1
|
Lu R, Li J, Guo Z, Wang Z, Feng JJ, Sui Y. Transient flow-induced deformation of cancer cells in microchannels: a general computational model and experiments. Biomech Model Mechanobiol 2025:10.1007/s10237-024-01920-9. [PMID: 39893594 DOI: 10.1007/s10237-024-01920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/13/2024] [Indexed: 02/04/2025]
Abstract
Recently, the present authors proposed a three-dimensional computational model for the transit of suspended cancer cells through a microchannel (Wang et al. in Biomech Model Mechanobiol 22: 1129-1143, 2023). The cell model takes into account the three major subcellular components: A viscoelastic membrane that represents the lipid bilayer supported by the underlying cell cortex, a viscous cytoplasm, and a nucleus modelled as a smaller microcapsule. The cell deformation and its interaction with the surrounding fluid were solved by an immersed boundary-lattice Boltzmann method. The computational model accurately recovered the transient flow-induced deformation of the human leukaemia HL-60 cells in a constricted channel. However, as a general modelling framework, its applicability to other cell types in different flow geometries remains unknown, due to the lack of quantitative experimental data. In this study, we conduct experiments of the transit of human prostate cancer (PC-3) and leukaemia (K-562) cells, which represent solid and liquid tumour cell lines, respectively, through two distinct microchannel geometries, each dominated by shear and extension flow. We find that the two cell lines have qualitatively similar flow-induced dynamics. Comparisons between experiments and numerical simulations suggest that our model can accurately predict the transient cell deformation in both geometries, and that it can serve as a general modelling framework for the dynamics of suspended cancer cells in microchannels.
Collapse
Affiliation(s)
- R Lu
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - J Li
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Z Guo
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Z Wang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - J J Feng
- Departments of Mathematics and Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Y Sui
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
2
|
Zeng Y, Liu X, Wang Z, Gao W, Zhang S, Wang Y, Liu Y, Yu H. Multidepth quantitative analysis of liver cell viscoelastic properties: Fusion of nanoindentation and finite element modeling techniques. Microsc Res Tech 2025; 88:202-212. [PMID: 39254440 DOI: 10.1002/jemt.24697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Liver cells are the basic functional unit of the liver. However, repeated or sustained injury leads to structural disorders of liver lobules, proliferation of fibrous tissue and changes in structure, thus increasing scar tissue. Cellular fibrosis affects tissue stiffness, shear force, and other cellular mechanical forces. Mechanical force characteristics can serve as important indicators of cell damage and cirrhosis. Atomic force microscopy (AFM) has been widely used to study cell surface mechanics. However, characterization of the deep mechanical properties inside liver cells remains an underdeveloped field. In this work, cell nanoindentation was combined with finite element analysis to simulate and analyze the mechanical responses of liver cells at different depths in vitro and their internal responses and stress diffusion distributions after being subjected to normal stress. The sensitivities of the visco-hyperelastic parameters of the finite element model to the effects of the peak force and equilibrium force were compared. The force curves of alcohol-damaged liver cells at different depths were measured and compared with those of undamaged liver cells. The inverse analysis method was used to simulate the finite element model in vitro. Changes in the parameters of the cell model after injury were explored and analyzed, and their potential for characterizing hepatocellular injury and related treatments was evaluated. RESEARCH HIGHLIGHTS: This study aims to establish an in vitro hyperelastic model of liver cells and analyze the mechanical changes of cells in vitro. An analysis method combining finite element analysis model and nanoindentation was used to obtain the key parameters of the model. The multi-depth mechanical differences and internal structural changes of injured liver cells were analyzed.
Collapse
Affiliation(s)
- Yi Zeng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- School of Electronic Information Engineering, Changchun University, Changchun, China
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry, UK
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Wei Gao
- School of Electronic Information Engineering, Changchun University, Changchun, China
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Shengli Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Yunqing Liu
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Haiyue Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
3
|
Polemidiotou K, Kulkarni SG, Szydlak R, Lekka M, Radmacher M, Gkretsi V, Stylianopoulos T, Stylianou A. Assessing sarcoma cell cytoskeleton remodeling in response to varying collagen concentration. Int J Biol Macromol 2024; 282:136770. [PMID: 39437949 DOI: 10.1016/j.ijbiomac.2024.136770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Sarcomas, rare malignant tumors of mesenchymal origin, are often underdiagnosed and have face diagnostic ambiguities and limited treatment options. The main objective of this study was to define the nanomechanical and biophysical properties of sarcoma cells, particularly examining how the cytoskeleton's remodeling and related cellular processes such as cell migration and invasion in response to environmental stimuli due to collagen content. Utilizing one murine fibrosarcoma and one osteosarcoma cell line we employed atomic force microscopy, immunostaining, advanced image processing, in vitro cellular assays, and molecular techniques to investigate cells' cytoskeleton remodeling in response to varying collagen concentration. Our study focused on how alterations in collagen content affects the cytoskeletal dynamics and correlate with changes in gene expression profiles relevant to metastasis and an aggressive cancer phenotypes. Our findings indicate that despite their shared classification, fibrosarcoma and osteosarcoma cells display distinct biophysical properties and respond differently to mechanical forces. Notably, this difference in cellular behavior renders mechanical properties a potent novel biomarkers. Furthermore, the metastasis-related identified genes related to metastatic capability, could be potential therapeutic targets. This study highlights the significance of understanding the unique traits of sarcoma cells to improve diagnostic precision and expand therapeutic strategies, for this rare type of cancer.
Collapse
Affiliation(s)
- Katerina Polemidiotou
- Cancer Mechanobiology & Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus/EUC Research Centre, 2404 Nicosia, Cyprus.
| | - Shruti G Kulkarni
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, PL-30688 Krakow, Poland.
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus.
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| | - Andreas Stylianou
- Cancer Mechanobiology & Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus/EUC Research Centre, 2404 Nicosia, Cyprus; Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| |
Collapse
|
4
|
Guruvayurappan GK, Frankenbach-Désor T, Laubach M, Klein A, von Bergwelt-Baildon M, Cusan M, Aszodi A, Holzapfel BM, Böcker W, Mayer-Wagner S. Clinical challenges in prostate cancer management: Metastatic bone-tropism and the role of circulating tumor cells. Cancer Lett 2024; 606:217310. [PMID: 39486571 DOI: 10.1016/j.canlet.2024.217310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Prostate cancer (PCa) metastasis is one of the leading causes of cancer-related mortality in men worldwide, primarily due to its tendency to metastasize, with bones of axial skeleton being the favored target-site. PCa bone-metastasis (PCa-BM) presents significant clinical challenges, especially by the weakening of bone architecture, majorly due to the formation of osteoblastic lesions, leading to severe bone fractures. Another complication is that the disease predominantly affects elderly men. Further exploration is required to understand how the circulating tumor cells (CTCs) adapt to varying microenvironments and other biomechanical stresses encountered during the sequential steps in metastasis, finally resulting in colonization specifically in the bone niche, in PCa-BM. Deciphering how CTCs encounter and adapt to different biochemical, biomechanical and microenvironmental factors may improve the prospects of PCa diagnosis, development of novel therapeutics and prognosis. Moreover, the knowledge developed is expected to have broader implications for cancer research, paving the way for better therapeutic strategies and targeted therapies in the realm of metastatic cancer progression across different types of cancers. Our review begins with analyzing the challenges in PCa diagnosis, treatment and management, and delves into the formation and dynamics of CTCs, highlighting their role in PCa metastasis and bone-tropism. We further explore the pivotal role of individual factors in dictating the predisposition of tumors to metastasize to specific secondary sites, such as the noteworthy tendency of PCa bone-metastasis. Finally, we highlight the unresolved questions and potential avenues for further exploration.
Collapse
Affiliation(s)
- Gayathri K Guruvayurappan
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Tina Frankenbach-Désor
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Klein
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Monica Cusan
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Attila Aszodi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris M Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
5
|
Pérez-Benito Á, García-Aznar JM, Gómez-Benito MJ, Pérez MÁ. Patient-specific prostate tumour growth simulation: a first step towards the digital twin. Front Physiol 2024; 15:1421591. [PMID: 39539952 PMCID: PMC11557540 DOI: 10.3389/fphys.2024.1421591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer (PCa) is a major world-wide health concern. Current diagnostic methods involve Prostate-Specific Antigen (PSA) blood tests, biopsies, and Magnetic Resonance Imaging (MRI) to assess cancer aggressiveness and guide treatment decisions. MRI aligns with in silico medicine, as patient-specific image biomarkers can be obtained, contributing towards the development of digital twins for clinical practice. This work presents a novel framework to create a personalized PCa model by integrating clinical MRI data, such as the prostate and tumour geometry, the initial distribution of cells and the vasculature, so a full representation of the whole prostate is obtained. On top of the personalized model construction, our approach simulates and predicts temporal tumour growth in the prostate through the Finite Element Method, coupling the dynamics of tumour growth and the transport of oxygen, and incorporating cellular processes such as proliferation, differentiation, and apoptosis. In addition, our approach includes the simulation of the PSA dynamics, which allows to evaluate tumour growth through the PSA patient's levels. To obtain the model parameters, a multi-objective optimization process is performed to adjust the best parameters for two patients simultaneously. This framework is validated by means of data from four patients with several MRI follow-ups. The diagnosis MRI allows the model creation and initialization, while subsequent MRI-based data provide additional information to validate computational predictions. The model predicts prostate and tumour volumes growth, along with serum PSA levels. This work represents a preliminary step towards the creation of digital twins for PCa patients, providing personalized insights into tumour growth.
Collapse
Affiliation(s)
| | | | | | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Thomas-Chemin O, Séverac C, Moumen A, Martinez-Rivas A, Vieu C, Le Lann MV, Trevisiol E, Dague E. Automated Bio-AFM Generation of Large Mechanome Data Set and Their Analysis by Machine Learning to Classify Cancerous Cell Lines. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44504-44517. [PMID: 39162348 DOI: 10.1021/acsami.4c09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mechanobiological measurements have the potential to discriminate healthy cells from pathological cells. However, a technology frequently used to measure these properties, i.e., atomic force microscopy (AFM), suffers from its low output and lack of standardization. In this work, we have optimized AFM mechanical measurement on cell populations and developed a technology combining cell patterning and AFM automation that has the potential to record data on hundreds of cells (956 cells measured for publication). On each cell, 16 force curves (FCs) and seven features/FC, constituting the mechanome, were calculated. All of the FCs were then classified using machine learning tools with a statistical approach based on a fuzzy logic algorithm, trained to discriminate between nonmalignant and cancerous cells (training base, up to 120 cells/cell line). The proof of concept was first made on prostate nonmalignant (RWPE-1) and cancerous cell lines (PC3-GFP), then on nonmalignant (Hs 895.Sk) and cancerous (Hs 895.T) skin fibroblast cell lines, and demonstrated the ability of our method to classify correctly 73% of the cells (194 cells in the database/cell line) despite the very high degree of similarity of the whole set of measurements (79-100% similarity).
Collapse
Affiliation(s)
| | - Childérick Séverac
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31100 Toulouse, France
| | | | | | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
| | | | - Emmanuelle Trevisiol
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31031 Toulouse, France
| |
Collapse
|
7
|
Hood MC, Gardner K, Li W, Tan J. Interplay of size, deformability, and device layout on cell transport in microfluidics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:425106. [PMID: 38975704 DOI: 10.1088/1361-648x/ad5ff3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Microfluidics have been widely used for cell sorting and capture. In this work, numerical simulations of cell transport in microfluidic devices were studied considering cell sizes, deformability, and five different device designs. Among these five designs, deterministic lateral displacement device (DLD) and hyperuniform device (HU) performed better in promoting cell-micropost collision due to the continuously shifted micropost positions as compared with regular grid, staggered, and hexagonal layout designs. However, the grid and the hexagonal layouts showed best in differentiating cells by their size dependent velocity due to the size exclusion effect for cell transport in clear and straight paths in the flow direction. A systematic study of the velocity differentiation under different dimensionless groups was performed showing that the velocity difference is dominated by the micropost separation distance perpendicular to the direction of flow. Microfluidic experiments also confirmed the velocity differentiation results. The study can provide guiding principles for microfluidic design.
Collapse
Affiliation(s)
- Michael C Hood
- Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Karl Gardner
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Jifu Tan
- Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL 60115, United States of America
| |
Collapse
|
8
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
9
|
Onwudiwe K, Najera J, Holen L, Burchett AA, Rodriguez D, Zarodniuk M, Siri S, Datta M. Single-cell mechanical assay unveils viscoelastic similarities in normal and neoplastic brain cells. Biophys J 2024; 123:1098-1105. [PMID: 38544410 PMCID: PMC11079864 DOI: 10.1016/j.bpj.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/25/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Understanding cancer cell mechanics allows for the identification of novel disease mechanisms, diagnostic biomarkers, and targeted therapies. In this study, we utilized our previously established fluid shear stress assay to investigate and compare the viscoelastic properties of normal immortalized human astrocytes and invasive human glioblastoma (GBM) cells when subjected to physiological levels of shear stress that are present in the brain microenvironment. We used a parallel-flow microfluidic shear system and a camera-coupled optical microscope to expose single cells to fluid shear stress and monitor the resulting deformation in real time, respectively. From the video-rate imaging, we fed cell deformation information from digital image correlation into a three-parameter generalized Maxwell model to quantify the nuclear and cytoplasmic viscoelastic properties of single cells. We further quantified actin cytoskeleton density and alignment in immortalized human astrocytes and GBM cells via fluorescence microscopy and image analysis techniques. Results from our study show that contrary to the behavior of many extracranial cells, normal and cancerous brain cells do not exhibit significant differences in their viscoelastic properties. Moreover, we also found that the viscoelastic properties of the nucleus and cytoplasm as well as the actin cytoskeletal densities of both brain cell types are similar. Our work suggests that malignant GBM cells exhibit unique mechanical behaviors not seen in other cancer cell types. These results warrant future studies to elucidate the distinct biophysical characteristics of the brain and reveal novel mechanical attributes of GBM and other primary brain tumors.
Collapse
Affiliation(s)
- Killian Onwudiwe
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Julian Najera
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Luke Holen
- Department of Pre-Professional Studies, College of Science, University of Notre Dame, Notre Dame, Indiana
| | - Alice A Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Dorielis Rodriguez
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana; Department of Chemical Engineering, Polytechnic University of Puerto Rico, San Juan, Puerto Rico
| | - Maksym Zarodniuk
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
10
|
Massey A, Stewart J, Smith C, Parvini C, McCormick M, Do K, Cartagena-Rivera AX. Mechanical properties of human tumour tissues and their implications for cancer development. NATURE REVIEWS. PHYSICS 2024; 6:269-282. [PMID: 38706694 PMCID: PMC11066734 DOI: 10.1038/s42254-024-00707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
The mechanical properties of cells and tissues help determine their architecture, composition and function. Alterations to these properties are associated with many diseases, including cancer. Tensional, compressive, adhesive, elastic and viscous properties of individual cells and multicellular tissues are mostly regulated by reorganization of the actomyosin and microtubule cytoskeletons and extracellular glycocalyx, which in turn drive many pathophysiological processes, including cancer progression. This Review provides an in-depth collection of quantitative data on diverse mechanical properties of living human cancer cells and tissues. Additionally, the implications of mechanical property changes for cancer development are discussed. An increased knowledge of the mechanical properties of the tumour microenvironment, as collected using biomechanical approaches capable of multi-timescale and multiparametric analyses, will provide a better understanding of the complex mechanical determinants of cancer organization and progression. This information can lead to a further understanding of resistance mechanisms to chemotherapies and immunotherapies and the metastatic cascade.
Collapse
Affiliation(s)
- Andrew Massey
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jamie Stewart
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Cameron Parvini
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Moira McCormick
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kun Do
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X. Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Leontev A, Rozental L, Freger V. Dynamics of underwater microparticle adhesion to soft hydrated surfaces: Modeling and analysis by time-dependent AFM force spectroscopy. J Colloid Interface Sci 2023; 651:464-476. [PMID: 37556904 DOI: 10.1016/j.jcis.2023.07.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
HYPOTHESIS Understanding the attachment and detachment of microparticles and living cells to surfaces is crucial for developing antifouling strategies. Hydrogel coatings have shown promise in reducing fouling and particle adhesion due to their softness and high water content, yet the mechanisms involved are dynamic and complex, and relevant parameters are not easily accessible. AFM-based force spectroscopy (FS) experiments with colloidal probe particles is a direct way of evaluating adhesive and mechanical relaxational dynamics, yet their interpretation and modeling has been challenging. The present study proposes and examines several dynamic models, suitable for quantitative analysis of FS results with model probe particle on hydrogels surfaces. EXPERIMENTS FS were performed using polyethylene glycol (PEG) hydrogels and polystyrene microspheres including particle attachement to the hydrogel surface (loading), holding the particle on the surface with a constant force for variable times (dwell) and pulling the particle away from the surface (unloading) FINDINGS: It was found that a viscoelastic extension of the classical JKR model with energy of adhesion unevenly distributed over the contact area and vanishing at its circumferences accurately described all FS experiments and yielded physically consistent viscoelastic and adhesive dynamic parameters, steadily changing with dwell time and applied force. The observed time evolution and force dependence were rationalized as combination of osmotic and osmo-mechnical relaxation in the contact region.
Collapse
Affiliation(s)
- Aleksandr Leontev
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Lina Rozental
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel; Grand Technion Energy Program, Technion - IIT, Haifa, Israel; Russel Berrie Nanotechnology Institute, Technion - IIT, Haifa, Israel.
| |
Collapse
|
13
|
Marques MPM, de Carvalho ALMB, Martins CB, Silva JD, Sarter M, García Sakai V, Stewart JR, de Carvalho LAEB. Cellular dynamics as a marker of normal-to-cancer transition in human cells. Sci Rep 2023; 13:21079. [PMID: 38030663 PMCID: PMC10687084 DOI: 10.1038/s41598-023-47649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Normal-to-cancer (NTC) transition is known to be closely associated to cell´s biomechanical properties which are dependent on the dynamics of the intracellular medium. This study probes different human cancer cells (breast, prostate and lung), concomitantly to their healthy counterparts, aiming at characterising the dynamical profile of water in distinct cellular locations, for each type of cell, and how it changes between normal and cancer states. An increased plasticity of the cytomatrix is observed upon normal-to-malignant transformation, the lung carcinoma cells displaying the highest flexibility followed by prostate and breast cancers. Also, lung cells show a distinct behaviour relative to breast and prostate, with a higher influence from hydration water motions and localised fast rotations upon NTC transformation. Quasielastic neutron scattering techniques allowed to accurately distinguish the different dynamical processes taking place within these highly heterogeneous cellular systems. The results thus obtained suggest that intracellular water dynamics may be regarded as a specific reporter of the cellular conditions-either healthy or malignant.
Collapse
Affiliation(s)
- M P M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - A L M Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - C B Martins
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - J D Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - M Sarter
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - V García Sakai
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - J R Stewart
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - L A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| |
Collapse
|
14
|
Efremov YM, Shimolina L, Gulin A, Ignatova N, Gubina M, Kuimova MK, Timashev PS, Shirmanova MV. Correlation of Plasma Membrane Microviscosity and Cell Stiffness Revealed via Fluorescence-Lifetime Imaging and Atomic Force Microscopy. Cells 2023; 12:2583. [PMID: 37947661 PMCID: PMC10650173 DOI: 10.3390/cells12212583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The biophysical properties of cells described at the level of whole cells or their membranes have many consequences for their biological behavior. However, our understanding of the relationships between mechanical parameters at the level of cell (stiffness, viscoelasticity) and at the level of the plasma membrane (fluidity) remains quite limited, especially in the context of pathologies, such as cancer. Here, we investigated the correlations between cells' stiffness and viscoelastic parameters, mainly determined via the actin cortex, and plasma membrane microviscosity, mainly determined via its lipid profile, in cancer cells, as these are the keys to their migratory capacity. The mechanical properties of cells were assessed using atomic force microscopy (AFM). The microviscosity of membranes was visualized using fluorescence-lifetime imaging microscopy (FLIM) with the viscosity-sensitive probe BODIPY 2. Measurements were performed for five human colorectal cancer cell lines that have different migratory activity (HT29, Caco-2, HCT116, SW 837, and SW 480) and their chemoresistant counterparts. The actin cytoskeleton and the membrane lipid composition were also analyzed to verify the results. The cell stiffness (Young's modulus), measured via AFM, correlated well (Pearson r = 0.93) with membrane microviscosity, measured via FLIM, and both metrics were elevated in more motile cells. The associations between stiffness and microviscosity were preserved upon acquisition of chemoresistance to one of two chemotherapeutic drugs. These data clearly indicate that mechanical parameters, determined by two different cellular structures, are interconnected in cells and play a role in their intrinsic migratory potential.
Collapse
Affiliation(s)
- Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Liubov Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (M.V.S.)
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Nadezhda Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (M.V.S.)
| | - Margarita Gubina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK;
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
| | - Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (L.S.); (N.I.); (M.V.S.)
| |
Collapse
|
15
|
Thomas-Chemin O, Séverac C, Trévisiol E, Dague E. Indentation of living cells by AFM tips may not be what we thought! Micron 2023; 174:103523. [PMID: 37595406 DOI: 10.1016/j.micron.2023.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
The models used to calculate Young's moduli from atomic force microscopy (AFM) force curves consider the shape of the indentation. It is then assumed that the geometry of the indentation is identical to the geometry of the indenter, which has been verified for hard materials (E > 1 MPa). Based on this assumption, the force curves calculated by these models, for the same object with a given Young's modulus, are different if the indenter geometry is different. On the contrary, we observe experimentally that the force curves recorded on soft living cells, with pyramidal, spherical, or tipless indenters, are almost similar. This indicates that this basic assumption on the indentation geometry does not work for soft materials (E of the order of 5 kPa or less). This means that, in this case, the shape of the indentation is therefore different from the shape of the indenter. Indentation of living cells by AFM is not what we thought!
Collapse
Affiliation(s)
| | - Childérick Séverac
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | | | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
16
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Pérez-Domínguez S, Kulkarni SG, Pabijan J, Gnanachandran K, Holuigue H, Eroles M, Lorenc E, Berardi M, Antonovaite N, Marini ML, Lopez Alonso J, Redonto-Morata L, Dupres V, Janel S, Acharya S, Otero J, Navajas D, Bielawski K, Schillers H, Lafont F, Rico F, Podestà A, Radmacher M, Lekka M. Reliable, standardized measurements for cell mechanical properties. NANOSCALE 2023; 15:16371-16380. [PMID: 37789717 DOI: 10.1039/d3nr02034g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Atomic force microscopy (AFM) has become indispensable for studying biological and medical samples. More than two decades of experiments have revealed that cancer cells are softer than healthy cells (for measured cells cultured on stiff substrates). The softness or, more precisely, the larger deformability of cancer cells, primarily independent of cancer types, could be used as a sensitive marker of pathological changes. The wide application of biomechanics in clinics would require designing instruments with specific calibration, data collection, and analysis procedures. For these reasons, such development is, at present, still very limited, hampering the clinical exploitation of mechanical measurements. Here, we propose a standardized operational protocol (SOP), developed within the EU ITN network Phys2BioMed, which allows the detection of the biomechanical properties of living cancer cells regardless of the nanoindentation instruments used (AFMs and other indenters) and the laboratory involved in the research. We standardized the cell cultures, AFM calibration, measurements, and data analysis. This effort resulted in a step-by-step SOP for cell cultures, instrument calibration, measurements, and data analysis, leading to the concordance of the results (Young's modulus) measured among the six EU laboratories involved. Our results highlight the importance of the SOP in obtaining a reproducible mechanical characterization of cancer cells and paving the way toward exploiting biomechanics for diagnostic purposes in clinics.
Collapse
Affiliation(s)
| | - Shruti G Kulkarni
- Institute of Biophysics, University of Bremen, 28359, Bremen, Germany.
| | - Joanna Pabijan
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| | - Kajangi Gnanachandran
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| | - Hatice Holuigue
- Department of Physics "Aldo Pontremoli" and CIMAINA, University of Milano, via Celoria 16, 20133 Milano, Italy.
| | - Mar Eroles
- Aix-Marseille Univ., CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Ewelina Lorenc
- Department of Physics "Aldo Pontremoli" and CIMAINA, University of Milano, via Celoria 16, 20133 Milano, Italy.
| | - Massimiliano Berardi
- Laserlab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Optics11 Life, Hettenheuvelweg 37-39, 1101 BM, Amsterdam, The Netherlands
| | - Nelda Antonovaite
- Optics11 Life, Hettenheuvelweg 37-39, 1101 BM, Amsterdam, The Netherlands
| | - Maria Luisa Marini
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Javier Lopez Alonso
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Lorena Redonto-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent Dupres
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sebastien Janel
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sovon Acharya
- Institute of Physiology II, University Muenster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Jorge Otero
- Institute for Bioengineering of Catalonia and Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia and Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Kevin Bielawski
- Optics11 Life, Hettenheuvelweg 37-39, 1101 BM, Amsterdam, The Netherlands
| | - Hermann Schillers
- Institute of Physiology II, University Muenster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Frank Lafont
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Felix Rico
- Aix-Marseille Univ., CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Alessandro Podestà
- Department of Physics "Aldo Pontremoli" and CIMAINA, University of Milano, via Celoria 16, 20133 Milano, Italy.
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, 28359, Bremen, Germany.
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| |
Collapse
|
18
|
Onwudiwe K, Najera J, Holen L, Burchett AA, Rodriguez D, Zarodniuk M, Siri S, Datta M. Single-cell mechanical analysis reveals viscoelastic similarities between normal and neoplastic brain cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559055. [PMID: 37808779 PMCID: PMC10557591 DOI: 10.1101/2023.09.23.559055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Understanding cancer cell mechanics allows for the identification of novel disease mechanisms, diagnostic biomarkers, and targeted therapies. In this study, we utilized our previously established fluid shear stress assay to investigate and compare the viscoelastic properties of normal immortalized human astrocytes (IHAs) and invasive human glioblastoma (GBM) cells when subjected to physiological levels of shear stress that are present in the brain microenvironment. We used a parallel-flow microfluidic shear system and a camera-coupled optical microscope to expose single cells to fluid shear stress and monitor the resulting deformation in real-time, respectively. From the video-rate imaging, we fed cell deformation information from digital image correlation into a three-parameter generalized Maxwell model to quantify the nuclear and cytoplasmic viscoelastic properties of single cells. We further quantified actin cytoskeleton density and alignment in IHAs and GBM cells via immunofluorescence microscopy and image analysis techniques. Results from our study show that contrary to the behavior of many extracranial cells, normal and cancerous brain cells do not exhibit significant differences in their viscoelastic behavior. Moreover, we also found that the viscoelastic properties of the nucleus and cytoplasm as well as the actin cytoskeletal densities of both brain cell types are similar. Our work suggests that malignant GBM cells exhibit unique mechanical behaviors not seen in other cancer cell types. These results warrant future study to elucidate the distinct biophysical characteristics of the brain and reveal novel mechanical attributes of GBM and other primary brain tumors.
Collapse
Affiliation(s)
- Killian Onwudiwe
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Julian Najera
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Luke Holen
- Department of Pre-Professional Studies, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alice A. Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dorielis Rodriguez
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemical Engineering, Polytechnic University of Puerto Rico, San Juan, PR 00918, USA
| | - Maksym Zarodniuk
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
19
|
Lapcik P, Sulc P, Janacova L, Jilkova K, Potesil D, Bouchalova P, Müller P, Bouchal P. Desmocollin-1 is associated with pro-metastatic phenotype of luminal A breast cancer cells and is modulated by parthenolide. Cell Mol Biol Lett 2023; 28:68. [PMID: 37620794 PMCID: PMC10464112 DOI: 10.1186/s11658-023-00481-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Desmocollin-1 (DSC1) is a desmosomal transmembrane glycoprotein that maintains cell-to-cell adhesion. DSC1 was previously associated with lymph node metastasis of luminal A breast tumors and was found to increase migration and invasion of MCF7 cells in vitro. Therefore, we focused on DSC1 role in cellular and molecular mechanisms in luminal A breast cancer and its possible therapeutic modulation. METHODS Western blotting was used to select potential inhibitor decreasing DSC1 protein level in MCF7 cell line. Using atomic force microscopy we evaluated effect of DSC1 overexpression and modulation on cell morphology. The LC-MS/MS analysis of total proteome on Orbitrap Lumos and RNA-Seq analysis of total transcriptome on Illumina NextSeq 500 were performed to study the molecular mechanisms associated with DSC1. Pull-down analysis with LC-MS/MS detection was carried out to uncover DSC1 protein interactome in MCF7 cells. RESULTS Analysis of DSC1 protein levels in response to selected inhibitors displays significant DSC1 downregulation (p-value ≤ 0.01) in MCF7 cells treated with NF-κB inhibitor parthenolide. Analysis of mechanic cell properties in response to DSC1 overexpression and parthenolide treatment using atomic force microscopy reveals that DSC1 overexpression reduces height of MCF7 cells and conversely, parthenolide decreases cell stiffness of MCF7 cells overexpressing DSC1. The LC-MS/MS total proteome analysis in data-independent acquisition mode shows a strong connection between DSC1 overexpression and increased levels of proteins LACRT and IGFBP5, increased expression of IGFBP5 is confirmed by RNA-Seq. Pathway analysis of proteomics data uncovers enrichment of proliferative MCM_BIOCARTA pathway including CDK2 and MCM2-7 after DSC1 overexpression. Parthenolide decreases expression of LACRT, IGFBP5 and MCM_BIOCARTA pathway specifically in DSC1 overexpressing cells. Pull-down assay identifies DSC1 interactions with cadherin family proteins including DSG2, CDH1, CDH3 and tyrosine kinase receptors HER2 and HER3; parthenolide modulates DSC1-HER3 interaction. CONCLUSIONS Our systems biology data indicate that DSC1 is connected to mechanisms of cell cycle regulation in luminal A breast cancer cells, and can be effectively modulated by parthenolide.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Sulc
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Katerina Jilkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Müller
- Masaryk Memorial Cancer Institute, RECAMO, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
20
|
Zhang R, Duan X, Zhang S, Guo W, Sun C, Han Z. Tunable microfluidic chip for single-cell deformation study. NANOTECHNOLOGY AND PRECISION ENGINEERING 2023. [DOI: 10.1063/10.0017649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Microfluidic phenotyping methods have been of vital importance for cellular characterization, especially for evaluating single cells. In order to study the deformability of a single cell, we devised and tested a tunable microfluidic chip-based method. A pneumatic polymer polydimethylsiloxane (PDMS) membrane was designed and fabricated abutting a single-cell trapping structure, so the cell could be squeezed controllably in a lateral direction. Cell contour changes under increasing pressure were recorded, enabling the deformation degree of different types of single cell to be analyzed and compared using computer vision. This provides a new perspective for studying mechanical properties of cells at the single cell level.
Collapse
Affiliation(s)
- Ruiyun Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Shuaihua Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wenlan Guo
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Chen Sun
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Ziyu Han
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
Feng D, Wang J, Shi X, Li D, Wei W, Han P. Membrane tension-mediated stiff and soft tumor subtypes closely associated with prognosis for prostate cancer patients. Eur J Med Res 2023; 28:172. [PMID: 37179366 PMCID: PMC10182623 DOI: 10.1186/s40001-023-01132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is usually considered as cold tumor. Malignancy is associated with cell mechanic changes that contribute to extensive cell deformation required for metastatic dissemination. Thus, we established stiff and soft tumor subtypes for PCa patients from perspective of membrane tension. METHODS Nonnegative matrix factorization algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable packages. RESULTS We constructed stiff and soft tumor subtypes using eight membrane tension-related genes through lasso regression and nonnegative matrix factorization analyses. We found that patients in stiff subtype were more prone to biochemical recurrence than those in soft subtype (HR 16.18; p < 0.001), which was externally validated in other three cohorts. The top ten mutation genes between stiff and soft subtypes were DNAH, NYNRIN, PTCHD4, WNK1, ARFGEF1, HRAS, ARHGEF2, MYOM1, ITGB6 and CPS1. E2F targets, base excision repair and notch signaling pathway were highly enriched in stiff subtype. Stiff subtype had significantly higher TMB and T cells follicular helper levels than soft subtype, as well as CTLA4, CD276, CD47 and TNFRSF25. CONCLUSIONS From the perspective of cell membrane tension, we found that stiff and soft tumor subtypes were closely associated with BCR-free survival for PCa patients, which might be important for the future research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
22
|
Higgins G, Higgins F, Peres J, Lang DM, Abdalrahman T, Zaman MH, Prince S, Franz T. Intracellular mechanics and TBX3 expression jointly dictate the spreading mode of melanoma cells in 3D environments. Exp Cell Res 2023; 428:113633. [PMID: 37172754 DOI: 10.1016/j.yexcr.2023.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Cell stiffness and T-box transcription factor 3 (TBX3) expression have been identified as biomarkers of melanoma metastasis in 2D environments. This study aimed to determine how mechanical and biochemical properties of melanoma cells change during cluster formation in 3D environments. Vertical growth phase (VGP) and metastatic (MET) melanoma cells were embedded in 3D collagen matrices of 2 and 4 mg/ml collagen concentrations, representing low and high matrix stiffness. Mitochondrial fluctuation, intracellular stiffness, and TBX3 expression were quantified before and during cluster formation. In isolated cells, mitochondrial fluctuation decreased and intracellular stiffness increased with increase in disease stage from VGP to MET and increased matrix stiffness. TBX3 was highly expressed in soft matrices but diminished in stiff matrices for VGP and MET cells. Cluster formation of VGP cells was excessive in soft matrices but limited in stiff matrices, whereas for MET cells it was limited in soft and stiff matrices. In soft matrices, VGP cells did not change the intracellular properties, whereas MET cells exhibited increased mitochondrial fluctuation and decreased TBX3 expression. In stiff matrices, mitochondrial fluctuation and TBX3 expression increased in VGP and MET, and intracellular stiffness increased in VGP but decreased in MET cells. The findings suggest that soft extracellular environments are more favourable for tumour growth, and high TBX3 levels mediate collective cell migration and tumour growth in the earlier VGP disease stage but play a lesser role in the later metastatic stage of melanoma.
Collapse
Affiliation(s)
- Ghodeejah Higgins
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Faatiemah Higgins
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Dirk M Lang
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Tamer Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa; Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
23
|
Ren J, Fan L. A reliable elasticity sensing method for analysis of cell entosis using microfluidic cytometer. Biomed Eng Lett 2023; 13:175-183. [PMID: 37124106 PMCID: PMC10130291 DOI: 10.1007/s13534-023-00264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Cell entosis is a novel cell death process starting from cell-in-cell invasion. In general, cancer cells own higher incidence rate of cell entosis comparing to non-cancerous cells. Studies arguing whether cell entosis is a tumor suppressing process or a tumor accelerating process can deepen our understanding of tumor development. Cell elasticity is recognized as one of tumor malignant biomarkers. There have been some researchers studying cell elasticity in cell entosis. However, existing cell elasticity sensing technique (i.e. micropipette aspiration) can hardly be reliable neither high-throughput. In this work, we introduce an elasticity sensing method for quantifying both cell elasticity in cell-in-cell structures and single floating cells using a microfluidic cytometer. We not only argue our cell elasticity sensing method is reliable for already occurred entosis but also apply such method on predicting the "outer" cells in entosis of different cell types. The elasticity sensing method proposed in this manuscript is able to provide an effective and reliable way to further study deeper mechanism in cell entosis. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-023-00264-0.
Collapse
Affiliation(s)
- Jifeng Ren
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069 China
| | - Lei Fan
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057 China
| |
Collapse
|
24
|
Kerdegari S, Canepa P, Odino D, Oropesa-Nuñez R, Relini A, Cavalleri O, Canale C. Insights in Cell Biomechanics through Atomic Force Microscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2980. [PMID: 37109816 PMCID: PMC10142950 DOI: 10.3390/ma16082980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
We review the advances obtained by using Atomic Force Microscopy (AFM)-based approaches in the field of cell/tissue mechanics and adhesion, comparing the solutions proposed and critically discussing them. AFM offers a wide range of detectable forces with a high force sensitivity, thus allowing a broad class of biological issues to be addressed. Furthermore, it allows for the accurate control of the probe position during the experiments, providing spatially resolved mechanical maps of the biological samples with subcellular resolution. Nowadays, mechanobiology is recognized as a subject of great relevance in biotechnological and biomedical fields. Focusing on the past decade, we discuss the intriguing issues of cellular mechanosensing, i.e., how cells sense and adapt to their mechanical environment. Next, we examine the relationship between cell mechanical properties and pathological states, focusing on cancer and neurodegenerative diseases. We show how AFM has contributed to the characterization of pathological mechanisms and discuss its role in the development of a new class of diagnostic tools that consider cell mechanics as new tumor biomarkers. Finally, we describe the unique ability of AFM to study cell adhesion, working quantitatively and at the single-cell level. Again, we relate cell adhesion experiments to the study of mechanisms directly or secondarily involved in pathologies.
Collapse
Affiliation(s)
- Sajedeh Kerdegari
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Paolo Canepa
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Davide Odino
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Reinier Oropesa-Nuñez
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden;
| | - Annalisa Relini
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Ornella Cavalleri
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Claudio Canale
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| |
Collapse
|
25
|
Zhu X, Qin R, Qu K, Wang Z, Zhao X, Xu W. Atomic force microscopy-based assessment of multimechanical cellular properties for classification of graded bladder cancer cells and cancer early diagnosis using machine learning analysis. Acta Biomater 2023; 158:358-373. [PMID: 36581006 DOI: 10.1016/j.actbio.2022.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Cellular mechanical properties (CMPs) have been frequently reported as biomarkers for cell cancerization to assist objective cytology, compared to the current subjective method dependent on cytomorphology. However, single or dual CMPs cannot always successfully distinguish every kind of malignant cell from its benign counterpart. In this work, we extract 4 CMPs of four different graded bladder cancer (BC) cell lines by AFM (atomic force microscopy)-based nanoindentation to generate a CMP database, which is used to train a cancerization-grade classifier by machine learning. The classifier is tested on 4 categories of BC cells at different cancer grades. The classification shows split-independent robustness and an accuracy of 91.25% with an AUC-ROC (ROC stands for receiver operating characteristic, and ROC curve is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is varied) value of 97.98%. Finally, we also compare our proposed method with traditional invasive diagnosis and noninvasive cancer diagnosis relying on cytomorphology, in terms of accuracy, sensitivity and specificity. Unlike former studies focusing on the discrimination between normal and cancerous cells, our study fulfills the classification of 4 graded cell lines at different cancerization stages, and thus provides a potential method for early detection of cancerization. STATEMENT OF SIGNIFICANCE: We measured four cellular mechanical properties (CMPs) of 4 graded bladder cancer (BC) cell lines using AFM (atomic force microscopy). We found that single or dual CMPs cannot fulfill the task of BC cell classification. Instead, we employ MLA (Machine Learning Algorithm)-based analysis whose inputs are BC CMPs. Compared with traditional cytomorphology-based prognoses, the non-invasive method proposed in this study has higher accuracy but with many fewer cellular properties as inputs. The proposed non-invasive prognosis is characterized with high sensitivity and specificity, and thus provides a potential tumor-grading means to identify cancer cells with different metastatic potential. Moreover, our study proposes an objective grading method based on quantitative characteristics desirable for avoiding misdiagnosis induced by ambiguous subjectivity.
Collapse
Affiliation(s)
- Xinyao Zhu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China.
| | - Rui Qin
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Kaige Qu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| | - Xuexia Zhao
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| | - Wei Xu
- Faculty of Engineering and Physical Sciences, University of Surrey, Guilford GU2 7XH, UK
| |
Collapse
|
26
|
Pancreatic Cancer Presents Distinct Nanomechanical Properties During Progression. Ann Biomed Eng 2023:10.1007/s10439-023-03168-3. [PMID: 36813931 DOI: 10.1007/s10439-023-03168-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
Cancer progression is closely related to changes in the structure and mechanical properties of the tumor microenvironment (TME). In many solid tumors, including pancreatic cancer, the interplay among the different components of the TME leads to a desmoplastic reaction mainly due to collagen overproduction. Desmoplasia is responsible for the stiffening of the tumor, poses a major barrier to effective drug delivery and has been associated with poor prognosis. The understanding of the involved mechanisms in desmoplasia and the identification of nanomechanical and collagen-based properties that characterize the state of a particular tumor can lead to the development of novel diagnostic and prognostic biomarkers. In this study, in vitro experiments were conducted using two human pancreatic cell lines. Morphological and cytoskeleton characteristics, cells' stiffness and invasive properties were assessed using optical and atomic force microscopy techniques and cell spheroid invasion assay. Subsequently, the two cell lines were used to develop orthotopic pancreatic tumor models. Tissue biopsies were collected at different times of tumor growth for the study of the nanomechanical and collagen-based optical properties of the tissue using Atomic Force Microscopy (AFM) and picrosirius red polarization microscopy, respectively. The results from the in vitro experiments demonstrated that the more invasive cells are softer and present a more elongated shape with more oriented F-actin stress fibers. Furthermore, ex vivo studies of orthotopic tumor biopsies on MIAPaCa-2 and BxPC-3 murine tumor models highlighted that pancreatic cancer presents distinct nanomechanical and collagen-based optical properties relevant to cancer progression. The stiffness spectrums (in terms of Young's modulus values) showed that the higher elasticity distributions were increasing during cancer progression mainly due desmoplasia (collagen overproduction), while a lower elasticity peak was evident - due to cancer cells softening - on both tumor models. Optical microscopy studies highlighted that collagen content increases while collagen fibers tend to form align patterns. Consequently, during cancer progression nanomechanical and collagen-based optical properties alter in relation to changes in collagen content. Therefore, they have the potential to be used as novel biomarkers for assessing and monitoring tumor progression and treatment outcomes.
Collapse
|
27
|
Linh NH, Man VH, Li MS, Wang J, Derreumaux P, Mai TL, Nguyen PH. Molecular dynamics simulation of cancer cell membrane perforated by shockwave induced bubble collapse. J Chem Phys 2022; 157:225102. [PMID: 36546791 DOI: 10.1063/5.0105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
It has been widely accepted that cancer cells are softer than their normal counterparts. This motivates us to propose, as a proof-of-concept, a method for the efficient delivery of therapeutic agents into cancer cells, while normal cells are less affected. The basic idea of this method is to use a water jet generated by the collapse of the bubble under shockwaves to perforate pores in the cell membrane. Given a combination of shockwave and bubble parameters, the cancer membrane is more susceptible to bending, stretching, and perforating than the normal membrane because the bending modulus of the cancer cell membrane is smaller than that of the normal cell membrane. Therefore, the therapeutic agent delivery into cancer cells is easier than in normal cells. Adopting two well-studied models of the normal and cancer membranes, we perform shockwave induced bubble collapse molecular dynamics simulations to investigate the difference in the response of two membranes over a range of shockwave impulse 15-30 mPa s and bubble diameter 4-10 nm. The simulation shows that the presence of bubbles is essential for generating a water jet, which is required for perforation; otherwise, pores are not formed. Given a set of shockwave impulse and bubble parameters, the pore area in the cancer membrane is always larger than that in the normal membrane. However, a too strong shockwave and/or too large bubble results in too fast disruption of membranes, and pore areas are similar between two membrane types. The pore closure time in the cancer membrane is slower than that in the normal membrane. The implications of our results for applications in real cells are discussed in some details. Our simulation may be useful for encouraging future experimental work on novel approaches for cancer treatment.
Collapse
Affiliation(s)
- Nguyen Hoang Linh
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | - Thi Ly Mai
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
28
|
Stylianou A, Mpekris F, Voutouri C, Papoui A, Constantinidou A, Kitiris E, Kailides M, Stylianopoulos T. Nanomechanical properties of solid tumors as treatment monitoring biomarkers. Acta Biomater 2022; 154:324-334. [PMID: 36244596 DOI: 10.1016/j.actbio.2022.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Many tumors, such as types of sarcoma and breast cancer, stiffen as they grow in a host healthy tissue, while individual cancer cells are becoming softer. Tumor stiffening poses major pathophysiological barriers to the effective delivery of drugs and compromises treatment efficacy. It has been established that normalization of the mechanical properties of a tumor by targeting components of the tumor microenvironment (TME) enhances the delivery of anti-cancer agents and consequently the therapeutic outcome. Consequently, there is an urgent need for the development of biomarkers, which characterize the mechanical state of a particular tumor for the development of personalized treatments or for monitoring therapeutic strategies that target the TME. In this work, Atomic Force Microscopy (AFM) was used to assess human and murine nanomechanical properties from tumor biopsies. In the case of murine tumor models, the nanomechanical properties during tumor progression were measured and a TME normalization drug (tranilast) along with chemotherapy doxorubicin were employed in order to investigate whether AFM has the ability to capture changes in the nanomechanical properties of a tumor during treatment. The nanomechanical data were further correlated with ex vivo characterization of structural components of the TME. The results highlighted that nanomechanical properties alter during cancer progression and AFM measurements are sensitive enough to capture even small alterations during different types of treatments, namely normalization and chemotherapy. The identification of unique AFM-based nanomechanical properties can lead to the development of biomarkers for treatment prediction and monitoring. STATEMENT OF SIGNIFICANCE: Cancer progression is associated with vast remodeling of the tumor microenvironment resulting in changes in the mechanical properties of the tissue. Indeed, many tumors stiffen as they grow and this stiffening compromises treatment efficacy. As a result, a number of treatments target tumor microenvironment in order to normalize its mechanical properties. Consequently, there is an urgent need for the development of innovative tools that can assess the mechanical properties of a particular tumor and monitor tumor progression and treatment outcomes. This work highlights the use of atomic force microscopy (AFM) for assessing the elasticity spectrum of solid tumors at different stages and during treatment. This knowledge is essential for the development of AFM-based nanomechanical biomarkers for treatment prediction and monitoring.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Mechanobiology and Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus, Cyprus; European University Research Centre Ltd, Nicosia, Cyprus; Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus.
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus
| | - Antonia Papoui
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus
| | - Anastasia Constantinidou
- Medical School, University of Cyprus, Cyprus; Bank of Cyprus Oncology Center, Cyprus; Cyprus Cancer Research Institute, Cyprus
| | | | | | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus.
| |
Collapse
|
29
|
Discriminating bladder cancer cells through rheological mechanomarkers at cell and spheroid levels. J Biomech 2022; 144:111346. [DOI: 10.1016/j.jbiomech.2022.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
|
30
|
Lekka M. Applicability of atomic force microscopy to determine cancer-related changes in cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210346. [PMID: 35909354 DOI: 10.1098/rsta.2021.0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
The determination of mechanical properties of living cells as an indicator of cancer progression has become possible with the development of local measurement techniques such as atomic force microscopy (AFM). Its most important advantage is a nanoscopic character, implying that very local alterations can be quantified. The results gathered from AFM measurements of various cancers show that, for most cancers, individual cells are characterized by the lower apparent Young's modulus, denoting higher cell deformability. The measured value depends on various factors, like the properties of substrates used for cell growth, force loading rate or indentation depth. Despite this, the results proved the AFM capability to recognize mechanically altered cells. This can significantly impact the development of methodological approaches toward the precise identification of pathological cells. This article is part of the theme issue 'Nanocracks in nature and industry'.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
31
|
Molter CW, Muszynski EF, Tao Y, Trivedi T, Clouvel A, Ehrlicher AJ. Prostate cancer cells of increasing metastatic potential exhibit diverse contractile forces, cell stiffness, and motility in a microenvironment stiffness-dependent manner. Front Cell Dev Biol 2022; 10:932510. [PMID: 36200037 PMCID: PMC9527313 DOI: 10.3389/fcell.2022.932510] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
During metastasis, all cancer types must migrate through crowded multicellular environments. Simultaneously, cancers appear to change their biophysical properties. Indeed, cell softening and increased contractility are emerging as seemingly ubiquitous biomarkers of metastatic progression which may facilitate metastasis. Cell stiffness and contractility are also influenced by the microenvironment. Stiffer matrices resembling the tumor microenvironment cause metastatic cells to contract more strongly, further promoting contractile tumorigenic phenotypes. Prostate cancer (PCa), however, appears to deviate from these common cancer biophysics trends; aggressive metastatic PCa cells appear stiffer, rather than softer, to their lowly metastatic PCa counterparts. Although metastatic PCa cells have been reported to be more contractile than healthy cells, how cell contractility changes with increasing PCa metastatic potential has remained unknown. Here, we characterize the biophysical changes of PCa cells of various metastatic potential as a function of microenvironment stiffness. Using a panel of progressively increasing metastatic potential cell lines (22RV1, LNCaP, DU145, and PC3), we quantified their contractility using traction force microscopy (TFM), and measured their cortical stiffness using optical magnetic twisting cytometry (OMTC) and their motility using time-lapse microscopy. We found that PCa contractility, cell stiffness, and motility do not universally scale with metastatic potential. Rather, PCa cells of various metastatic efficiencies exhibit unique biophysical responses that are differentially influenced by substrate stiffness. Despite this biophysical diversity, this work concludes that mechanical microenvironment is a key determinant in the biophysical response of PCa with variable metastatic potentials. The mechanics-oriented focus and methodology of the study is unique and complementary to conventional biochemical and genetic strategies typically used to understand this disease, and thus may usher in new perspectives and approaches.
Collapse
Affiliation(s)
- Clayton W. Molter
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Eliana F. Muszynski
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Neuroscience, McGill University, Montreal, QC, Canada
| | - Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Tanisha Trivedi
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Anna Clouvel
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Glia A, Deliorman M, Qasaimeh MA. 3D Generation of Multipurpose Atomic Force Microscopy Tips. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201489. [PMID: 35853246 PMCID: PMC9507387 DOI: 10.1002/advs.202201489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Indexed: 05/02/2023]
Abstract
In this work, 3D polymeric atomic force microscopy (AFM) tips, referred to as 3DTIPs, are manufactured with great flexibility in design and function using two-photon polymerization. With the technology holding a great potential in developing next-generation AFM tips, 3DTIPs prove effective in obtaining high-resolution and high-speed AFM images in air and liquid environments, using common AFM modes. In particular, it is shown that the 3DTIPs provide high-resolution imaging due to their extremely low Hamaker constant, high speed scanning rates due to their low quality factor, and high durability due to their soft nature and minimal isotropic tip wear; the three important features for advancing AFM studies. It is also shown that refining the tip end of the 3DTIPs by focused ion beam etching and by carbon nanotube inclusion substantially extends their functionality in high-resolution AFM imaging, reaching angstrom scales. Altogether, the multifunctional capabilities of 3DTIPs can bring next-generation AFM tips to routine and advanced AFM applications, and expand the fields of high speed AFM imaging and biological force measurements.
Collapse
Affiliation(s)
- Ayoub Glia
- Division of EngineeringNew York University Abu Dhabi (NYUAD)Abu DhabiUAE
| | | | - Mohammad A. Qasaimeh
- Division of EngineeringNew York University Abu Dhabi (NYUAD)Abu DhabiUAE
- Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynNY11201USA
| |
Collapse
|
33
|
Choi J, Park S. A nanomechanical strategy involving focal adhesion kinase for overcoming drug resistance in breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102559. [PMID: 35390528 DOI: 10.1016/j.nano.2022.102559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Despite implementation of nanomechanical studies in cancer research, studies on the nanomechanical aspects of drug resistance in cancer are lacking. Here, we established the mechanical signatures of drug-resistant breast cancer cells using atomic force microscopy-based indentation techniques and functionalized nanopatterned substrates (NPS). Additionally, we examined the expression of proteins pertinent to focal adhesions in order to elucidate the molecular signatures responsible for the acquisition of drug resistance in breast cancer cells. Drug-resistant breast cancer cells exhibited mechanical reinforcement, increased actin stress fibers, dysfunctional mechano-reciprocal interaction with the NPS, vinculin overexpression, and improved focal adhesion kinase (FAK) activity. Owing to differences in FAK activation upon co-treatment with a FAK inhibitor, the drug-resistant breast cancer cells were eradicated more efficiently than invasive breast cancer cells having pro-survival activity. These findings demonstrated the potential of a novel co-treatment regimen using FAK inhibitors for overcoming drug resistance in breast cancer cells.
Collapse
Affiliation(s)
- Jinsol Choi
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Soyeun Park
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
34
|
Marques MPM, Santos IP, Batista de Carvalho ALM, Mamede AP, Martins CB, Figueiredo P, Sarter M, Sakai VG, Batista de Carvalho LAE. Water dynamics in human cancer and non-cancer tissues. Phys Chem Chem Phys 2022; 24:15406-15415. [PMID: 35704895 DOI: 10.1039/d2cp00621a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Normal-to-malignant transformation is a poorly understood process associated with cellular biomechanical properties. These are strongly dependent on the dynamical behaviour of water, known to play a fundamental role in normal cellular activity and in the maintenance of the three-dimensional architecture of the tissue and the functional state of biopolymers. In this study, quasi-elastic neutron scattering was used to probe the dynamical behaviour of water in human cancer specimens and their respective surrounding normal tissue from breast and tongue, as an innovative approach for identifying particular features of malignancy. This methodology has been successfully used by the authors in human cells and was the first study of human tissues by neutron scattering techniques. A larger flexibility was observed for breast versus tongue tissues. Additionally, different dynamics were found for malignant and non-malignant specimens, depending on the tissue: higher plasticity for breast invasive cancer versus the normal, and an opposite effect for tongue. The data were interpreted in the light of two different water populations within the samples: one displaying bulk-like dynamics (extracellular and intracellular/cytoplasmic) and another with constrained flexibility (extracellular/interstitial and intracellular/hydration layers).
Collapse
Affiliation(s)
- M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal. .,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - I P Santos
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - A L M Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - A P Mamede
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - C B Martins
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - P Figueiredo
- Oncology Institute of Coimbra Francisco Gentil, 3000-075 Coimbra, Portugal
| | - M Sarter
- ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
| | - V García Sakai
- ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
35
|
Eftekharjoo M, Mezher M, Chatterji S, Maruthamuthu V. Epithelial Cell-Like Elasticity Modulates Actin-Dependent E-Cadherin Adhesion Organization. ACS Biomater Sci Eng 2022; 8:2455-2462. [PMID: 35549026 PMCID: PMC9199519 DOI: 10.1021/acsbiomaterials.2c00253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
E-cadherin adhesions are essential for cell-to-cell cohesion and mechanical coupling between epithelial cells and reside in a microenvironment that comprises the adjoining epithelial cells. While E-cadherin has been shown to be a mechanosensor, it is unknown if E-cadherin adhesions can differentially sense stiffness within the range of that of epithelial cells. A survey of literature shows that epithelial cells' Young's moduli of elasticity lie predominantly in the sub-kPa to few-kPa range, with cancer cells often being softer than noncancerous ones. Here, we devised oriented E-cadherin-coated soft silicone substrates with sub-kPa or few-kPa elasticity but with similar viscous moduli and found that E-cadherin adhesions differentially organize depending on the magnitude of epithelial cell-like elasticity. Our results show that the actin cytoskeleton organizes E-cadherin adhesions in two ways─by supporting irregularly shaped adhesions at localized regions of high actin density and linear shaped adhesions at the end of linear actin bundles. Linearly shaped E-cadherin adhesions associated with radially oriented actin─but not irregularly shaped E-cadherin adhesions associated with circumferential actin foci─were much more numerous on 2.4 kPa E-cadherin substrates compared to 0.3 kPa E-cadherin substrates. However, the total amount of E-cadherin in both types of adhesions taken together was similar on the 0.3 and 2.4 kPa E-cadherin substrates across many cells. Our results show how the distribution of E-cadherin adhesions, supported by actin density and architecture, is modulated by epithelial cell-like elasticity and have significant implications for disease states like carcinomas characterized by altered epithelial cell elasticity.
Collapse
Affiliation(s)
- Mohamad Eftekharjoo
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Mazen Mezher
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Siddharth Chatterji
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Venkat Maruthamuthu
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
36
|
|
37
|
Automated estimation of cancer cell deformability with machine learning and acoustic trapping. Sci Rep 2022; 12:6891. [PMID: 35477742 PMCID: PMC9046201 DOI: 10.1038/s41598-022-10882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cell deformability is a useful feature for diagnosing various diseases (e.g., the invasiveness of cancer cells). Existing methods commonly inflict pressure on cells and observe changes in cell areas, diameters, or thickness according to the degree of pressure. Then, the Young’s moduli (i.e., a measure of deformability) of cells are estimated based on the assumption that the degrees of the changes are inversely proportional to Young’s moduli. However, manual measurements of the physical changes in cells are labor-intensive, and the subjectivity of the operators can intervene during this step, thereby causing considerable uncertainty. Further, because the shapes of cells are nonuniform, we cannot ensure the assumption for linear correlations of physical changes in cells with their deformability. Therefore, this study aims at measuring non-linear elastic moduli of live cells (degrees of cell deformability) automatically by employing conventional neural networks (CNN) and multilayer perceptrons (MLP) while preserving (or enhancing) the accuracy of the manual methods. First, we obtain photomicrographs of cells on multiple pressure levels using single-beam acoustic tweezers, and then, we suggest an image preprocessing method for emphasizing changes in cell areas on the photomicrographs. The CNN model is trained to measure the ratios of the cell area change at each pressure level. Then, we apply the multilayer perceptron (MLP) to learn the correlations of the cell area change ratios according to the pressure levels with cell deformability. The accuracy of the CNN was evaluated using two types of breast cancer cells: MDA-MB-231 (invasive) and MCF-7 (noninvasive). The MLP was assessed using five different beads (Young’s moduli from 0.214 to 9.235 kPa), which provides standardized reference data of the non-linear elastic moduli of live cells. Finally, we validated the practicality of the proposed system by examining whether the non-linear elastic moduli estimated by the proposed system can distinguish invasive breast cancer cells from noninvasive ones.
Collapse
|
38
|
Yu W, Sharma S, Rao E, Rowat AC, Gimzewski JK, Han D, Rao J. Cancer cell mechanobiology: a new frontier for cancer research. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:10-17. [PMID: 39035217 PMCID: PMC11256617 DOI: 10.1016/j.jncc.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
The study of physical and mechanical features of cancer cells, or cancer cell mechanobiology, is a new frontier in cancer research. Such studies may enhance our understanding of the disease process, especially mechanisms associated with cancer cell invasion and metastasis, and may help the effort of developing diagnostic biomarkers and therapeutic drug targets. Cancer cell mechanobiological changes are associated with the complex interplay of activation/inactivation of multiple signaling pathways, which can occur at both the genetic and epigenetic levels, and the interactions with the cancer microenvironment. It has been shown that metastatic tumor cells are more compliant than morphologically similar benign cells in actual human samples. Subsequent studies from us and others further demonstrated that cell mechanical properties are strongly associated with cancer cell invasive and metastatic potential, and thus may serve as a diagnostic marker of detecting cancer cells in human body fluid samples. In this review, we provide a brief narrative of the molecular mechanisms underlying cancer cell mechanobiology, the technological platforms utilized to study cancer cell mechanobiology, the status of cancer cell mechanobiological studies in various cancer types, and the potential clinical applications of cancer cell mechanobiological study in cancer early detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Weibo Yu
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Elizabeth Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California at Los Angeles, California, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California at Los Angeles, California, USA
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
39
|
Panzetta V, Musella I, Fusco S, Netti PA. ECM Mechanoregulation in Malignant Pleural Mesothelioma. Front Bioeng Biotechnol 2022; 10:797900. [PMID: 35237573 PMCID: PMC8883334 DOI: 10.3389/fbioe.2022.797900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Malignant pleural mesothelioma is a relatively rare, but devastating tumor, because of the difficulties in providing early diagnosis and effective treatments with conventional chemo- and radiotherapies. Patients usually present pleural effusions that can be used for diagnostic purposes by cytological analysis. This effusion cytology may take weeks or months to establish and has a limited sensitivity (30%-60%). Then, it is becoming increasingly urgent to develop alternative investigative methods to support the diagnosis of mesothelioma at an early stage when this cancer can be treated successfully. To this purpose, mechanobiology provides novel perspectives into the study of tumor onset and progression and new diagnostic tools for the mechanical characterization of tumor tissues. Here, we report a mechanical and biophysical characterization of malignant pleural mesothelioma cells as additional support to the diagnosis of pleural effusions. In particular, we examined a normal mesothelial cell line (Met5A) and two epithelioid mesothelioma cell lines (REN and MPP89), investigating how malignant transformation can influence cellular function like proliferation, cell migration, and cell spreading area with respect to the normal ones. These alterations also correlated with variations in cytoskeletal mechanical properties that, in turn, were measured on substrates mimicking the stiffness of patho-physiological ECM.
Collapse
Affiliation(s)
- Valeria Panzetta
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Ida Musella
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo A. Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| |
Collapse
|
40
|
Viscoelastic parameterization of human skin cells characterize material behavior at multiple timescales. Commun Biol 2022; 5:17. [PMID: 35017622 PMCID: PMC8752830 DOI: 10.1038/s42003-021-02959-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 01/22/2023] Open
Abstract
Countless biophysical studies have sought distinct markers in the cellular mechanical response that could be linked to morphogenesis, homeostasis, and disease. Here, an iterative-fitting methodology visualizes the time-dependent viscoelastic behavior of human skin cells under physiologically relevant conditions. Past investigations often involved parameterizing elastic relationships and assuming purely Hertzian contact mechanics, which fails to properly account for the rich temporal information available. We demonstrate the performance superiority of the proposed iterative viscoelastic characterization method over standard open-search approaches. Our viscoelastic measurements revealed that 2D adherent metastatic melanoma cells exhibit reduced elasticity compared to their normal counterparts—melanocytes and fibroblasts, and are significantly less viscous than fibroblasts over timescales spanning three orders of magnitude. The measured loss angle indicates clear differential viscoelastic responses across multiple timescales between the measured cells. This method provides insight into the complex viscoelastic behavior of metastatic melanoma cells relevant to better understanding cancer metastasis and aggression. Parvini, Cartagena and Solares introduce an iterative viscoelastic approach based on the generalized Maxwell and Kelvin-Voigt models. The results showed that metastatic melanoma cells had lower elasticity than normal fibroblasts and melanoma cells were less viscous than the fibroblasts over a large frequency range, enhancing the understanding of cellular responses at different frequencies.
Collapse
|
41
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
42
|
Stone NE, Raj A, Young KM, DeLuca AP, Chrit FE, Tucker BA, Alexeev A, McDonald J, Benigno BB, Sulchek T. Label-free microfluidic enrichment of cancer cells from non-cancer cells in ascites. Sci Rep 2021; 11:18032. [PMID: 34504124 PMCID: PMC8429413 DOI: 10.1038/s41598-021-96862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
The isolation of a patient's metastatic cancer cells is the first, enabling step toward treatment of that patient using modern personalized medicine techniques. Whereas traditional standard-of-care approaches select treatments for cancer patients based on the histological classification of cancerous tissue at the time of diagnosis, personalized medicine techniques leverage molecular and functional analysis of a patient's own cancer cells to select treatments with the highest likelihood of being effective. Unfortunately, the pure populations of cancer cells required for these analyses can be difficult to acquire, given that metastatic cancer cells typically reside in fluid containing many different cell populations. Detection and analyses of cancer cells therefore require separation from these contaminating cells. Conventional cell sorting approaches such as Fluorescence Activated Cell Sorting or Magnetic Activated Cell Sorting rely on the presence of distinct surface markers on cells of interest which may not be known nor exist for cancer applications. In this work, we present a microfluidic platform capable of label-free enrichment of tumor cells from the ascites fluid of ovarian cancer patients. This approach sorts cells based on differences in biomechanical properties, and therefore does not require any labeling or other pre-sort interference with the cells. The method is also useful in the cases when specific surface markers do not exist for cells of interest. In model ovarian cancer cell lines, the method was used to separate invasive subtypes from less invasive subtypes with an enrichment of ~ sixfold. In ascites specimens from ovarian cancer patients, we found the enrichment protocol resulted in an improved purity of P53 mutant cells indicative of the presence of ovarian cancer cells. We believe that this technology could enable the application of personalized medicine based on analysis of liquid biopsy patient specimens, such as ascites from ovarian cancer patients, for quick evaluation of metastatic disease progression and determination of patient-specific treatment.
Collapse
Affiliation(s)
- Nicholas E Stone
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Abhishek Raj
- Department of Mechanical Engineering, Indian Institute of Technology Patna, Bihar, 801103, India
| | - Katherine M Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | - Adam P DeLuca
- Department of Ophthalmology and Visual Science, Carver College of Medicine, Institute for Vision Research, University of Iowa, Iowa City, IA, 52242, USA
| | - Fatima Ezahra Chrit
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Budd A Tucker
- Department of Ophthalmology and Visual Science, Carver College of Medicine, Institute for Vision Research, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander Alexeev
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - John McDonald
- School of Biology, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332-0405, USA
| | | | - Todd Sulchek
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
43
|
Martinez-Vidal L, Murdica V, Venegoni C, Pederzoli F, Bandini M, Necchi A, Salonia A, Alfano M. Causal contributors to tissue stiffness and clinical relevance in urology. Commun Biol 2021; 4:1011. [PMID: 34446834 PMCID: PMC8390675 DOI: 10.1038/s42003-021-02539-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanomedicine is an emerging field focused on characterizing mechanical changes in cells and tissues coupled with a specific disease. Understanding the mechanical cues that drive disease progression, and whether tissue stiffening can precede disease development, is crucial in order to define new mechanical biomarkers to improve and develop diagnostic and prognostic tools. Classically known stromal regulators, such as fibroblasts, and more recently acknowledged factors such as the microbiome and extracellular vesicles, play a crucial role in modifications to the stroma and extracellular matrix (ECM). These modifications ultimately lead to an alteration of the mechanical properties (stiffness) of the tissue, contributing to disease onset and progression. We describe here classic and emerging mediators of ECM remodeling, and discuss state-of-the-art studies characterizing mechanical fingerprints of urological diseases, showing a general trend between increased tissue stiffness and severity of disease. Finally, we point to the clinical potential of tissue stiffness as a diagnostic and prognostic factor in the urological field, as well as a possible target for new innovative drugs.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - Valentina Murdica
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Filippo Pederzoli
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Bandini
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Andrea Salonia
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
44
|
Hymel SJ, Fujioka H, Khismatullin DB. Modeling of Deformable Cell Separation in a Microchannel with Sequenced Pillars. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Scott J. Hymel
- Department of Biomedical Engineering Tulane University New Orleans LA 70118 USA
| | - Hideki Fujioka
- Center for Computational Science Tulane University New Orleans LA 70118 USA
| | - Damir B. Khismatullin
- Department of Biomedical Engineering Tulane University New Orleans LA 70118 USA
- Center for Computational Science Tulane University New Orleans LA 70118 USA
| |
Collapse
|
45
|
Rudzka DA, Mason S, Neilson M, McGarry L, Kalna G, Hedley A, Blyth K, Olson MF. Selection of established tumour cells through narrow diameter micropores enriches for elevated Ras/Raf/MEK/ERK MAPK signalling and enhanced tumour growth. Small GTPases 2021; 12:294-310. [PMID: 32569510 PMCID: PMC8204978 DOI: 10.1080/21541248.2020.1780108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 11/10/2022] Open
Abstract
As normal cells become cancer cells, and progress towards malignancy, they become progressively softer. Advantages of this change are that tumour cells become more deformable, and better able to move through narrow constraints. We designed a positive selection strategy that enriched for cells which could move through narrow diameter micropores to identify cell phenotypes that enabled constrained migration. Using human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, we found that micropore selection favoured cells with relatively higher Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signalling, which affected actin cytoskeleton organization, focal adhesion density and cell elasticity. In this follow-up study, we provide further evidence that selection through micropores enriched for cells with altered cell morphology and adhesion. Additional analysis of RNA sequencing data revealed a set of transcripts associated with small cell size that was independent of constrained migration. Gene set enrichment analysis identified the 'matrisome' as the most significantly altered gene set linked with small size. When grown as orthotopic xenograft tumours in immunocompromised mice, micropore selected cells grew significantly faster than Parent or Flow-Sorted cells. Using mathematical modelling, we determined that there is an interaction between 1) the cell to gap size ratio; 2) the bending rigidity of the cell, which enable movement through narrow gaps. These results extend our previous conclusion that Ras/Raf/MEK/ERK MAPK signalling has a significant role in regulating cell biomechanics by showing that the selective pressure of movement through narrow gaps also enriches for increased tumour growth in vivo.
Collapse
Affiliation(s)
- Dominika a Rudzka
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Susan Mason
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Lynn McGarry
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Michael F. Olson
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
46
|
Dynamic cellular biomechanics in responses to chemotherapeutic drug in hypoxia probed by atomic force spectroscopy. Oncotarget 2021; 12:1165-1177. [PMID: 34136085 PMCID: PMC8202777 DOI: 10.18632/oncotarget.27974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
The changes in cellular structure play an important role in cancer cell development, progression, and metastasis. By exploiting single-cell, force spectroscopy methods, we probed biophysical and biomechanical kinetics (stiffness, morphology, roughness, adhesion) of brain, breast, prostate, and pancreatic cancer cells with standard chemotherapeutic drugs in normoxia and hypoxia over 12–24 hours. After exposure to the drugs, we found that brain, breast, and pancreatic cancer cells became approximately 55–75% less stiff, while prostate cancer cells became more stiff, due to either drug-induced disruption or reinforcement of cytoskeletal structure. However, the rate of the stiffness change decreased up to 2-folds in hypoxia, suggesting a correlation between cellular stiffness and drug resistance of cancer cells in hypoxic tumor microenvironment. Also, we observed significant changes in the cell body height, surface roughness, and cytoadhesion of cancer cells after exposure to drugs, which followed the trend of stiffness. Our results show that a degree of chemotherapeutic drug effects on biomechanical and biophysical properties of cancer cells is distinguishable in normoxia and hypoxia, which are correlated with alteration of cytoskeletal structure and integrity during drug-induced apoptotic process.
Collapse
|
47
|
Vasilaki D, Bakopoulou A, Tsouknidas A, Johnstone E, Michalakis K. Biophysical interactions between components of the tumor microenvironment promote metastasis. Biophys Rev 2021; 13:339-357. [PMID: 34168685 PMCID: PMC8214652 DOI: 10.1007/s12551-021-00811-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
During metastasis, tumor cells need to adapt to their dynamic microenvironment and modify their mechanical properties in response to both chemical and mechanical stimulation. Physical interactions occur between cancer cells and the surrounding matrix including cell movements and cell shape alterations through the process of mechanotransduction. The latter describes the translation of external mechanical cues into intracellular biochemical signaling. Reorganization of both the cytoskeleton and the extracellular matrix (ECM) plays a critical role in these spreading steps. Migrating tumor cells show increased motility in order to cross the tumor microenvironment, migrate through ECM and reach the bloodstream to the metastatic site. There are specific factors affecting these processes, as well as the survival of circulating tumor cells (CTC) in the blood flow until they finally invade the secondary tissue to form metastasis. This review aims to study the mechanisms of metastasis from a biomechanical perspective and investigate cell migration, with a focus on the alterations in the cytoskeleton through this journey and the effect of biologic fluids on metastasis. Understanding of the biophysical mechanisms that promote tumor metastasis may contribute successful therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Dimitra Vasilaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Alexandros Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
| | | | - Konstantinos Michalakis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
- Division of Graduate Prosthodontics, Tufts University School of Dental Medicine, Boston, MA USA
- University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Alibert C, Pereira D, Lardier N, Etienne-Manneville S, Goud B, Asnacios A, Manneville JB. Multiscale rheology of glioma cells. Biomaterials 2021; 275:120903. [PMID: 34102526 DOI: 10.1016/j.biomaterials.2021.120903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/08/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022]
Abstract
Cells tend to soften during cancer progression, suggesting that mechanical phenotyping could be used as a diagnostic or prognostic method. Here we investigate the cell mechanics of gliomas, brain tumors that originate from glial cells or glial progenitors. Using two microrheology techniques, a single-cell parallel plates rheometer to probe whole-cell mechanics and optical tweezers to probe intracellular rheology, we show that cell mechanics discriminates human glioma cells of different grades. When probed globally, grade IV glioblastoma cells are softer than grade III astrocytoma cells, while they are surprisingly stiffer at the intracellular level. We explain this difference between global and local intracellular behaviours by changes in the composition and spatial organization of the cytoskeleton, and by changes in nuclear mechanics. Our study highlights the need to combine rheology techniques for potential diagnostic or prognostic methods based on cancer cell mechanophenotyping.
Collapse
Affiliation(s)
- Charlotte Alibert
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France
| | - David Pereira
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS, UMR7057, Université Paris-Diderot, 10 Rue Alice Domon et Léonie Duquet, F-75013, Paris, France
| | - Nathan Lardier
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS, UMR7057, Université Paris-Diderot, 10 Rue Alice Domon et Léonie Duquet, F-75013, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France.
| |
Collapse
|
49
|
Microfluidic Assessment of Drug Effects on Physical Properties of Androgen Sensitive and Non-Sensitive Prostate Cancer Cells. MICROMACHINES 2021; 12:mi12050532. [PMID: 34067167 PMCID: PMC8151345 DOI: 10.3390/mi12050532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022]
Abstract
The identification and treatment of androgen-independent prostate cancer are both challenging and significant. In this work, high-throughput deformability cytometry was employed to assess the effects of two anti-cancer drugs, docetaxel and enzalutamide, on androgen-sensitive prostate cancer cells (LNCaP) and androgen-independent prostate cancer cells (PC-3), respectively. The quantified results show that PC-3 and LNCaP present not only different intrinsic physical properties but also different physical responses to the same anti-cancer drug. PC-3 cells possess greater stiffness and a smaller size than LNCaP cells. As the docetaxel concentration increases, PC-3 cells present an increase in stiffness and size, but LNCaP cells only present an increase in stiffness. As the enzalutamide concentration increases, PC-3 cells present no physical changes but LNCaP cells present changes in both cell size and deformation. These results demonstrated that cellular physical properties quantified by the deformability cytometry are effective indicators for identifying the androgen-independent prostate cancer cells from androgen-sensitive prostate cancer cells and evaluating drug effects on these two types of prostate cancer.
Collapse
|
50
|
Fraldi M, Cutolo A, Carotenuto AR, Palumbo S, Pugno N. A lesson from earthquake engineering for selectively damaging cancer cell structures. J Mech Behav Biomed Mater 2021; 119:104533. [PMID: 33895664 DOI: 10.1016/j.jmbbm.2021.104533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/04/2023]
Abstract
The progressive falling of barriers among disciplines is opening unforeseen scenarios in diagnosis and treatment of cancer diseases. By sharing models and mature knowledge in physics, engineering, computer sciences and molecular biology, synergistic efforts have in fact contributed in the last years to re-think still unsolved problems, shedding light on key roles of mechanobiology in tumors and envisaging new effective strategies for a precise medicine. The use of ultrasounds for altering cancer cells' program is one of the most attracting grounds to be explored in oncophysics, although how to administer mechanical energy to impair selected cell structures and functions simultaneously overcoming the critical trade-off between the impact of the cure and the patient risk still remains an open issue. Within this framework, by starting from the theoretical possibility of selectively attacking malignant cells by exploiting the stiffness discrepancies between tumor and healthy single cells, first proposed by Fraldi et al. (2015), we here investigate the in-frequency response of an overall spherical close-packing of geometrically equal polyhedral cells to gain insights into how mechanical resonance and vibration-induced failure phenomena can be oriented to destroy specific target units when both the cell populations coexist, as it happens for in vivo cases. Inspired by the dynamic action of earthquakes - which fracture only selected elements among adjacent ones in the same structure or damage individual constructions in contiguous buildings - we study the harmonic response of hierarchically architectured cell agglomerates, inhabited by both tumor and healthy cells that interact mutually throughout the extra-cellular matrix and whose cytoskeleton is modeled as a nonlinear soft-tensegrity structure. Numerical Finite Element results show that, at frequencies compatible with low intensity therapeutic ultrasounds, mechanical resonance and possible fatigue cycles of the pre-stressed actin filaments and microtubules can be selectively induced in cancer cells as a function of the global volume fraction of the cell species, paving the way for future engineered treatment protocols.
Collapse
Affiliation(s)
- Massimiliano Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, Italy.
| | - Arsenio Cutolo
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, Italy
| | | | - Stefania Palumbo
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, Italy
| | - Nicola Pugno
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials and Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy; School of Engineering and Materials Science, Queen Mary University of London, UK.
| |
Collapse
|