1
|
Priyadarshani P, Van Grouw A, Liversage AR, Rui K, Nikitina A, Tehrani KF, Aggarwal B, Stice SL, Sinha S, Kemp ML, Fernández FM, Mortensen LJ. Investigation of MSC potency metrics via integration of imaging modalities with lipidomic characterization. Cell Rep 2024; 43:114579. [PMID: 39153198 DOI: 10.1016/j.celrep.2024.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem/stromal cell (MSC) therapies have had limited success so far in clinical trials due in part to heterogeneity in immune-responsive phenotypes. Therefore, techniques to characterize these properties of MSCs are needed during biomanufacturing. Imaging cell shape, or morphology, has been found to be associated with MSC immune responsivity-but a direct relationship between single-cell morphology and function has not been established. We used label-free differential phase contrast imaging and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to evaluate single-cell morphology and explore relationships with lipid metabolic immune response. In interferon gamma (IFN-γ)-stimulated MSCs, we found higher lipid abundances from the ceramide-1-phosphate (C1P), phosphatidylcholine (PC), LysoPC, and triglyceride (TAG) families that are involved in cell immune function. Furthermore, we identified differences in lipid signatures in morphologically defined MSC subpopulations. The use of single-cell optical imaging coupled with single-cell spatial lipidomics could assist in optimizing the MSC production process and improve mechanistic understanding of manufacturing process effects on MSC immune activity and heterogeneity.
Collapse
Affiliation(s)
- Priyanka Priyadarshani
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Alexandria Van Grouw
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adrian Ross Liversage
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Kejie Rui
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Arina Nikitina
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kayvan Forouhesh Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Bhavay Aggarwal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Steven L Stice
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Saurabh Sinha
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Luke J Mortensen
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Razi S, Tarcea N, Henkel T, Ravikumar R, Pistiki A, Wagenhaus A, Girnus S, Taubert M, Küsel K, Rösch P, Popp J. Raman-Activated, Interactive Sorting of Isotope-Labeled Bacteria. SENSORS (BASEL, SWITZERLAND) 2024; 24:4503. [PMID: 39065901 PMCID: PMC11281290 DOI: 10.3390/s24144503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Due to its high spatial resolution, Raman microspectroscopy allows for the analysis of single microbial cells. Since Raman spectroscopy analyzes the whole cell content, this method is phenotypic and can therefore be used to evaluate cellular changes. In particular, labeling with stable isotopes (SIPs) enables the versatile use and observation of different metabolic states in microbes. Nevertheless, static measurements can only analyze the present situation and do not allow for further downstream evaluations. Therefore, a combination of Raman analysis and cell sorting is necessary to provide the possibility for further research on selected bacteria in a sample. Here, a new microfluidic approach for Raman-activated continuous-flow sorting of bacteria using an optical setup for image-based particle sorting with synchronous acquisition and analysis of Raman spectra for making the sorting decision is demonstrated, showing that active cells can be successfully sorted by means of this microfluidic chip.
Collapse
Affiliation(s)
- Sepehr Razi
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
| | - Nicolae Tarcea
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Thomas Henkel
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
| | - Ramya Ravikumar
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Aikaterini Pistiki
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
| | - Annette Wagenhaus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Sophie Girnus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Martin Taubert
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kirsten Küsel
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Jürgen Popp
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| |
Collapse
|
3
|
Tang X, Wu Q, Shang L, Liu K, Ge Y, Liang P, Li B. Raman cell sorting for single-cell research. Front Bioeng Biotechnol 2024; 12:1389143. [PMID: 38832129 PMCID: PMC11145634 DOI: 10.3389/fbioe.2024.1389143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 06/05/2024] Open
Abstract
Cells constitute the fundamental units of living organisms. Investigating individual differences at the single-cell level facilitates an understanding of cell differentiation, development, gene expression, and cellular characteristics, unveiling the underlying laws governing life activities in depth. In recent years, the integration of single-cell manipulation and recognition technologies into detection and sorting systems has emerged as a powerful tool for advancing single-cell research. Raman cell sorting technology has garnered attention owing to its non-labeling, non-destructive detection features and the capability to analyze samples containing water. In addition, this technology can provide live cells for subsequent genomics analysis and gene sequencing. This paper emphasizes the importance of single-cell research, describes the single-cell research methods that currently exist, including single-cell manipulation and single-cell identification techniques, and highlights the advantages of Raman spectroscopy in the field of single-cell analysis by comparing it with the fluorescence-activated cell sorting (FACS) technique. It describes various existing Raman cell sorting techniques and introduces their respective advantages and disadvantages. The above techniques were compared and analyzed, considering a variety of factors. The current bottlenecks include weak single-cell spontaneous Raman signals and the requirement for a prolonged total cell exposure time, significantly constraining Raman cell sorting technology's detection speed, efficiency, and throughput. This paper provides an overview of current methods for enhancing weak spontaneous Raman signals and their associated advantages and disadvantages. Finally, the paper outlines the detailed information related to the Raman cell sorting technology mentioned in this paper and discusses the development trends and direction of Raman cell sorting.
