1
|
Guo J, Guo X, Yang H, Zhang D, Jiang X. Construction of Bio-TiO 2/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103882. [PMID: 37241509 DOI: 10.3390/ma16103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microalgae have been widely employed in water pollution treatment since they are eco-friendly and economical. However, the relatively slow treatment rate and low toxic tolerance have seriously limited their utilization in numerous conditions. In light of the problems above, a novel biosynthetic titanium dioxide (bio-TiO2 NPs)-microalgae synergetic system (Bio-TiO2/Algae complex) has been established and adopted for phenol degradation in the study. The great biocompatibility of bio-TiO2 NPs ensured the collaboration with microalgae, improving the phenol degradation rate by 2.27 times compared to that with single microalgae. Remarkably, this system increased the toxicity tolerance of microalgae, represented as promoted extracellular polymeric substances EPS secretion (5.79 times than single algae), and significantly reduced the levels of malondialdehyde and superoxide dismutase. The boosted phenol biodegradation with Bio-TiO2/Algae complex may be attributed to the synergetic interaction of bio-TiO2 NPs and microalgae, which led to the decreased bandgap, suppressed recombination rate, and accelerated electron transfer (showed as low electron transfer resistance, larger capacitance, and higher exchange current density), resulting in increased light energy utilization rate and photocatalytic rate. The results of the work provide a new understanding of the low-carbon treatment of toxic organic wastewater and lay a foundation for further remediation application.
Collapse
Affiliation(s)
- Jinxin Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaoman Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Haiyan Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Daohong Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaogeng Jiang
- School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
2
|
Pushpavanam K, Hellner B, Baneyx F. Interrogating biomineralization one amino acid at a time: amplification of mutational effects in protein-aided titania morphogenesis through reaction-diffusion control. Chem Commun (Camb) 2021; 57:4803-4806. [PMID: 33982711 DOI: 10.1039/d1cc01521d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To emulate the control that biomineralizing organisms exert over reactant transport, we construct a countercurrent reaction-diffusion chamber in which an agarose hydrogel regulates the fluxes of inorganic precursor and precipitating solid-binding protein. We show that the morphology of the bioprecipitated titania can be changed from monolithic to interconnected particle networks and dispersed nanoparticles either by decreasing reaction time or by increasing agarose weight percentage at constant precursor and protein concentrations. More strikingly, protein variants with one or two substitutions in their metal oxide-binding domain yield unique peripheral morphologies (needles, threads, plates, and peapods) with distinct crystallography and photocatalytic activity. Our results suggest that diffusional control can magnify otherwise subtle mutational effects in biomineralizing proteins and provide a path for the green synthesis of morphologically and functionally diverse inorganic materials.
Collapse
Affiliation(s)
- Karthik Pushpavanam
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA, USA.
| | - Brittney Hellner
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA, USA.
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA, USA.
| |
Collapse
|
3
|
Irshad MA, Nawaz R, Rehman MZU, Adrees M, Rizwan M, Ali S, Ahmad S, Tasleem S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111978. [PMID: 33561774 DOI: 10.1016/j.ecoenv.2021.111978] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 05/20/2023]
Abstract
Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. Among nanoparticles (NPs), titanium dioxide (TiO2) NPs have been widely used in daily life and can be synthesized through various physical, chemical, and green methods. Green synthesis is a non-toxic, cost-effective, and eco-friendly route for the synthesis of NPs. Plenty of work has been reported on the green, chemical, physical and biological synthesis of TiO2 NPs and these NPs can be characterized through high tech. instruments. In the present review, dense data have been presented on the comparative synthesis of TiO2 NPs with different characteristics and their wide range of applications. Among the TiO2 NPs synthesis techniques, the green methods have been proven to be efficient than chemical synthesis methods because of the less use of precursors, time-effectiveness, and energy-efficiency during the green synthesis procedures. Moreover, this review describes the types of plants (shrubs, herbs and trees), microorganisms (bacteria, fungi and algae), biological derivatives (proteins, peptides, and starches) employed for the synthesis of TiO2 NPs. The TiO2 NPs can be effectively used for the treatment of polluted water and positively affected the plant physiology especially under abiotic stresses but the response varied with types, size, shapes, doses, duration of exposure, metal species along with other factors. This review also highlights the regulating features and future standpoints for the measurable enrichment in TiO2 NPs product and perspectives of TiO2 NPs reliable application.
Collapse
Affiliation(s)
- Muhammad Atif Irshad
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Sajjad Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100 Vehari, Pakistan
| | | |
Collapse
|
4
|
Zhang L, Shi X, Sun M, Porter CJ, Zhou X, Elimelech M. Precisely Engineered Photoreactive Titanium Nanoarray Coating to Mitigate Biofouling in Ultrafiltration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9975-9984. [PMID: 33617214 DOI: 10.1021/acsami.0c21221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To combat biofouling on membranes, diverse nanostructures of titanium dioxide (TiO2) have emerged as effective antimicrobial coatings due to TiO2's abilities to transport charge and photoinduce oxidation. However, TiO2 composite polymeric membranes synthesized using traditional methods of growing crystals have proven chemically unstable, with loss of coating and diminishing antimicrobial performance. Thus, new fabrication methods to enhance durability and efficacy should be considered. In this work, we propose a stepwise approach to construct a stable, uniform TiO2 nanoarray of regularly spaced, aligned crystals on the surface of a polytetrafluoroethylene ultrafiltration membrane using precisely controlled atomic layer deposition (ALD) followed by solvothermal deposition. We demonstrate that ALD can uniformly seed TiO2 nanoparticles on the membrane surface with atomic-scale precision. Subsequently, solvothermal deposition assembles and aligns a uniform TiO2 nanoarray forest. In the presence of sunlight, this TiO2 nanoarray effectively inactivates any deposited bacteria, increasing flux recovery after membrane cleaning. By systematically investigating this antimicrobial activity, we found that TiO2 both physically damages cell membranes as well as produces reactive oxygen species in the presence of sunlight that inactivate bacteria. Our study provides an effective bottom-up synthesis scheme to optimize and tailor antifouling TiO2 coatings for ultrafiltration and other surfaces for a wide range of applications.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Xingxing Shi
- Department of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Meng Sun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Cassandra J Porter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Xuechen Zhou
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
5
|
Deng W, Fan T, Li Y. In situ biomineralization-constructed superhydrophilic and underwater superoleophobic PVDF-TiO2 membranes for superior antifouling separation of oil-in-water emulsions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Integration of fluorescent polydopamine nanoparticles on protamine for simple and sensitive trypsin assay. Anal Chim Acta 2021; 1148:338201. [PMID: 33516383 DOI: 10.1016/j.aca.2021.338201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
As an important protease, trypsin (TRY) has been identified as a key indicator of various diseases. A simple and sensitive strategy for TRY detection by using an environment-friendly biosafe probe is significant. Herein, we introduced negatively charged fluorescent polydopamine nanoparticles (PDNPs) with 4.8 nm diameter obtained through a controllable method as an effective probe for TRY. PDNPs exhibited excellent fluorescence property but integrated with protamine (Pro) to form an aggregation-caused quenching system via a static quenching mechanism. The quenching mechanism of Pro to PDNPs revealed the significant effect of the surface charge, functional groups, and appropriate size of PDNPs on quenching process. Given the specific hydrolysis of Pro by TRY, PDNPs were released from the quenching integration of PDNPs and Pro (PDNPs-Pro) and recovered their fluorescence. Thus, a fluorescence sensor for TRY with a linear range of 0.01 and 0.1 μg/mL and a detection limit of 6.7 ng/mL was developed without the disturbing from other proteases. Compared with other TRY assays, the biosensor based on PDNPs-Pro has the advantages of simple operation, environmental friendliness, and high sensitivity. This specific controlled-synthesis PDNPs would open up a new window for the extended application of fluorescent nanomaterials in biomedicine based on fluorescence changes induced by biological interaction.
Collapse
|
7
|
Hellner B, Stegmann AE, Pushpavanam K, Bailey MJ, Baneyx F. Phase Control of Nanocrystalline Inclusions in Bioprecipitated Titania with a Panel of Mutant Silica-Binding Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8503-8510. [PMID: 32614593 DOI: 10.1021/acs.langmuir.0c01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biomimetic route to inorganic synthesis presents an opportunity to produce complex materials with superior properties under ambient conditions and from nontoxic precursors. While there has been significant progress in using solid-binding peptides (SBPs), proteins, and organisms to produce a variety of inorganic and hybrid structures, it has been more challenging to understand the interplay of solution conditions and solid-binding peptide (SBP) sequence, structure, and self-association on synthetic outcomes. Here, we show that fusing the Car9 silica-binding peptide-but not the silaffin-derived R5 peptide-to superfolder green fluorescent protein (sfGFP) enhances the ability of micromolar concentrations of protein to induce rapid titania (TiO2) precipitation from acidified solutions of tetrakis(di-lactato)-oxo-titanate (TiBALDH). TiO2 is produced stoichiometrically and although predominantly amorphous, contains nanosized anatase and monoclinic TiO2(B) inclusions. Remarkably, the phase of these nanocrystallites can be tuned from about 80% TiO2(B) to about 65% anatase by using Car9 mutants impaired in their ability to drive the formation of higher-order sfGFP-Car9 oligomers. Our results suggest that the presentation of multiple basic side chains in an extended plane formed by SBP self-association is critical to template the formation of monoclinic crystallites and underscore the subtle influence that single or dual substitutions in dodecameric SBPs can exert on the yield and crystallinity of biomineralized inorganics.
Collapse
Affiliation(s)
- Brittney Hellner
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - Amy E Stegmann
- Department of Chemical Engineering and Molecular Engineering & Sciences Institute, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - Karthik Pushpavanam
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - Matthew J Bailey
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, P.O. Box 351750, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Huang WT, Chan MH, Chen X, Hsiao M, Liu RS. Theranostic nanobubble encapsulating a plasmon-enhanced upconversion hybrid nanosystem for cancer therapy. Theranostics 2020; 10:782-796. [PMID: 31903150 PMCID: PMC6929987 DOI: 10.7150/thno.38684] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
Nanobubble (NB), which simultaneously enhances ultrasound (US) images and access therapeutic platforms, is required for future cancer treatment. Methods: We designed a theranostic agent for novel cancer treatment by using an NB-encapsulated hybrid nanosystem that can be monitored by US and fluorescent imaging and activated by near-infrared (NIR) light. The nanosystem was transported to the tumor through the enhanced permeability and retention effect. The hybrid nanosystem comprised upconversion nanoparticle (UCNP) and mesoporous silica-coated gold nanorod (AuNR@mS) with the photosensitizer merocyanine 540 to realize dual phototherapy. Results: With the NIR light-triggered, the luminous intensity of the UCNP was enhanced by doping holmium ion and emitted visible green and red lights at 540 and 660 nm. The high optical density state between the UCNP and AuNR@mS can induce plasmonic enhancement to improve the photothermal and photodynamic effects, resulting in cell death by apoptosis. The nanosystem showed excellent stability to avoid the aggregation of nanoparticles during the treatment. JC-1 dye was used as an indicator of mitochondrial membrane potential to identify the mechanism of cell death. The results of in vitro and in vivo analyses confirmed the curative effect of improved dual phototherapy. Conclusion: We developed and showed the therapeutic functions of a novel nanosystem with the combination of multiple theranostic nanoplatforms that can be triggered and activated by 808 nm NIR laser and US.
Collapse
Affiliation(s)
- Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106 Taiwan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115 Taiwan
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115 Taiwan
- Department of Biochemistry College of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106 Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115 Taiwan
- Department of Mechanical Engineering and Graduate, Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106 Taiwan
| |
Collapse
|
9
|
Deng W, Li C, Pan F, Li Y. Efficient oil/water separation by a durable underwater superoleophobic mesh membrane with TiO2 coating via biomineralization. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Yang D, Zhao X, Chen Y, Wang W, Zhou Z, Zhao Z, Jiang Z. Synthesis of g-C3N4 Nanosheet/TiO2 Heterojunctions Inspired by Bioadhesion and Biomineralization Mechanism. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Xuyang Zhao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yao Chen
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenjing Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhiyuan Zhou
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhanfeng Zhao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
11
|
Hernández-Gordillo A, Hernández-Arana A, Campero-Celis A, Vera-Robles LI. TiBALDH as a precursor for biomimetic TiO2 synthesis: stability aspects in aqueous media. RSC Adv 2019; 9:34559-34566. [PMID: 35529993 PMCID: PMC9073908 DOI: 10.1039/c9ra05923g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/17/2019] [Indexed: 11/21/2022] Open
Abstract
Titanium(iv) bis(ammonium lactate)dihydroxide (TiBALDH) is a commercially available reagent frequently used to synthesize TiO2. Particularly, for the biomimetic synthesis of TiO2, TiBALDH is the preferred precursor because it can be mixed in aqueous solutions with no apparent hydrolysis or condensation reactions. Thus, proteins or other biomolecules can be used as a template in aqueous systems for the synthesis of TiO2 from TiBALDH. Nevertheless, there is evidence that TiBALDH is in equilibrium with TiO2, and even, the principal structure of the complex has been suggested as [Ti4O4(lactate)8]8−. Since that chemical equilibrium depends on the polarity of the solvent, in this work we explored a diversity of media to test the chemical stability of TiBALDH and its equilibrium with TiO2 at room temperature. TiBALDH (2.078 M) contains particles of 18.6 ± 7.3 nm in size, if it is diluted with deionized water, the particles reach a size of 5.2 ± 1.7 nm, which suggest that intermolecular interactions form polymers of titanium lactate complexes reversibly, reaching equilibrium after 10 hours. Typical buffer systems were tested; TiBALDH reacted rapidly only with phosphate groups, even if the source came from DNA. Therefore, phosphate buffer must be avoided in biomineralization TiO2 synthesis. In solutions of TiBALDH at basic pH, condensation reactions are promoted to form a gel containing anatase nanoparticles, but if the solutions are acidic, monodisperse anatase nanoparticles of ∼5 nm were observed. The results show that the commercial reagent TiBALDH contains many species of titanium lactate complexes in equilibrium with TiO2, and it is affected by the concentration, time, pH, and several ions. This peculiar behavior must be taken into account when this precursor is used and it could be useful to develop novel synthesis routes of macrostructures with biomolecules in aqueous systems. Factors affecting TiO2 biomineralization using TiBALDH as precursor.![]()
Collapse
Affiliation(s)
- Armin Hernández-Gordillo
- Departamento de Química
- Área de Biofisicoquímica
- Universidad Autónoma Metropolitana-Iztapalapa
- CDMX
- Mexico
| | - Andrés Hernández-Arana
- Departamento de Química
- Área de Biofisicoquímica
- Universidad Autónoma Metropolitana-Iztapalapa
- CDMX
- Mexico
| | - Antonio Campero-Celis
- Departamento de Química
- Área de Química Inorgánica
- Universidad Autónoma Metropolitana-Iztapalapa
- CDMX
- Mexico
| | - L. Irais Vera-Robles
- Departamento de Química
- Área de Biofisicoquímica
- Universidad Autónoma Metropolitana-Iztapalapa
- CDMX
- Mexico
| |
Collapse
|
12
|
Zhou M, Luo P, Li A, Wu YN, Khan MI, Lyu J, Li F, Li G. Fabrication of Silica Membrane through Surface-Induced Condensation on Porous Block Copolymer. ChemistrySelect 2018. [DOI: 10.1002/slct.201802499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meimei Zhou
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region; Ministry of Education, School of Environmental Science and Engineering; Chang'an University; 710054 Xi'an China
| | - Pingping Luo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region; Ministry of Education, School of Environmental Science and Engineering; Chang'an University; 710054 Xi'an China
| | - Aowen Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region; Ministry of Education, School of Environmental Science and Engineering; Chang'an University; 710054 Xi'an China
| | - Yi-nan Wu
- College of Environmental Science & Engineering; Tongji University,1239; Siping Road, Shanghai 200092 (China)
| | - Muhammad Imran Khan
- Department of Electrical Engineering; University of Hail; 2440 Hail Saudi Arabia
| | - Jiqiang Lyu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region; Ministry of Education, School of Environmental Science and Engineering; Chang'an University; 710054 Xi'an China
| | - Fengting Li
- College of Environmental Science & Engineering; Tongji University,1239; Siping Road, Shanghai 200092 (China)
| | - Guangtao Li
- Department of Chemistry; Key Lab of Organic Optoelectronics & Molecular Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
13
|
Zhang X, Wang M, Lin L, Xiao G, Tang Z, Zhu X. Synthesis of novel laccase-biotitania biocatalysts for malachite green decolorization. J Biosci Bioeng 2018; 126:69-77. [PMID: 29567373 DOI: 10.1016/j.jbiosc.2018.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
Biomimetic mineralization has emerged as a novel tool for generating excellent supports for enzyme stabilization. In this work, protamine was used to induce titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles. This biomimetic titanification process was adopted for laccase immobilization. Laccase-biotitania biocatalyst was prepared and the effect of different parameters (buffer solution, titania precursor concentration, protamine concentration, and enzyme loading) on the encapsulation efficiency and recovery of laccase were evaluated. Compared with free laccase, the thermal and pH stability of immobilized laccase were improved significantly. In addition, laccase loaded on titania was effective at enhancing its storage stability. After seven consecutive cycles, the immobilized laccase still retained 51% of its original activity. Finally, laccase-biotitania biocatalysts showed good performance on decolorization of malachite green (MG), which can be attributed to an adsorption and degradation effect. The intermediates of the MG degradation were identified by gas chromatography-mass spectrometry (GC-MS) analysis, and the most probable degradation pathway was proposed. This study provides deeper understanding of the laccase-biotitania particles as a fast biocatalyst for MG decolorization.
Collapse
Affiliation(s)
- Xinying Zhang
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China; Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Meiyin Wang
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Linlin Lin
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Gao Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Zhenping Tang
- College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Xuefeng Zhu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, PR China; Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and GeoSciences, Delft University of Technology, 2628CN Delft, The Netherlands.
| |
Collapse
|
14
|
Rouster P, Pavlovic M, Horváth E, Forró L, Dey SK, Szilagyi I. Influence of Protamine Functionalization on the Colloidal Stability of 1D and 2D Titanium Oxide Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9750-9758. [PMID: 28829607 DOI: 10.1021/acs.langmuir.7b01815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.
Collapse
Affiliation(s)
- Paul Rouster
- School of Chemistry and Biochemistry, University of Geneva , CH-1205 Geneva, Switzerland
| | - Marko Pavlovic
- School of Chemistry and Biochemistry, University of Geneva , CH-1205 Geneva, Switzerland
| | - Endre Horváth
- School of Basic Sciences, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - László Forró
- School of Basic Sciences, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Sandwip K Dey
- Materials Program, School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Istvan Szilagyi
- School of Chemistry and Biochemistry, University of Geneva , CH-1205 Geneva, Switzerland
| |
Collapse
|
15
|
Truong QD, Dien LX, Vo DVN, Le TS. Controlled synthesis of titania using water-soluble titanium complexes: A review. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ren H, Zhang Y, Su J, Lin P, Wang B, Fang B, Wang S. Encapsulation of amine dehydrogenase in hybrid titania nanoparticles by polyethylenimine coating and templated biomineralization. J Biotechnol 2017; 241:33-41. [DOI: 10.1016/j.jbiotec.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
17
|
Zhang S, Jiang Z, Shi J, Wang X, Han P, Qian W. An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25152-25161. [PMID: 27602594 DOI: 10.1021/acsami.6b09483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Design and preparation of high-performance immobilized biocatalysts with exquisite structures and elucidation of their profound structure-performance relationship are highly desired for green and sustainable biotransformation processes. Learning from nature has been recognized as a shortcut to achieve such an impressive goal. Loose connective tissue, which is composed of hierarchically organized cells by extracellular matrix (ECM) and is recognized as an efficient catalytic system to ensure the ordered proceeding of metabolism, may offer an ideal prototype for preparing immobilized biocatalysts with high catalytic activity, recyclability, and stability. Inspired by the hierarchical structure of loose connective tissue, we prepared an immobilized biocatalyst enabled by microcapsules-in-hydrogel (MCH) scaffolds via biomimetic mineralization in agarose hydrogel. In brief, the in situ synthesized hybrid microcapsules encapsulated with glucose oxidase (GOD) are hierarchically organized by the fibrous framework of agarose hydrogel, where the fibers are intercalated into the capsule wall. The as-prepared immobilized biocatalyst shows structure-dependent catalytic performance. The porous hydrogel permits free diffusion of glucose molecules (diffusion coefficient: ∼6 × 10(-6) cm(2) s(-1), close to that in water) and retains the enzyme activity as much as possible after immobilization (initial reaction rate: 1.5 × 10(-2) mM min(-1)). The monolithic macroscale of agarose hydrogel facilitates the easy recycling of the immobilized biocatalyst (only by using tweezers), which contributes to the nonactivity decline during the recycling test. The fiber-intercalating structure elevates the mechanical stability of the in situ synthesized hybrid microcapsules, which inhibits the leaching and enhances the stability of the encapsulated GOD, achieving immobilization efficiency of ∼95%. This study will, therefore, provide a generic method for the hierarchical organization of (bio)active materials and the rational design of novel (bio)catalysts.
Collapse
Affiliation(s)
- Shaohua Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Jiafu Shi
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Xueyan Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Pingping Han
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Weilun Qian
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| |
Collapse
|
18
|
Lum JS, Salinas SS, Filocamo SF. Multifunctional coatings created using an antimicrobial polymer as a platform for titania precipitation on cotton. J Appl Polym Sci 2015. [DOI: 10.1002/app.43199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- June S. Lum
- Development and Engineering Center; US Army Natick Soldier Research; Natick Massachusetts
| | - Stephen S. Salinas
- Development and Engineering Center; US Army Natick Soldier Research; Natick Massachusetts
- Massachusetts Institute of Technology; Cambridge Massachusetts
| | - Shaun F. Filocamo
- Development and Engineering Center; US Army Natick Soldier Research; Natick Massachusetts
| |
Collapse
|
19
|
Zhang Q, Yan Y, Chen G. A Biomineralization Strategy for "Net"-Like Interconnected TiO 2 Nanoparticles Conformably Covering Reduced Graphene Oxide with Reversible Interfacial Lithium Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500176. [PMID: 27722077 PMCID: PMC5049643 DOI: 10.1002/advs.201500176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/10/2015] [Indexed: 05/29/2023]
Abstract
A green and simple biomineralization-inspired method to create "net"-like interconnected TiO2 nanoparticles conformably covering reduced graphene oxide (RGO) with high loading density is reported. This method uses polyamine as both the biomineralization agent and linker to manipulate the nucleation, growth, and crystallization of TiO2 nanoparticles on the surface of graphene oxide. The obtained TiO2/RGO composites demonstrate sub-10-nm TiO2 nanoparticles with (001) facets, ultrathin thickness (10-12 nm), and a high surface area of 172 m2 g-1. When used as anode material for lithium ion batteries, the material displayed excellent rate capability and long cycle life; a capacity of 155 mAh g-1 is obtained after 50 cycles at the rate of 5C (1C = 168 mA g-1) and a specific capacity of 115 mAh g-1 is retained after 2000 cycles at the rate of 25C, which is much higher than that of mechanically mixed TiO2/graphene composites. Detailed discharge curve analysis reveals that the high rate and cycle performance are partly a result of the reversible interfacial lithium storage of materials, which might be attributed to the pores in the TiO2 nets on the RGO and may provide a sufficient number of interfaces for accepting both electrons and lithium ions.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory for Green Catalysis and Separation College of Environmental & Energy Engineering Beijing University of Technology Pingle yuan 100 100124 Beijing P. R. China
| | - Yong Yan
- Key Laboratory for Green Catalysis and Separation College of Environmental & Energy Engineering Beijing University of Technology Pingle yuan 100 100124 Beijing P. R. China
| | - Ge Chen
- Key Laboratory for Green Catalysis and Separation College of Environmental & Energy Engineering Beijing University of Technology Pingle yuan 100 100124 Beijing P. R. China
| |
Collapse
|
20
|
Constructing Biopolymer-Inorganic Nanocomposite through a Biomimetic Mineralization Process for Enzyme Immobilization. MATERIALS 2015; 8:6004-6017. [PMID: 28793547 PMCID: PMC5512666 DOI: 10.3390/ma8095286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/15/2015] [Indexed: 02/03/2023]
Abstract
Inspired by biosilicification, biomimetic polymer-silica nanocomposite has aroused a lot of interest from the viewpoints of both scientific research and technological applications. In this study, a novel dual functional polymer, NH₂-Alginate, is synthesized through an oxidation-amination-reduction process. The "catalysis function" ensures the as-prepared NH₂-Alginate inducing biomimetic mineralization of silica from low concentration precursor (Na₂SiO₃), and the "template function" cause microscopic phase separation in aqueous solution. The diameter of resultant NH₂-Alginate micelles in aqueous solution distributed from 100 nm to 1.5 μm, and is influenced by the synthetic process of NH₂-Alginate. The size and morphology of obtained NH₂-Alginate/silica nanocomposite are correlated with the micelles. NH₂-Alginate/silica nanocomposite was subsequently utilized to immobilize β-Glucuronidase (GUS). The harsh condition tolerance and long-term storage stability of the immobilized GUS are notably improved due to the buffering effect of NH₂-Alginate and cage effect of silica matrix.
Collapse
|
21
|
Begum G, Goodwin WB, deGlee BM, Sandhage KH, Kröger N. Compartmentalisation of enzymes for cascade reactions through biomimetic layer-by-layer mineralization. J Mater Chem B 2015; 3:5232-5240. [DOI: 10.1039/c5tb00333d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A biomineralisation-based method for compartmentalisation of multi-enzyme cascades has been developed, and design parameters governing a cascade's catalytic performance were elucidated.
Collapse
Affiliation(s)
- Gousia Begum
- B CUBE Center for Molecular Bioengineering
- Dresden Institute of Technology (TU Dresden)
- Dresden
- Germany
| | - W. Brandon Goodwin
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Ben M. deGlee
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Kenneth H. Sandhage
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Nils Kröger
- B CUBE Center for Molecular Bioengineering
- Dresden Institute of Technology (TU Dresden)
- Dresden
- Germany
- Department of Chemistry and Food Chemistry
| |
Collapse
|
22
|
Yang C, Wu H, Shi J, Wang X, Xie J, Jiang Z. Preparation of Dopamine/Titania Hybrid Nanoparticles through Biomimetic Mineralization and Titanium(IV)–Catecholate Coordination for Enzyme Immobilization. Ind Eng Chem Res 2014. [DOI: 10.1021/ie501734g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Hong Wu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiafu Shi
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | | | | | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Cargnello M, Gordon TR, Murray CB. Solution-Phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals. Chem Rev 2014; 114:9319-45. [DOI: 10.1021/cr500170p] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Matteo Cargnello
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas R. Gordon
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B. Murray
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Liu C, Jiang Z, Tong Z, Li Y, Yang D. Biomimetic synthesis of inorganic nanocomposites by a de novo designed peptide. RSC Adv 2014. [DOI: 10.1039/c3ra44630a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
25
|
Tong Z, Jiang Y, Yang D, Shi J, Zhang S, Liu C, Jiang Z. Biomimetic and bioinspired synthesis of titania and titania-based materials. RSC Adv 2014. [DOI: 10.1039/c3ra47336h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Hao B, Yan Y, Wang X, Chen G. Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries. NANOSCALE 2013; 5:10472-10480. [PMID: 24057028 DOI: 10.1039/c3nr03476c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We fabricated a sandwich-like branched-polyethyleneimine (b-PEI)/TiO2/Au/graphene oxide (GO) nanocomposite through a biomimetic layer-by-layer co-mineralization approach, and the polymer b-PEI was believed to act as both an inducing agent for the hydrolysis of titanium bis(ammonium lactato)-dihydroxide (Ti-BALDH) and a reducing agent for the reduction of HAuCl4 in the synthetic procedure. Upon organic pyrolysis in air at 500 °C, a TiO2/Au nanosheet was formed; and gold nanocrystals were observed uniformly dispersed on TiO2 nanosheet. Moreover, the obtained TiO2/Au nanosheets demonstrated an enhanced lithium storage performance when they are used as anode materials for lithium ion batteries (LIBs), particularly, a high capacity of 205 mA h g(-1) and 189 mA h g(-1) was obtained at 5 C and 10 C rate, respectively, indicating the high rate capability of the material. The greatly improved rate performance might be attributed from both the sheet-like nanostructure and the existence of uniformly dispersed gold nanocrystals, which facilitate electron transfer and lithium ions diffusion in the material. The result suggests that the TiO2 electrode performance can be improved through a design of sheet-like nanocomposites using a bio-inspired route, which is desirable for both "green synthesis" and application for high power LIBs, moreover, such a benign bio-inspired route can be developed into a general pathway to synthesize many other TiO2 based nanocomposites for broad applications in the fields of batteries, photoelectrochemistry, photocatalysis and dye-sensitized solar cells.
Collapse
Affiliation(s)
- Bo Hao
- College of Environmental & Energy Engineering, Beijing University of Technology, Pingleyuan 100, 100124, Beijing, P.R. China.
| | | | | | | |
Collapse
|
27
|
Xin Q, Jiang Y, Gao J, Zhou L, Ma L, He Y, Jia F. Biomimetic preparation of organic-inorganic composite microcapsules for glucose oxidase immobilization. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.1016/s1872-2067(12)60635-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Pouget E, Grelet E. Dispersions of monodisperse hybrid rod-like particles by mineralization of filamentous viruses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8010-8016. [PMID: 23713690 DOI: 10.1021/la401170m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, we report on the synthesis through a direct chemical approach of hybrid organic/inorganic rod-like particles with a very high aspect ratio (length/diameter) by the use of a biotemplate, the fd virus. A synthetic route is proposed based on an initial step of steric stabilization of the colloidal template by hydrophilic polymer grafting. Thanks to this polymer functionalization, the filamentous viruses are well-dispersed in solution during their mineralization by different inorganic salts, leading to suspensions of individual hybrid rod-like particles such as virus/SiO2 and virus/TiO2. This aqueous solution based approach is shown to be highly reproducible, scalable for large production synthesis, and versatile to different inorganic materials.
Collapse
Affiliation(s)
- Emilie Pouget
- Centre de Recherche Paul-Pascal, CNRS & Université de Bordeaux, 115 Avenue Schweitzer, F-33600 Pessac, France
| | | |
Collapse
|
29
|
Liu C, Yang D, Jiao Y, Tian Y, Wang Y, Jiang Z. Biomimetic synthesis of TiO₂-SiO₂-Ag nanocomposites with enhanced visible-light photocatalytic activity. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3824-32. [PMID: 23551122 DOI: 10.1021/am4004733] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ternary TiO2-SiO2-Ag nanocomposites with enhanced visible-light photocatalytic activity have been synthesized through a facile biomimetic approach by utilizing lysozyme as both inducing agent of TiO2 and reducing agent of Ag(+). TiO2 nanoparticles (∼280 nm) are at first fabricated by the inducing of lysozyme. Afterward, SiO2 layers are formed as "pancakes" stuck out of TiO2 nanoparticles through a sol-gel process. Finally, Ag nanocrystals (∼24.5 nm) are deposited onto the surface of TiO2-SiO2 composites via the reduction of lysozyme, forming TiO2-SiO2-Ag nanocomposites. The resultant nanocomposites display a high photocatalytic activity for the degradation of Rhodamine B under the visible-light irradiation, which can be attributed to the synergistic effect of enhanced photon absorption from the surface plasma resonance of Ag nanocrystals and the elevated adsorption capacity for Rhodamine B from the high specific surface area of SiO2. This study may provide some inspiration for the rational design and the facile synthesis of composite catalysts with a high and tunable catalytic property through a green, efficient pathway.
Collapse
Affiliation(s)
- Chuang Liu
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
30
|
Wang X, Yan Y, Hao B, Chen G. Protein-mediated layer-by-layer synthesis of TiO₂(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3631-3637. [PMID: 23597025 DOI: 10.1021/am4000744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Through an aqueous, protein-mediated layer-by-layer titania deposition process, we have fabricated a protamine/titania composite layer on nickel foam. The coating was composed of amorphous carbon and TiO2(B)/anatase nanoparticles and formed upon organic pyrolysis under a reducing atmosphere (5% H2-Ar mixture). X-ray diffraction analyses, Auger electron spectroscopy, and high-resolution transmission electron microscopy revealed that the obtained coatings contained fine monoclinic TiO2(B) and anatase nanocrystals, along with amorphous carbon. Moreover, the coating can be used as a binder-free negative electrode material for lithium-ion batteries and exhibits high reversible capacity and fast charge-discharge properties; a reversible capacity of 245 mAh g(-1) was obtained at a current density of 50 mA g(-1), and capacities of 167 and 143 mAh g(-1) were obtained at current densities of 1 and 2 A g(-1), respectively.
Collapse
Affiliation(s)
- Xiaobo Wang
- College of Environmental & Energy Engineering, Beijing University of Technology, Pingleyuan 100, 100124 Beijing, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Yan Y, Hao B, Wang X, Chen G. Bio-inspired synthesis of titania with polyamine induced morphology and phase transformation at room-temperature: Insight into the role of the protonated amino group. Dalton Trans 2013; 42:12179-84. [DOI: 10.1039/c3dt50359c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Lu T, Zhang R, Hu C, Chen F, Duo S, Hu Q. TiO2–graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst. Phys Chem Chem Phys 2013; 15:12963-70. [DOI: 10.1039/c3cp50942g] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Choi N, Tan L, Jang JR, Um YM, Yoo PJ, Choe WS. The interplay of peptide sequence and local structure in TiO2 biomineralization. J Inorg Biochem 2012; 115:20-7. [DOI: 10.1016/j.jinorgbio.2012.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/03/2012] [Accepted: 05/21/2012] [Indexed: 01/31/2023]
|
34
|
Lipase entrapment in protamine-induced bio-zirconia particles: Characterization and application to the resolution of (R,S)-1-phenylethanol. Enzyme Microb Technol 2012; 51:40-6. [DOI: 10.1016/j.enzmictec.2012.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 11/18/2022]
|
35
|
Lee WJ, Lee JM, Kochuveedu ST, Han TH, Jeong HY, Park M, Yun JM, Kwon J, No K, Kim DH, Kim SO. Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. ACS NANO 2012; 6:935-43. [PMID: 22195985 DOI: 10.1021/nn204504h] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report an efficient and environmentally benign biomimetic mineralization of TiO(2) at the graphitic carbon surface, which successfully created an ideal TiO(2)/carbon hybrid structure without any harsh surface treatment or interfacial adhesive layer. The N-doped sites at carbon nanotubes (CNTs) successfully nucleated the high-yield biomimetic deposition of a uniformly thick TiO(2) nanoshell in neutral pH aqueous media at ambient pressure and temperature and generated N-doped CNT (NCNT)/TiO(2) core/shell nanowires. Unlike previously known organic biomineralization templates, such as proteins or peptides, the electroconductive and high-temperature-stable NCNT backbone enabled high-temperature thermal treatment and corresponding crystal structure transformation of TiO(2) nanoshells into the anatase or rutile phase for optimized material properties. The direct contact of the NCNT surface and TiO(2) nanoshell without any adhesive interlayer introduced a new carbon energy level in the TiO(2) band gap and thereby effectively lowered the band gap energy. Consequently, the created core/shell nanowires showed a greatly enhanced visible light photocatalysis. Other interesting synergistic properties such as stimuli-responsive wettabilites were also demonstrated.
Collapse
Affiliation(s)
- Won Jun Lee
- Department of Materials Science and Engineering, KAIST, Daejeon, 305-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hu C, Zhang R, Xiang J, Liu T, Li W, Li M, Duo S, Wei F. Synthesis of carbon nanotube/anatase titania composites by a combination of sol–gel and self-assembly at low temperature. J SOLID STATE CHEM 2011. [DOI: 10.1016/j.jssc.2011.03.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Patwardhan SV. Biomimetic and bioinspired silica: recent developments and applications. Chem Commun (Camb) 2011; 47:7567-82. [PMID: 21479320 DOI: 10.1039/c0cc05648k] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In a previous review of biological and bioinspired silica formation (S. V. Patwardhan et al., Chem. Commun., 2005, 1113 [ref. 1]), we have identified and discussed the roles that organic molecules (additives) play in silica formation in vitro. Tremendous progress has been made in this field since and this review attempts to capture, with selected examples from the literature, the key advances in synthesising and controlling properties of silica-based materials using bioinspired approaches, i.e. conditions of near-neutral pH, all aqueous environments and room temperature. One important reason to investigate biosilicifying systems is to be able to develop novel materials and/or technologies suitable for a wide range of applications. Therefore, this review will also focus on applications arising from research on biological and bioinspired silica. A range of applications such as in the areas of sensors, coatings, hybrid materials, catalysis and biocatalysis and drug delivery have started appearing. Furthermore, scale-up of this technology suitable for large-scale manufacturing has proven the potential of biologically inspired synthesis.
Collapse
Affiliation(s)
- Siddharth V Patwardhan
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK.
| |
Collapse
|
38
|
Shi J, Zhang L, Jiang Z. Facile construction of multicompartment multienzyme system through layer-by-layer self-assembly and biomimetic mineralization. ACS APPLIED MATERIALS & INTERFACES 2011; 3:881-889. [PMID: 21348442 DOI: 10.1021/am101241u] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In nature, some organelles such as mitochondria and chloroplasts possess multicompartment structure, which render powerful and versatile performance in cascade conversion, selective separation, and energy transfer. In this study, mitochondria-inspired hybrid double membrane microcapsules (HDMMCs) were prepared through synergy between biomimetic mineralization and layer-by-layer (LbL) self-assembly using double templating strategy. The organic inner membrane was acquired via LbL self-assembly of oxidized alginate (o-alginate) and protamine on the CaCO(3) template, the silica template layer was then formed onto the inner membrane through biomimetic silicification using protamine as inducer and silicate as precursor, the organic-inorganic hybrid outer membrane was acquired via biomimetic mineralization of titanium precursor. After the CaCO(3) template and the silica template are removed subsequently, multicompartment microcapsules with microscale lumen and nanoscale intermembrane space were obtained. The double membrane structure of the HDMMCs was verified by high resolution scanning electron microscopy (HRSEM), and the superior mechanical stability of HDMMCs was demonstrated by osmotic pressure experiment and fluorescence microscopy. A multienzyme system was constructed by following this protocol: the first enzyme was encapsulated in the lumen of the HDMMCs, whereas the second enzyme was encapsulated in the intermembrane space. Compared to encapsulated multienzyme in single-compartment microcapsules (SCMCs) or in free form in aqueous solution, enzymatic activity, selectivity, and recycling stability of HDMMCs-enabled multienzyme system were significantly improved. Because of the inherent gentle and generic feature, the present study can be utilized to create a variety of compartment structures for the potential applications in chemical/biological catalysis and separation, drug/gene delivery systems, and biosensors.
Collapse
Affiliation(s)
- Jiafu Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | | | | |
Collapse
|
39
|
Zhang L, Shi J, Jiang Z, Jiang Y, Meng R, Zhu Y, Liang Y, Zheng Y. Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer. ACS APPLIED MATERIALS & INTERFACES 2011; 3:597-605. [PMID: 21344913 DOI: 10.1021/am101184h] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A novel approach combining biomimetic mineralization and bioadhesion is proposed to prepare robust and versatile organic-inorganic hybrid microcapsules. More specifically, these microcapsules are fabricated by sequential deposition of inorganic layer and organic layer on the surface of CaCO(3) microparticles, followed by the dissolution of CaCO(3) microparticles using EDTA. During the preparation process, protamine induces the hydrolysis and condensation of titania or silica precursor to form the inorganic layer or the biomineral layer. The organic layer or bioadhesive layer was formed through the rapid, spontaneous oxidative polymerization of dopamine into polydopamine (PDA) on the surface of the biomineral layer. There exist multiple interactions between the inorganic layer and the organic layer. Thus, the as-prepared organic-inorganic hybrid microcapsules acquire much higher mechanical stability and surface reactivity than pure titania or pure silica microcapsules. Furthermore, protamine/titania/polydopamine hybrid microcapsules display superior mechanical stability to protamine/silica/polydopamine hybrid microcapsules because of the formation of Ti(IV)-catechol coordination complex between the biomineral layer and the bioadhesive layer. As an example of application, three enzymes are respectively immobilized through physical encapsulation in the lumen, in situ entrapment within the wall and chemical attachment on the out surface of the hybrid microcapsules. The as-constructed multienzyme system displays higher catalytic activity and operational stability. Hopefully, the approach developed in this study will evolve as a generic platform for facile and controllable preparation of organic-inorganic hybrid materials with different compositions and shapes for a variety of applications in catalysis, sensor, drug/gene delivery.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory for Green Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yan Y, Hao B, Chen G. Biomimetic synthesis of titania with chitosan-mediated phase transformation at room temperature. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11056j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Wang Y, Chen LQ, Li YF, Zhao XJ, Peng L, Huang CZ. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles. NANOTECHNOLOGY 2010; 21:305601. [PMID: 20603532 DOI: 10.1088/0957-4484/21/30/305601] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.
Collapse
Affiliation(s)
- Yi Wang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Chen G, Li M, Li F, Sun S, Xia D. Protein-mediated synthesis of nanostructured titania with different polymorphs at room temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:1258-1262. [PMID: 20437515 DOI: 10.1002/adma.200902901] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Ge Chen
- College of Environmental & Energy Engineering, Beijing University of Technology Chaoyang district Beijing, 100124, P.R. China
| | | | | | | | | |
Collapse
|
43
|
Alonso A, Macanás J, Shafir A, Muñoz M, Vallribera A, Prodius D, Melnic S, Turta C, Muraviev DN. Donnan-exclusion-driven distribution of catalytic ferromagnetic nanoparticles synthesized in polymeric fibers. Dalton Trans 2010; 39:2579-86. [DOI: 10.1039/b917970d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Sun Q, Jiang Y, Jiang Z, Zhang L, Sun X, Li J. Green and Efficient Conversion of CO2 to Methanol by Biomimetic Coimmobilization of Three Dehydrogenases in Protamine-Templated Titania. Ind Eng Chem Res 2009. [DOI: 10.1021/ie801931j] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qianyun Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yanjun Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Lei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaohui Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jian Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
45
|
Anderson KD, Slocik JM, McConney ME, Enlow JO, Jakubiak R, Bunning TJ, Naik RR, Tsukruk VV. Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:741-749. [PMID: 19267334 DOI: 10.1002/smll.200801843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, conformal, and robust polyamino acid coating in a one-step, solvent-free process. This approach is applicable to many practical surfaces and allows surface-induced biometallization while avoiding multiple wet-chemistry treatments that can damage many soft materials. Moreover, by placing a mask over the substrate during deposition, the tyrosine coating can be micropatterned. Upon its exposure to a solution of gold chloride, a network of gold nanoparticles forms on the surface, replicating the initial micropattern. This method of templated biometallization is adaptable to a variety of practical inorganic and organic substrates, such as silicon, glass, nitrocellulose, polystyrene, polydimethylsiloxane, polytetrafluoroethylene, polyethylene, and woven silk fibers. No special pretreatment is necessary, and the technique results in a rapid, conformal amino acid coating that can be utilized for further biometallization.
Collapse
Affiliation(s)
- Kyle D Anderson
- School of Materials Science and Engineering and School of Polymer, Textile, and Fiber Engineering Georgia Institute of Technology Atlanta, GA 30332-0245, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Jiang Y, Yang D, Zhang L, Sun Q, Sun X, Li J, Jiang Z. Preparation of Protamine–Titania Microcapsules Through Synergy Between Layer‐by‐Layer Assembly and Biomimetic Mineralization. ADVANCED FUNCTIONAL MATERIALS 2009; 19:150-156. [DOI: 10.1002/adfm.200800974] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
AbstractA novel approach combining layer‐by‐layer (LbL) assembly with biomimetic mineralization is proposed to prepare protamine–titiania hybrid microcapsules. More specifically, these microcapsules are fabricated by alternative deposition of positively charged protamine layers and negatively charged titania layers on the surface of CaCO3 microparticles, followed by dissolution of the CaCO3 microparticles using EDTA. During the deposition process, the protamine layer induces the hydrolysis and condensation of a titania precursor, to form the titania layer. Thereafter, the negatively charged titania layer allows a new cycle of deposition step of the protamine layer, which ensures a continuous LbL process. The morphology, structure, and chemical composition of the microcapsules are characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, and X‐ray photoelectron spectroscopy. Moreover, these protamine–titania hybrid microcapsules are first employed as the carrier for the immobilization of yeast alcohol dehydrogenase (YADH), and the encapsulated YADH displays enhanced recycling stability. This approach may open a facile, general, and efficient way to prepare organic–inorganic hybrid materials with different compositions and shapes.
Collapse
|