 with the native pBV71. Transformed COM and FZB42p cells were similar to the wild-type strain GH1-13 with high antibiotic resistance and slow growth rates on lactose compared to those of mucoid phenotypes. RT-PCR analysis revealed that the expression of plasmid-encoded orphan aspartate phosphatase (pRapD) was coordinated with a new quorum-sensing (QS) cassette of RapF2-PhrF2 present in the chromosome of strain GH1-13, but not in strain FZB42. Multi-omics analysis on wild-type and plasmid-cured cells of strain GH1-13 suggested that the conjugative plasmid expression has a crucial role in induction of early envelope stress response that promotes cell morphogenesis, biofilm formation, catabolite repression, and biosynthesis of extracellular-matrix components and antibiotics for protection of host cell during exponential phase.
Collapse
|
46
|
Parker PD, Hou X, Dong VM. Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis. J Am Chem Soc 2021; 143:6724-6745. [PMID: 33891819 DOI: 10.1021/jacs.1c00750] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation, and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution. Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
47
|
Tenorio-Salgado S, Castelán-Sánchez HG, Dávila-Ramos S, Huerta-Saquero A, Rodríguez-Morales S, Merino-Pérez E, Roa de la Fuente LF, Solis-Pereira SE, Pérez-Rueda E, Lizama-Uc G. Metagenomic analysis and antimicrobial activity of two fermented milk kefir samples. Microbiologyopen 2021; 10:e1183. [PMID: 33970536 PMCID: PMC8103080 DOI: 10.1002/mbo3.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
In recent years, the fermented milk product kefir has been intensively studied because of its health benefits. Here, we evaluated the microbial consortia of two kefir samples, from Escarcega, Campeche, and Campeche (México). We considered a functional comparison between both samples, including fungal and bacterial inhibition; second, we applied shotgun metagenomics to assess the structure and functional diversity of the communities of microorganisms. These two samples exhibited antagonisms against bacterial and fungal pathogens. Bioactive polyketides and nonribosomal peptides were identified by LC‐HRMS analysis. We also observed a high bacterial diversity and an abundance of Actinobacteria in both kefir samples, and a greater abundance of Saccharomyces species in kefir of Escarcega than in the Campeche kefir. When the prophage compositions were evaluated, the Campeche sample showed a higher diversity of prophage sequences. In Escarcega, we observed a prevalence of prophage families that infect Enterobacteria and Lactobacillus. The sequences associated with secondary metabolites, such as plipastatin, fengycin, and bacillaene, and also bacteriocins like helveticin and zoocin, were also found in different proportions, with greater diversity in the Escarcega sample. The analyses described in this work open the opportunity to understand the microbial diversity in kefir samples from two distant localities.
Collapse
Affiliation(s)
| | - Hugo G Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | | | | | - Enrique Merino-Pérez
- Departamento de Microbiologia, Instituto de Biotecnologıa, Universidad Nacional Autonoma de Mexico, Cuernavaca, México
| | - Luis Fernando Roa de la Fuente
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Tabasco, México
| | | | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Unidad Académica Yucatán, Mérida, México
| | | |
Collapse
|
48
|
Kalkreuter E, Bingham KS, Keeler AM, Lowell AN, Schmidt JJ, Sherman DH, Williams GJ. Computationally-guided exchange of substrate selectivity motifs in a modular polyketide synthase acyltransferase. Nat Commun 2021; 12:2193. [PMID: 33850151 PMCID: PMC8044089 DOI: 10.1038/s41467-021-22497-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Polyketides, one of the largest classes of natural products, are often clinically relevant. The ability to engineer polyketide biosynthesis to produce analogs is critically important. Acyltransferases (ATs) of modular polyketide synthases (PKSs) catalyze the installation of malonyl-CoA extenders into polyketide scaffolds. ATs have been targeted extensively to site-selectively introduce various extenders into polyketides. Yet, a complete inventory of AT residues responsible for substrate selection has not been established, limiting the scope of AT engineering. Here, molecular dynamics simulations are used to prioritize ~50 mutations within the active site of EryAT6 from erythromycin biosynthesis, leading to identification of two previously unexplored structural motifs. Exchanging both motifs with those from ATs with alternative extender specificities provides chimeric PKS modules with expanded and inverted substrate specificity. Our enhanced understanding of AT substrate selectivity and application of this motif-swapping strategy are expected to advance our ability to engineer PKSs towards designer polyketides.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, NC State University, Raleigh, NC, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Kyle S Bingham
- Department of Chemistry, NC State University, Raleigh, NC, USA
- UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aaron M Keeler
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Andrew N Lowell
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Jennifer J Schmidt
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA.
| |
Collapse
|
49
|
Sulheim S, Fossheim FA, Wentzel A, Almaas E. Automatic reconstruction of metabolic pathways from identified biosynthetic gene clusters. BMC Bioinformatics 2021; 22:81. [PMID: 33622234 PMCID: PMC7901079 DOI: 10.1186/s12859-021-03985-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background A wide range of bioactive compounds is produced by enzymes and enzymatic complexes encoded in biosynthetic gene clusters (BGCs). These BGCs can be identified and functionally annotated based on their DNA sequence. Candidates for further research and development may be prioritized based on properties such as their functional annotation, (dis)similarity to known BGCs, and bioactivity assays. Production of the target compound in the native strain is often not achievable, rendering heterologous expression in an optimized host strain as a promising alternative. Genome-scale metabolic models are frequently used to guide strain development, but large-scale incorporation and testing of heterologous production of complex natural products in this framework is hampered by the amount of manual work required to translate annotated BGCs to metabolic pathways. To this end, we have developed a pipeline for an automated reconstruction of BGC associated metabolic pathways responsible for the synthesis of non-ribosomal peptides and polyketides, two of the dominant classes of bioactive compounds. Results The developed pipeline correctly predicts 72.8% of the metabolic reactions in a detailed evaluation of 8 different BGCs comprising 228 functional domains. By introducing the reconstructed pathways into a genome-scale metabolic model we demonstrate that this level of accuracy is sufficient to make reliable in silico predictions with respect to production rate and gene knockout targets. Furthermore, we apply the pipeline to a large BGC database and reconstruct 943 metabolic pathways. We identify 17 enzymatic reactions using high-throughput assessment of potential knockout targets for increasing the production of any of the associated compounds. However, the targets only provide a relative increase of up to 6% compared to wild-type production rates. Conclusion With this pipeline we pave the way for an extended use of genome-scale metabolic models in strain design of heterologous expression hosts. In this context, we identified generic knockout targets for the increased production of heterologous compounds. However, as the predicted increase is minor for any of the single-reaction knockout targets, these results indicate that more sophisticated strain-engineering strategies are necessary for the development of efficient BGC expression hosts.
Collapse
Affiliation(s)
- Snorre Sulheim
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway. .,Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, 7034, Trondheim, Norway.
| | - Fredrik A Fossheim
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, 7034, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Håkon Jarls gate 11, 7030, Trondheim, Norway
| |
Collapse
|
50
|
Stunkard LM, Kick BJ, Lohman JR. Structures of LnmK, a Bifunctional Acyltransferase/Decarboxylase, with Substrate Analogues Reveal the Basis for Selectivity and Stereospecificity. Biochemistry 2021; 60:365-372. [PMID: 33482062 DOI: 10.1021/acs.biochem.0c00893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LnmK stereospecifically accepts (2R)-methylmalonyl-CoA, generating propionyl-S-acyl carrier protein to support polyketide biosynthesis. LnmK and its homologues are the only known enzymes that carry out a decarboxylation (DC) and acyl transfer (AT) reaction in the same active site as revealed by structure-function studies. Substrate-assisted catalysis powers LnmK, as decarboxylation of (2R)-methylmalonyl-CoA generates an enolate capable of deprotonating active site Tyr62, and the Tyr62 phenolate subsequently attacks propionyl-CoA leading to a propionyl-O-LnmK acyl-enzyme intermediate. Due to the inherent reactivity of LnmK and methylmalonyl-CoA, a substrate-bound structure could not be obtained. To gain insight into substrate specificity, stereospecificity, and catalytic mechanism, we determined the structures of LnmK with bound substrate analogues that bear malonyl-thioester isosteres where the carboxylate is represented by a nitro or sulfonate group. The nitro-bearing malonyl-thioester isosteres bind in the nitronate form, with specific hydrogen bonds that allow modeling of the (2R)-methylmalonyl-CoA substrate and rationalization of stereospecificity. The sulfonate isosteres bind in multiple conformations, suggesting the large active site of LnmK allows multiple binding modes. Considering the smaller malonyl group has more conformational freedom than the methylmalonyl group, we hypothesized the active site can entropically screen against catalysis with the smaller malonyl-CoA substrate. Indeed, our kinetic analysis reveals malonyl-CoA is accepted at 1% of the rate of methylmalonyl-CoA. This study represents another example of how our nitro- and sulfonate-bearing methylmalonyl-thioester isosteres are of use for elucidating enzyme-substrate binding interactions and revealing insights into catalytic mechanism. Synthesis of a larger panel of analogues presents an opportunity to study enzymes with complicated structure-function relationships such as acyl-CoA carboxylases, trans-carboxytransferases, malonyltransferases, and β-ketoacylsynthases.
Collapse
Affiliation(s)
- Lee M Stunkard
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Benjamin J Kick
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeremy R Lohman
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|