Collapse
Affiliation(s)
- Xusheng Tang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingyi Wu
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lindong Shang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunxiang Liu
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Ge
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Liang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
- Hooke Instruments Ltd., Changchun, China
| | - Bei Li
- Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
- Hooke Instruments Ltd., Changchun, China
| |
Collapse
|
4
|
Mukherjee J, Chaturvedi D, Mishra S, Jain R, Dandekar P. Microfluidic technology for cell biology-related applications: a review. J Biol Phys 2024; 50:1-27. [PMID: 38055086 PMCID: PMC10864244 DOI: 10.1007/s10867-023-09646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Fluid flow at the microscale level exhibits a unique phenomenon that can be explored to fabricate microfluidic devices integrated with components that can perform various biological functions. In this manuscript, the importance of physics for microscale fluid dynamics using microfluidic devices has been reviewed. Microfluidic devices provide new opportunities with regard to spatial and temporal control over cell growth. Furthermore, the manuscript presents an overview of cellular stimuli observed by combining surfaces that mimic the complex biochemistries and different geometries of the extracellular matrix, with microfluidic channels regulating the transport of fluids, soluble factors, etc. We have also explained the concept of mechanotransduction, which defines the relation between mechanical force and biological response. Furthermore, the manipulation of cellular microenvironments by the use of microfluidic systems has been highlighted as a useful device for basic cell biology research activities. Finally, the article focuses on highly integrated microfluidic platforms that exhibit immense potential for biomedical and pharmaceutical research as robust and portable point-of-care diagnostic devices for the assessment of clinical samples.
Collapse
Affiliation(s)
- Joydeb Mukherjee
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Shlok Mishra
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019, India
| | - Ratnesh Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
5
|
Harshbarger CL. Harnessing the power of Microscale AcoustoFluidics: A perspective based on BAW cancer diagnostics. BIOMICROFLUIDICS 2024; 18:011304. [PMID: 38434238 PMCID: PMC10907075 DOI: 10.1063/5.0180158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Cancer directly affects one in every three people, and mortality rates strongly correlate with the stage at which diagnosis occurs. Each of the multitude of methods used in cancer diagnostics has its own set of advantages and disadvantages. Two common drawbacks are a limited information value of image based diagnostic methods and high invasiveness when opting for methods that provide greater insight. Microfluidics offers a promising avenue for isolating circulating tumor cells from blood samples, offering high informational value at predetermined time intervals while being minimally invasive. Microscale AcoustoFluidics, an active method capable of manipulating objects within a fluid, has shown its potential use for the isolation and measurement of circulating tumor cells, but its full potential has yet to be harnessed. Extensive research has focused on isolating single cells, although the significance of clusters should not be overlooked and requires attention within the field. Moreover, there is room for improvement by designing smaller and automated devices to enhance user-friendliness and efficiency as illustrated by the use of bulk acoustic wave devices in cancer diagnostics. This next generation of setups and devices could minimize streaming forces and thereby enable the manipulation of smaller objects, thus aiding in the implementation of personalized oncology for the next generation of cancer treatments.
Collapse
Affiliation(s)
- C. L. