1
|
Bradley D, Sarpaki S, Mirabello V, Giuffrida SG, Kociok-Köhn GI, Calatayud DG, Pascu SI. Shedding light on the use of graphene oxide-thiosemicarbazone hybrids towards the rapid immobilisation of methylene blue and functional coumarins. NANOSCALE ADVANCES 2024; 6:2287-2305. [PMID: 38694476 PMCID: PMC11059481 DOI: 10.1039/d3na01042b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/24/2023] [Indexed: 05/04/2024]
Abstract
Coumarins, methylene blue derivatives, as well as related functional organic dyes have become prevalent tools in life sciences and biomedicine. Their intense blue fluorescence emission makes them ideal agents for a range of applications, yet an unwanted facet of the interesting biological properties of such probes presents a simultaneous environmental threat due to inherent toxicity and persistence in aqueous media. As such, significant research efforts now ought to focus on their removal from the environment, and the sustainable trapping onto widely available, water dispersible and processable adsorbent structures such as graphene oxides could be advantageous. Additionally, flat and aromatic bis(thiosemicarbazones) (BTSCs) have shown biocompatibility and chemotherapeutic potential, as well as intrinsic fluorescence, hence traceability in the environment and in living systems. A new palette of graphene oxide-based hierarchical supramolecular materials incorporating BTSCs were prepared, characterised, and reported hereby. We report on the supramolecular entrapping of several flat, aromatic fluorogenic molecules onto graphene oxide on basis of non-covalent interactions, by virtue of their structural features with potential to form aromatic stacks and H-bonds. The evaluations of the binding interactions in solution by between organic dyes (methylene blue and functional coumarins) and new graphene oxide-anchored Zn(ii) derivatised bis(thiosemicarbazones) nanohybrids were carried out by UV-Vis and fluorescence spectroscopies.
Collapse
Affiliation(s)
- Danielle Bradley
- Department of Chemistry, University of Bath Claverton Down Rd. BA2 7AY Bath UK
| | - Sophia Sarpaki
- Department of Chemistry, University of Bath Claverton Down Rd. BA2 7AY Bath UK
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath Claverton Down Rd. BA2 7AY Bath UK
| | | | | | - David G Calatayud
- Department of Chemistry, University of Bath Claverton Down Rd. BA2 7AY Bath UK
- Department of Inorganic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid Campus de Cantoblanco, Francisco Tomas y Valiente 7, Madrid 28049 Spain
| | - Sofia I Pascu
- Department of Chemistry, University of Bath Claverton Down Rd. BA2 7AY Bath UK
| |
Collapse
|
2
|
Bajaj K, Andres SA, Hofsommer DT, Michael OC, Mashuta MS, Bates PJ, Buchanan RM, Grapperhaus CA. Ligand and Linkage Isomers of Bis(ethylthiocarbamato) Copper Complexes with Cyclic C 6H 8 Backbone Substituents: Synthesis, Characterization, and Antiproliferation Activity. Eur J Inorg Chem 2023; 26:e202300447. [PMID: 38584911 PMCID: PMC10997340 DOI: 10.1002/ejic.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 04/09/2024]
Abstract
A series of isomeric bis(alkylthiocarbamate) copper complexes have been synthesized, characterized, and evaluated for antiproliferation activity. The complexes were derived from ligand isomers with 3-methylpentyl (H2L2) and cyclohexyl (H2L3) backbone substituents, which each yield a pair of linkage isomers. The thermodynamic products CuL2a/3a have two imino N and two S donors resulting in three five-member chelate rings (555 isomers). The kinetic isomers CuL2b/3b have one imino and one hydrazino N donor and two S donors resulting in four-, six-, and five-member rings (465 isomers). The 555 isomers have more accessible CuII/I potentials (E1/2 = -811/-768 mV vs. ferrocenium/ferrocene) and lower energy charge transfer bands than their 465 counterparts (E1/2 = -923/-854 mV). Antiproliferation activities were evaluated against the lung adenocarcinoma cell line (A549) and nonmalignant lung fibroblast cell line (IMR-90) using the MTT assay. CuL2a was potent (A549EC50 = 0.080 μM) and selective (IMR-90EC50/A549EC50 = 25) for A549. Its linkage isomer CuL2b had equivalent A549 activity, but lower selectivity (IMR-90EC50/A549EC50 = 12.5). The isomers CuL3a and CuL3b were less potent with A549EC50 values of 1.9 and 0.19 μM and less selective with IMR-90EC50/A549EC50 ratios of 2.3 and 2.65, respectively. There was no correlation between reduction potential and A549 antiproliferation activity/selectivity.
Collapse
Affiliation(s)
- Kritika Bajaj
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| | - Sarah A Andres
- Department of Medicine and Brown Cancer Center, University of Louisville, Louisville, KY 40202 United States
| | - Dillon T Hofsommer
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| | | | - Mark S Mashuta
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| | - Paula J Bates
- Department of Medicine and Brown Cancer Center, University of Louisville, Louisville, KY 40202 United States
| | - Robert M Buchanan
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| |
Collapse
|
3
|
Cortezon-Tamarit F, Song K, Kuganathan N, Arrowsmith RL, Mota Merelo de Aguiar SR, Waghorn PA, Brookfield A, Shanmugam M, Collison D, Ge H, Kociok-Köhn G, Pourzand C, Dilworth JR, Pascu SI. Structural and Functional Diversity in Rigid Thiosemicarbazones with Extended Aromatic Frameworks: Microwave-Assisted Synthesis and Structural Investigations. ACS OMEGA 2023; 8:16047-16079. [PMID: 37179648 PMCID: PMC10173449 DOI: 10.1021/acsomega.2c08157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/10/2023] [Indexed: 05/15/2023]
Abstract
The long-standing interest in thiosemicarbazones (TSCs) has been largely driven by their potential toward theranostic applications including cellular imaging assays and multimodality imaging. We focus herein on the results of our new investigations into: (a) the structural chemistry of a family of rigid mono(thiosemicarbazone) ligands characterized by extended and aromatic backbones and (b) the formation of their corresponding thiosemicarbazonato Zn(II) and Cu(II) metal complexes. The synthesis of new ligands and their Zn(II) complexes was performed using a rapid, efficient and straightforward microwave-assisted method which superseded their preparation by conventional heating. We describe hereby new microwave irradiation protocols that are suitable for both imine bond formation reactions in the thiosemicabazone ligand synthesis and for Zn(II) metalation reactions. The new thiosemicarbazone ligands, denoted HL, mono(4-R-3-thiosemicarbazone)quinone, and their corresponding Zn(II) complexes, denoted ZnL2, mono(4-R-3-thiosemicarbazone)quinone, where R = H, Me, Ethyl, Allyl, and Phenyl, quinone = acenapthnenequinone (AN), aceanthrenequinone (AA), phenanthrenequinone (PH), and pyrene-4,5-dione (PY) were isolated and fully characterized spectroscopically and by mass spectrometry. A plethora of single crystal X-ray diffraction structures were obtained and analyzed and the geometries were also validated by DFT calculations. The Zn(II) complexes presented either distorted octahedral geometry or tetrahedral arrangements of the O/N/S donors around the metal center. The modification of the thiosemicarbazide moiety at the exocyclic N atoms with a range of organic linkers was also explored, opening the way to bioconjugation protocols for these compounds. The radiolabeling of these thiosemicarbazones with 64Cu was achieved under mild conditions for the first time: this cyclotron-available radioisotope of copper (t1/2 = 12.7 h; β+ 17.8%; β- 38.4%) is well-known for its proficiency in positron emission tomography (PET) imaging and for its theranostic potential, on the basis of the preclinical and clinical cancer research of established bis(thiosemicarbazones), such as the hypoxia tracer 64Cu-labeled copper(diacetyl-bis(N4-methylthiosemicarbazone)], [64Cu]Cu(ATSM). Our labeling reactions proceeded in high radiochemical incorporation (>80% for the most sterically unencumbered ligands) showing promise of these species as building blocks for theranostics and synthetic scaffolds for multimodality imaging probes. The corresponding "cold" Cu(II) metalations were also performed under the mild conditions mimicking the radiolabeling protocols. Interestingly, room temperature or mild heating led to Cu(II) incorporation in the 1:1, as well as 1:2 metal: ligand ratios in the new complexes, as evident from extensive mass spectrometry investigations backed by EPR measurements, and the formation of Cu(L)2-type species prevails, especially for the AN-Ph thiosemicarbazone ligand (L-). The cytotoxicity levels of a selection of ligands and Zn(II) complexes in this class were further tested in commonly used human cancer cell lines (HeLa, human cervical cancer cells, and PC-3, human prostate cancer cells). Tests showed that their IC50 levels are comparable to that of the clinical drug cis-platin, evaluated under similar conditions. The cellular internalizations of the selected ZnL2-type compounds Zn(AN-Allyl)2, Zn(AA-Allyl)2, Zn(PH-Allyl)2, and Zn(PY-Allyl)2 were evaluated in living PC-3 cells using laser confocal fluorescent spectroscopy and these experiments showed exclusively cytoplasmic distributions.
Collapse
Affiliation(s)
| | - Kexin Song
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Navaratnarajah Kuganathan
- Department
of Materials, Imperial College London, Royal School of Mines, Exhibition
Road, London SW7 2AZ, U.K.
| | - Rory L. Arrowsmith
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | | | - Philip A. Waghorn
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Adam Brookfield
- Department
of Chemistry, and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Muralidharan Shanmugam
- Department
of Chemistry, and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David Collison
- Department
of Chemistry, and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Haobo Ge
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
- Department
of Life Sciences, University of Bath, Bath BA2 7AY, U.K.
| | - Gabriele Kociok-Köhn
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
| | - Charareh Pourzand
- Department
of Life Sciences, University of Bath, Bath BA2 7AY, U.K.
- Centre of
Therapeutic Innovation, University of Bath, Bath BA2 7AY, U.K.
| | - Jonathan Robin Dilworth
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sofia Ioana Pascu
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United
Kingdom
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Centre of
Therapeutic Innovation, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
4
|
Zhang SH, Wang ZF, Tan H. Novel zinc(II)−curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. Eur J Med Chem 2022; 243:114736. [DOI: 10.1016/j.ejmech.2022.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
|
5
|
Sarpaki S, Cortezon-Tamarit F, Exner RM, Song K, de Aguiar SRM, Ge H, Pourzand C, Paisey SJ, Kociok-Köhn G, Dilworth JR, Carroll L, Pascu SI. Functional, Aromatic, and Fluorinated Monothiosemicarbazones: Investigations into Their Structures and Activity toward the Gallium-68 Incorporation by Microwave Irradiation. ACS OMEGA 2022; 7:13750-13777. [PMID: 35559172 PMCID: PMC9088960 DOI: 10.1021/acsomega.1c07396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
We report on the synthesis and spectroscopic characterization of a new series of coordinating monothiosemicarbazones incorporating aromatic backbones, featuring O/N/S donor centers monosubstituted with different aliphatic, aromatic, fluorinated, and amine-functionalized groups at their N centers. Their ability to bind metal ions such as Zn(II) and Ga(III) was explored, and the formation of two different coordination isomers of the Zn(II) complex was demonstrated by X-ray diffraction studies using synchrotron radiation. These studies showed the planar geometry for the coordinated mono(thiosemicarbazone) ligand and that the metal center can adopt either a heavily distorted tetrahedral Zn center (placed in an N/S/S/N environment, with CN = 4) or a pseudo-octahedral geometry, where the Zn(II) center is in the O/N/S/S/N/O environment, and CN = 6. Furthermore, 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT) assays and cellular imaging in living cells were subsequently performed in two different cancer cell lines: PC-3 (a standard cell line derived from a bone metastasis of a stage IV prostate cancer) and EMT6 (a commercial murine mammary carcinoma cell line). The radiolabeling of new functional and aromatic monothiosemicarbazones with either gallium-68 (under pH control) or fluorine-18 is discussed. The potential of this class of compounds to act as synthetic scaffolds for molecular imaging agents of relevance to positron emission tomography was evaluated in vitro, and the cellular uptake of a simultaneously fluorinated and [68Ga]-labeled mono(thiosemicarbazone) was investigated and is reported here.
Collapse
Affiliation(s)
- Sophia Sarpaki
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | - Rüdiger Maria Exner
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Kexin Song
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | - Haobo Ge
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Charareh Pourzand
- Department
of Pharmacy and Pharmacology, University
of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Centre
of Therapeutic Innovations, University of
Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Stephen James Paisey
- Wales
Research and Diagnostic PET Imaging Centre, School of Medicine, University of Cardiff, Cardiff CF10 3AT, United Kingdom
| | - Gabriele Kociok-Köhn
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Jonathan Robin Dilworth
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX2 3TA, United Kingdom
| | - Laurence Carroll
- Department
of Medicine, Imperial College, Du Cane Road, London W12 0NN, United
Kingdom
- Russell
H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, United States
| | - Sofia Ioana Pascu
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Centre
of Therapeutic Innovations, University of
Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
6
|
Wang ZF, Nong QX, Yu HL, Qin QP, Pan FH, Tan MX, Liang H, Zhang SH. Complexes of Zn(II) with a mixed tryptanthrin derivative and curcumin chelating ligands as new promising anticancer agents. Dalton Trans 2022; 51:5024-5033. [PMID: 35274641 DOI: 10.1039/d1dt04095b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, two novel curcumin (H-Cur)-tryptanthrin metal compounds-[Zn(TA)Cl2], i.e., Zn(TA), and [Zn(TA)(Cur)]Cl, i.e., Zn(TAC)-were synthesized and investigated using 5-(bis-pyridin-2-ylmethyl-amino)-pentanoic acid (6,12-dioxo-6,12-dihydro-indolo[2,1-b]quinazolin-8-yl)-amide (TA) and H-Cur as the targeting and high-activity anticancer chemotherapeutic moieties, respectively. They were then compared with the di-(2-picolyl)amine (PA) Zn(II) complex [Zn(PA)Cl2], i.e., Zn(PA). When compared with Zn(PA) and cisplatin, the IC50 values of Zn(TA) and Zn(TAC) indicated that the compounds had high cytotoxicity against A549/DDP cancer cells, implying that the H-Cur-tryptanthrin Zn(II) compounds have the potential for use as anticancer drugs. We propose the use of synthesized theragnostic H-Cur-tryptanthrin Zn(II) complexes with nuclear-targeting and DNA-damaging capabilities as a simple therapeutic strategy against tumors. The Zn(TA) and Zn(TAC) complexes could be traced via red fluorescence and were found to accumulate in the cell nuclei and induce DNA damage, cell cycle arrest, mitochondrial dysfunction, and cell apoptosis both in vitro and in vivo. In addition, Zn(TAC) exhibited a higher antiproliferative effect on A549/DDP than Zn(TA) and Zn(PA), which was undoubtedly associated with the key roles of the novel tryptanthrin derivative TA and H-Cur in the Zn(TAC) complex.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Qun-Xue Nong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hua-Lian Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China. .,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Feng-Hua Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| |
Collapse
|
7
|
Qin LQ, Liang CJ, Zhou Z, Qin QP, Wei ZZ, Tan MX, Liang H. Mitochondria-localizing curcumin-cryptolepine Zn(II) complexes and their antitumor activity. Bioorg Med Chem 2021; 30:115948. [PMID: 33360578 DOI: 10.1016/j.bmc.2020.115948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/08/2023]
Abstract
Many metal complexes are potent candidates as mitochondrial-targeting agents. In this study, four novel Zn(II) complexes, [Zn(BPQA)Cl2] (Zn1), [Zn(BPQA)(Curc)]Cl (Zn2), [Zn(PQA)Cl2] (Zn3), and [Zn(PQA)(Curc)]Cl (Zn4), containing N,N-bis(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (BPQA), N-(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (PQA), and curcumin (H-Curc) were synthesized. An MTT assay showed that Zn1-Zn4 had strong anticancer activities against SK-OV-3/DDP and T-24 tumor cells with IC50 values of 0.03-6.19 μM. Importantly, Zn1 and Zn2 displayed low toxicities against normal HL-7702 cells. Mechanism experiments demonstrated that probe Zn2 showed appreciable fluorescence in the red region of the spectrum, and substantial accumulation of Zn2 occurred in the mitochondria after treatment, indicating increases in Ca2+ and reactive oxygen species levels, loss of the mitochondrial membrane potential, and consequent induction of mitochondrial dysfunction at low concentrations. In addition, the probe Zn2 effectively (50.7%) inhibited the growth of T-24 bladder tumor cells in vivo. The probe Zn2 shows potential for use in cancer therapy while retaining the H-Curc as an imaging probe.
Collapse
Affiliation(s)
- Li-Qin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Zhen Zhou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Zu-Zhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
8
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Qin QP, Wei ZZ, Wang ZF, Huang XL, Tan MX, Zou HH, Liang H. Imaging and therapeutic applications of Zn(ii)-cryptolepine-curcumin molecular probes in cell apoptosis detection and photodynamic therapy. Chem Commun (Camb) 2020; 56:3999-4002. [PMID: 32154536 DOI: 10.1039/d0cc00524j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel red Zn(ii) complex-based fluorescent probes featuring cryptolepine-curcumin derivatives, namely, [Zn(BQ)Cl2] (BQ-Zn) and [Zn(BQ)(Cur)]Cl (BQCur-Zn), were developed for the simple and fluorescent label-free detection of apoptosis, an important biological process. The probes could synergistically promote mitochondrion-mediated apoptosis and enhance tumor therapeutic effects in vitro and vivo.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Elamathi C, Madankumar A, Kaminsky W, Prabhakaran R. Synthesis, spectroscopic studies and biological evaluations of copper(I)/(II) metallates containing nitrogen heterocycles. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Zinc(II) complexes of indole thiosemicarbazones: DNA/protein binding, molecular docking and in vitro cytotoxicity studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Venkatachalam TK, Stimson DHR, Bhalla R, Mardon K, Bernhardt PV, Reutens DC. Synthesis of 18 F-radiolabeled diphenyl gallium dithiosemicarbazone using a novel halogen exchange method and in vivo biodistribution. J Labelled Comp Radiopharm 2019; 62:321-331. [PMID: 31042810 DOI: 10.1002/jlcr.3746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/08/2022]
Abstract
18 F-radiolabeled diphenyl gallium thiosemicarbazone was prepared by [18 F] fluoride exchange of a nitrato anion under mild conditions. The diphenyl gallium thiosemicarbazone chloride is easily prepared in gram quantities and can be used at room temperature in the presence of oxygen. The corresponding nitrate complex is prepared using silver nitrate in methanol solvent and can be stored under nitrogen for weeks before radiolabeling. The biodistribution of this new tracer was studied in mice using positron emission tomography (PET).
Collapse
Affiliation(s)
| | - Damion H R Stimson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Tian X, Hussain S, de Pace C, Ruiz-Pérez L, Battaglia G. Zn II Complexes for Bioimaging and Correlated Applications. Chem Asian J 2019; 14:509-526. [PMID: 30716209 DOI: 10.1002/asia.201801437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Indexed: 11/09/2022]
Abstract
Zinc is a biocompatible element that exists as the second most abundant transition metal ion and an indispensable trace element in the human body. Compared to traditional metal-organic complexes systems, d10 metal ZnII complexes not only exhibit a large Stokes shift and good photon stability but also possess strong emission and low cytotoxicity with a relatively small molecular weight. The use of ZnII complexes has emerged in the last decade as a versatile and convenient tool for numerous biological applications, including bioimaging, molecular and protein recognition, as well as photodynamic therapy. Herein, we review recent developments involving ZnII metal complexes applied as specific subcellular compartment imaging probes and their correlated utilizations.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of life science, Anhui University, Hefei, 230039, P.R. China
| | - Sajid Hussain
- School of life science, Anhui University, Hefei, 230039, P.R. China.,School of Applied Sciences and Humanities (NUSASH), National University of Technology, Sector I-12, Islamabad, Pakistan
| | - Cesare de Pace
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Giuseppe Battaglia
- School of life science, Anhui University, Hefei, 230039, P.R. China.,Department of Chemistry, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
14
|
Venkatachalam TK, Bernhardt PV, Pierens GK, Stimson DHR, Bhalla R, Reutens DC. Synthesis and Characterisation of Indium(III) Bis-Thiosemicarbazone Complexes: 18F Incorporation for PET Imaging. Aust J Chem 2019. [DOI: 10.1071/ch18559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several structurally related indium chlorido complexes of bis-thiosemicarbazones were prepared, starting from the appropriately substituted bis-thiosemicarbazones, using sodium methoxide in methanol. Detailed NMR studies were conducted to assign the structure including COSY, HSQC, and HMBC techniques. The structures of all indium complexes were solved using single crystal X-ray diffraction. The chlorido ligand was present at the apex of the square pyramidal coordination sphere in all indium complexes. In some complexes, an intermolecular hydrogen bond was present between the chlorine atom and an NH group. Three different indium chlorido complexes were converted into the corresponding fluorido-derivative by a simple halide exchange method using K18F. These novel complexes, containing the positron emitting isotope 18F, may have potential applications in positron emission tomography (PET).
Collapse
|
15
|
Unravelling the antitumoral potential of novel bis(thiosemicarbazonato) Zn(II) complexes: structural and cellular studies. J Biol Inorg Chem 2018; 24:71-89. [DOI: 10.1007/s00775-018-1629-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
|
16
|
Venkatachalam TK, Bernhardt PV, Stimson DHR, Pierens GK, Bhalla R, Reutens DC. A Novel Strategy to Introduce 18F, a Positron Emitting Radionuclide, into a Gallium Nitrate Complex: Synthesis, NMR, X-Ray Crystal Structure, and Preliminary Studies on Radiolabelling with 18F. Aust J Chem 2018. [DOI: 10.1071/ch17334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A hexan-3,4-dione bis(4N-phenylthiosemicarbazone) gallium nitrate complex was synthesised and the structure was confirmed by NMR studies. The complex was prepared using an appropriately substituted dithiosemicarbazone and sodium methoxide in anhydrous methanol. The structure was further confirmed using single crystal X-ray crystallography. The crystal structure of gallium nitrate complex of diphenylthiosemicarbazone comprise a planar configuration of the tetradentate coordinated thiosemicarbazone with the Ga3+ ion, with the nitrate ligand occupying the apical coordination site. The X-ray structure of the gallium fluoride complex of pentan-2,3-dione bis(4N-phenylthiosemicarbazone) has been determined and confirms exchange of the nitrate can be achieved with fluoride. We show facile exchange of 18F, a positron emitter, to form the 18F-gallium complex under mild conditions, thus providing confirmation that such a transformation can be used to introduce 18F directly into nitrate-coordinated complexes of gallium-thiosemicarbozone complexes, a new labelling strategy for the preparation of imaging agents.
Collapse
|
17
|
Hu B, Wang B, Zhao B, Guo Q, Li ZH, Zhang XH, Liu GY, Liu Y, Tang Y, Luo F, Du Y, Chen YX, Ma LY, Liu HM. Thiosemicarbazone-based selective proliferation inactivators inhibit gastric cancer cell growth, invasion, and migration. MEDCHEMCOMM 2017; 8:2173-2180. [PMID: 30108734 DOI: 10.1039/c7md00353f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
A series of novel thiosemicarbazone derivatives were synthesized and evaluated for their antiproliferative activity against several selected tumor cell lines of different origins using the MTT assay. The preliminary results indicated that the MGC-803 cell line was remarkably sensitive to all the synthesized compounds. Among this series, compound 5n showed the best inhibitory activity with an IC50 value of 0.93 μM (about 10-fold more potent than 3-AP) against MGC-803. Further mechanism studies revealed that compound 5n could obviously inhibit the proliferation of MGC-803 cells by inducing apoptosis and arresting the cell cycle at the S phase. Compound 5n also showed marked inhibition of cell migration and invasion, without significant cytotoxicity against gastric epithelial immortalized GES-1 cells.
Collapse
Affiliation(s)
- Biao Hu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Bing Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Qian Guo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Zhong-Hua Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Guang-Yao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ying Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ying Tang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Fan Luo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ya Du
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Ya-Xin Chen
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Key Laboratory of Technology of Drug Preparation , Ministry of Education of China , School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , Henan Province , PR China . ;
| |
Collapse
|
18
|
Lobana TS, Indoria S, Sood H, Arora DS, Randhawa BS, Garcia-Santos I, Smolinski VA, Jasinski JP. Synthesis of 5-nitro-salicylaldehyde-N-substituted thiosemicarbazonates of copper(II): Molecular structures, spectroscopy, ESI-mass studies and antimicrobial activity. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Hosseinpour S, Hosseini-Yazdi SA, White J. Binuclear zinc(II) complexes of N(4)-substituted bis(thiosemicarbazone) ligands incorporating hydroxyl group and their non-hydroxyl analogues. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Synthesis, crystal structure and luminescence properties of acenaphthene benzohydrazide based ligand and its zinc(II) complex. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Li M, Ge H, Mirabello V, Arrowsmith RL, Kociok-Köhn G, Botchway SW, Zhu W, Pascu SI, James TD. Lysosomal tracking with a cationic naphthalimide using multiphoton fluorescence lifetime imaging microscopy. Chem Commun (Camb) 2017; 53:11161-11164. [DOI: 10.1039/c7cc05166b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A naphthalimide-based chemosensing motif capable of turning on the fluorescence emission in solution and in vitro is reported.
Collapse
Affiliation(s)
- Meng Li
- Department of Chemistry
- University of Bath
- Claverton Down, Bath, BA2 7AY
- UK
- Department of Environmental Science and Engineering
| | - Haobo Ge
- Department of Chemistry
- University of Bath
- Claverton Down, Bath, BA2 7AY
- UK
| | - Vincenzo Mirabello
- Department of Chemistry
- University of Bath
- Claverton Down, Bath, BA2 7AY
- UK
| | - Rory L. Arrowsmith
- Department of Chemistry
- University of Bath
- Claverton Down, Bath, BA2 7AY
- UK
| | | | - Stanley W. Botchway
- Central Laser Facility
- Rutherford Appleton Laboratory
- Research Complex at Harwell
- STFC Didcot
- UK
| | - Weihong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai 200237
- P. R. China
| | - Sofia I. Pascu
- Department of Chemistry
- University of Bath
- Claverton Down, Bath, BA2 7AY
- UK
| | - Tony D. James
- Department of Chemistry
- University of Bath
- Claverton Down, Bath, BA2 7AY
- UK
| |
Collapse
|
22
|
Venkatachalam TK, Bernhardt PV, Noble CJ, Fletcher N, Pierens GK, Thurecht KJ, Reutens DC. Synthesis, characterization and biological activities of semicarbazones and their copper complexes. J Inorg Biochem 2016; 162:295-308. [DOI: 10.1016/j.jinorgbio.2016.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/21/2016] [Accepted: 04/03/2016] [Indexed: 01/11/2023]
|
23
|
Cortezon-Tamarit F, Sarpaki S, Calatayud DG, Mirabello V, Pascu SI. Applications of "Hot" and "Cold" Bis(thiosemicarbazonato) Metal Complexes in Multimodal Imaging. CHEM REC 2016; 16:1380-97. [PMID: 27149900 DOI: 10.1002/tcr.201500292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The applications of coordination chemistry to molecular imaging has become a matter of intense research over the past 10 years. In particular, the applications of bis(thiosemicarbazonato) metal complexes in molecular imaging have mainly been focused on compounds with aliphatic backbones due to the in vivo imaging success of hypoxic tumors with PET (positron emission tomography) using (64) CuATSM [copper (diacetyl-bis(N4-methylthiosemicarbazone))]. This compound entered clinical trials in the US and the UK during the first decade of the 21(st) century for imaging hypoxia in head and neck tumors. The replacement of the ligand backbone to aromatic groups, coupled with the exocyclic N's functionalization during the synthesis of bis(thiosemicarbazones) opens the possibility to use the corresponding metal complexes as multimodal imaging agents of use, both in vitro for optical detection, and in vivo when radiolabeled with several different metallic species. The greater kinetic stability of acenaphthenequinone bis(thiosemicarbazonato) metal complexes, with respect to that of the corresponding aliphatic ATSM complexes, allows the stabilization of a number of imaging probes, with special interest in "cold" and "hot" Cu(II) and Ga(III) derivatives for PET applications and (111) In(III) derivatives for SPECT (single-photon emission computed tomography) applications, whilst Zn(II) derivatives display optical imaging properties in cells, with enhanced fluorescence emission and lifetime with respect to the free ligands. Preliminary studies have shown that gallium-based acenaphthenequinone bis(thiosemicarbazonato) complexes are also hypoxia selective in vitro, thus increasing the interest in them as new generation imaging agents for in vitro and in vivo applications.
Collapse
Affiliation(s)
| | - Sophia Sarpaki
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David G Calatayud
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
24
|
Stacy AE, Palanimuthu D, Bernhardt PV, Kalinowski DS, Jansson PJ, Richardson DR. Zinc(II)-Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity. J Med Chem 2016; 59:4965-84. [PMID: 27023111 DOI: 10.1021/acs.jmedchem.6b00238] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As the di-2-pyridylketone thiosemicarbazone (DpT) and 2-acetylpyridine thiosemicarbazone (ApT) series show potent antitumor activity in vitro and in vivo, we synthesized their fluorescent zinc(II) complexes to assess their intracellular distribution. The Zn(II) complexes generally showed significantly greater cytotoxicity than the thiosemicarbazones alone in several tumor cell-types. Notably, specific structure-activity relationships demonstrated the importance of the di-2-pyridyl pharmacophore in their activity. Confocal fluorescence imaging and live cell microscopy showed that the Zn(II) complex of our lead compound, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which is scheduled to enter clinical trials, was localized to lysosomes. Under lysosomal conditions, the Zn(II) complexes were shown to transmetallate with copper ions, leading to redox-active copper complexes that induced lysosomal membrane permeabilization (LMP) and cytotoxicity. This is the first study to demonstrate direct lysosomal targeting of our novel Zn(II)-thiosemicarbazone complexes that mediate their activity via transmetalation with copper ions and LMP.
Collapse
Affiliation(s)
- Alexandra E Stacy
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| | - Duraippandi Palanimuthu
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, Queensland 4072, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney , Blackburn Building (D06), Level 5, Sydney, New South Wales 2006, Australia
| |
Collapse
|
25
|
Current and future potential of metallo drugs: Revisiting DNA-binding of metal containing molecules and their diverse mechanism of action. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Alam IS, Arrowsmith RL, Cortezon-Tamarit F, Twyman F, Kociok-Köhn G, Botchway SW, Dilworth JR, Carroll L, Aboagye EO, Pascu SI. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia. Dalton Trans 2016; 45:144-55. [PMID: 26583314 PMCID: PMC4758186 DOI: 10.1039/c5dt02537k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/17/2015] [Indexed: 12/24/2022]
Abstract
We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under 'cold' and 'hot' biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. (68)Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration.
Collapse
Affiliation(s)
- Israt S Alam
- Department of Medicine, Imperial College, Du Cane Road, W12 0NN, London, UK.
| | - Rory L Arrowsmith
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, UK.
| | | | - Frazer Twyman
- Department of Medicine, Imperial College, Du Cane Road, W12 0NN, London, UK.
| | | | - Stanley W Botchway
- Oxford Brookes University, Faculty of Health and Life Sciences, The Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxford, UK
| | | | - Laurence Carroll
- Department of Medicine, Imperial College, Du Cane Road, W12 0NN, London, UK.
| | - Eric O Aboagye
- Department of Medicine, Imperial College, Du Cane Road, W12 0NN, London, UK.
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, UK.
| |
Collapse
|
27
|
Khalil G, Orvain C, Fang L, Barloy L, Chaumont A, Gaiddon C, Henry M, Kyritsakas N, Mobian P. Monomeric Ti(iv)-based complexes incorporating luminescent nitrogen ligands: synthesis, structural characterization, emission spectroscopy and cytotoxic activities. Dalton Trans 2016; 45:19072-19085. [DOI: 10.1039/c6dt03477b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel photoluminescent 2,2′-bipyrimidine ligands and their titanium(iv) complexes are cytotoxic.
Collapse
Affiliation(s)
- Georges Khalil
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Christophe Orvain
- Laboratoire des “Mécanismes moléculaires de la réponse au stress et pathologies”
- Strasbourg
- France
- Département Cancer
- Fédération de Médecine Translationnelle de Strasbourg
| | - Lu Fang
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Laurent Barloy
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Alain Chaumont
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Christian Gaiddon
- Laboratoire des “Mécanismes moléculaires de la réponse au stress et pathologies”
- Strasbourg
- France
- Département Cancer
- Fédération de Médecine Translationnelle de Strasbourg
| | - Marc Henry
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Nathalie Kyritsakas
- Laboratoire de Tectonique Moléculaire
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| | - Pierre Mobian
- Laboratoire de Chimie Moléculaire de l'Etat Solide
- UMR 7140 UDS-CNRS
- Université de Strasbourg
- F-67000 Strasbourg
- France
| |
Collapse
|
28
|
Venkatachalam TK, Pierens GK, Bernhardt PV, Stimson DHR, Bhalla R, Lambert L, Reutens DC. Heteronuclear NMR Spectroscopic Investigations of Gallium Complexes of Substituted Thiosemicarbazones Including X-Ray Crystal Structure, a New Halogen Exchange Strategy, and 18F Radiolabelling. Aust J Chem 2016. [DOI: 10.1071/ch16044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Five thiosemicarbazone ligands have been synthesized, and their coordination chemistry with gallium was investigated. The reaction of these thiosemicarbazones with gallium chloride in alcohol solutions in the presence of a base yielded the corresponding penta-coordinated Ga-Cl metal complexes. In contrast, the reaction of gallium nitrate with the ligands in the presence of alkoxides resulted in the formation of the corresponding Ga-alkoxides, rather than the anticipated Ga-nitrate complex. The crystal structures of gallium chloride and gallium methoxide complexes of diphenylthiosemicarbazone comprise a planar configuration of the tetradentate-coordinated thiosemicarbazone with Ga3+ ion, with the chloride or methoxide groups occupying the apical coordination site. The corresponding ethoxido complex was also prepared in an identical fashion, and NMR analysis confirmed structural similarity to the methoxido complex. Facile halogen exchange reactions of the gallium chloride complexes were achieved by treatment with silver nitrate, followed by addition of KF or KI to generate the gallium fluoride and iodide complexes, respectively. This method of exchange using halogenated inorganic salts aids the preparation of group 13 fluorides, which are notoriously insoluble in organic solvents, for complexation with organic ligands. All compounds have been fully characterized by NMR, and the X-ray crystal structures of two of the complexes are reported. Additionally, the positron-emitting isotope 18F was introduced in the structure of the diphenyl gallium thiosemicarbazone complex.
Collapse
|
29
|
Kocak A, Yilmaz H, Faiz O, Andac O. Experimental and theoretical studies on Cu(II) complex of N,N′-disalicylidene-2,3-diaminopyridine ligand reveal indirect evidence for DNA intercalation. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Stefani C, Al-Eisawi Z, Jansson PJ, Kalinowski DS, Richardson DR. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. J Inorg Biochem 2015; 152:20-37. [DOI: 10.1016/j.jinorgbio.2015.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022]
|
31
|
Hickey JL, James JL, Henderson CA, Price KA, Mot AI, Buncic G, Crouch PJ, White JM, White AR, Smith TA, Donnelly PS. Intracellular Distribution of Fluorescent Copper and Zinc Bis(thiosemicarbazonato) Complexes Measured with Fluorescence Lifetime Spectroscopy. Inorg Chem 2015; 54:9556-67. [DOI: 10.1021/acs.inorgchem.5b01599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Janine L. James
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | | | - Katherine A. Price
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | - Alexandra I. Mot
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | | | - Peter J. Crouch
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | | | - Anthony R. White
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
32
|
Ingle SA, Kate AN, Kumbhar AA, Khan AA, Rao SS, Gejji SP. Synthesis and biological evaluation of copper(ii) pyrenethiosemicarbazone. RSC Adv 2015. [DOI: 10.1039/c5ra00020c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fluorescent Cu(ii) pyrenethiosemicarbazone complex exhibits enhanced DNA-cleavage and cytotoxicity on photoexcitation.
Collapse
Affiliation(s)
- Suwarna A. Ingle
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Anup N. Kate
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Anupa A. Kumbhar
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Ayesha A. Khan
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Soniya S. Rao
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| | - Shridhar P. Gejji
- Department of Chemistry
- Savitribai Phule Pune University
- Pune-411007
- India
| |
Collapse
|
33
|
Lobana TS, Indoria S, Kaur H, Arora DS, Jassal AK, Jasinski JP. Synthesis and structures of 5-nitro-salicylaldehyde thiosemicarb-azonates of copper(ii): molecular spectroscopy, ESI-mass studies, antimicrobial activity and cytotoxicity. RSC Adv 2015. [DOI: 10.1039/c4ra15006f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Salicylaldehyde thiosemicarbazonates of copper(ii) have shown significant growth inhibitory activity againstS. aureus, MRSA,K. pneumonia,S. flexneri,P. aeruginosaandC. albicansand are bactericidal in nature with low cytotoxicity.
Collapse
Affiliation(s)
- Tarlok S. Lobana
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Shikha Indoria
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Harpreet Kaur
- Department of Microbiology
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | - Daljit S. Arora
- Department of Microbiology
- Guru Nanak Dev University
- Amritsar-143 005
- India
| | | | | |
Collapse
|
34
|
Grubman A, White AR, Liddell JR. Mitochondrial metals as a potential therapeutic target in neurodegeneration. Br J Pharmacol 2014; 171:2159-73. [PMID: 24206195 DOI: 10.1111/bph.12513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022] Open
Abstract
Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders.
Collapse
Affiliation(s)
- A Grubman
- Department of Pathology, University of Melbourne, Melbourne, Vic., Australia
| | | | | |
Collapse
|
35
|
Djoko KY, Donnelly PS, McEwan AG. Inhibition of respiratory complex I by copper(ii)-bis(thiosemicarbazonato) complexes. Metallomics 2014; 6:2250-9. [PMID: 25366244 DOI: 10.1039/c4mt00226a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Several copper(ii) complexes of bis(thiosemicarbazones) [Cu(btsc)s] show promise as therapeutics for the treatment of neurological diseases, cancers and bacterial infections. These complexes are thought to act primarily as copper ionophores or "copper boosting" agents, whereby the Cu(II) centre is reduced by cytosolic reductants and Cu(I) is released as "free" or "bioavailable" ion. It is then assumed that the dissociated Cu(I) ion is the species responsible for many of the observed biological effects of Cu(btsc)s. We recently showed that Cu(btsc) complexes inhibited NADH dehydrogenases in the bacterial respiratory chain. In this work, we demonstrate that Cu(btsc) complexes also inhibit mitochondrial respiration and that Complex I in the mitochondrial electron transport chain is a specific target of inhibition. However, bioavailable Cu ions do not appear to contribute to the action of Cu(btsc) as a respiratory inhibitor. Instead, an intact Cu(btsc) molecule may bind reversibly and competitively to the site of ubiquinone binding in Complex I. Our results add to the growing body of evidence that the intact complex may be important in the overall cellular activity of Cu(btsc) complexes and further the understanding of their biological effects as a potential therapeutic.
Collapse
Affiliation(s)
- Karrera Y Djoko
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | |
Collapse
|
36
|
Galani A, Efthimiadou EK, Theodosiou T, Kordas G, Karaliota A. Novel levofloxacin zinc (II) complexes with N-donor heterocyclic ligands, as potential fluorescent probes for cell imaging: Synthesis, structural characterization and in vitro cytotoxicity. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Synthesis, crystal structure, deoxyribose nucleic acid interaction and antitumor activity of some thiosemicarbazonatomolybdenum(VI). Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Synthesis, structures, spectroscopy and antimicrobial properties of complexes of copper(II) with salicylaldehyde N-substituted thiosemicarbazones and 2,2′-bipyridine or 1,10-phenanthroline. Eur J Med Chem 2014; 76:145-54. [DOI: 10.1016/j.ejmech.2014.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/20/2022]
|
39
|
Mahato M, Dey D, Pal S, Saha S, Ghosh A, Harms K, Nayek HP. Syntheses, structures, optical properties and biological activities of bimetallic complexes. RSC Adv 2014. [DOI: 10.1039/c4ra11991f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Palanimuthu D, Samuelson AG. Dinuclear zinc bis(thiosemicarbazone) complexes: Synthesis, in vitro anticancer activity, cellular uptake and DNA interaction study. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Giannicchi I, Brissos R, Ramos D, Lapuente JD, Lima JC, Cort AD, Rodríguez L. Substituent Effects on the Biological Properties of Zn-Salophen Complexes. Inorg Chem 2013; 52:9245-53. [DOI: 10.1021/ic4004356] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ilaria Giannicchi
- Dipartimento di Chimica and
IMC-CNR Sezione Meccanismi di Reazione, Università La Sapienza, Box 34 Roma 62, 00185 Roma, Italy
| | - Rosa Brissos
- Departament de Química
Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - David Ramos
- Unitat de Toxicologia Experimental
i Ecotoxicologia, Parc Científic de Barcelona, c/Baldiri i Reixach, 10-12, 08028 Barcelona, Spain
| | - Joaquin de Lapuente
- Unitat de Toxicologia Experimental
i Ecotoxicologia, Parc Científic de Barcelona, c/Baldiri i Reixach, 10-12, 08028 Barcelona, Spain
| | - João Carlos Lima
- REQUIMTE, Departamento de Química,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal
| | - Antonella Dalla Cort
- Dipartimento di Chimica and
IMC-CNR Sezione Meccanismi di Reazione, Università La Sapienza, Box 34 Roma 62, 00185 Roma, Italy
| | - Laura Rodríguez
- Departament de Química
Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
42
|
Lobana TS, Kumari P, Castineiras A, Butcher RJ. The Effect of C-2 Substituents of Salicylaldehyde-Based Thiosemicarbazones on the Synthesis, Spectroscopy, Structures, and Fluorescence of Nickel(II) Complexes. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Palanimuthu D, Shinde SV, Somasundaram K, Samuelson AG. In Vitro and in Vivo Anticancer Activity of Copper Bis(thiosemicarbazone) Complexes. J Med Chem 2013; 56:722-34. [DOI: 10.1021/jm300938r] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Duraippandi Palanimuthu
- Department
of Inorganic and Physical Chemistry, and ‡Department of Microbiology and
Cell Biology, Indian Institute of Science, Bangalore, India 560012
| | - Sridevi Vijay Shinde
- Department
of Inorganic and Physical Chemistry, and ‡Department of Microbiology and
Cell Biology, Indian Institute of Science, Bangalore, India 560012
| | - Kumaravel Somasundaram
- Department
of Inorganic and Physical Chemistry, and ‡Department of Microbiology and
Cell Biology, Indian Institute of Science, Bangalore, India 560012
| | - Ashoka G. Samuelson
- Department
of Inorganic and Physical Chemistry, and ‡Department of Microbiology and
Cell Biology, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
44
|
Waghorn PA, Jones MW, Theobald MBM, Arrowsmith RL, Pascu SI, Botchway SW, Faulkner S, Dilworth JR. Shining light on the stability of metal thiosemicarbazonate complexes in living cells by FLIM. Chem Sci 2013. [DOI: 10.1039/c2sc21489j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Brissos R, Ramos D, Lima JC, Mihan FY, Borràs M, de Lapuente J, Cort AD, Rodríguez L. Luminescent zinc salophen derivatives: cytotoxicity assessment and action mechanism studies. NEW J CHEM 2013. [DOI: 10.1039/c3nj41125g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Calatayud DG, López-Torres E, Mendiola MA. A Fluorescent Dissymmetric Thiosemicarbazone Ligand Containing a Hydrazonequinoline Arm and Its Complexes with Cadmium and Mercury. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Dilworth JR, Hueting R. Metal complexes of thiosemicarbazones for imaging and therapy. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.02.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Li MX, Zhang LZ, Yang M, Niu JY, Zhou J. Synthesis, crystal structures, in vitro biological evaluation of zinc(II) and bismuth(III) complexes of 2-acetylpyrazine N(4)-phenylthiosemicarbazone. Bioorg Med Chem Lett 2012; 22:2418-23. [DOI: 10.1016/j.bmcl.2012.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 11/15/2022]
|
49
|
Bocokić V, Lutz M, Spek AL, Reek JNH. Bis-(thiosemicarbazonato) Zn(ii) complexes as building blocks for construction of supramolecular catalysts. Dalton Trans 2012; 41:3740-50. [DOI: 10.1039/c2dt12096h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Redshaw C, Elsegood MRJ, Frese JWA, Ashby S, Chao Y, Mueller A. Cellular uptake studies of two hexanuclear, carboxylate bridged, zinc ring structures using fluorescence microscopy. Chem Commun (Camb) 2012; 48:6627-9. [DOI: 10.1039/c2cc32060f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|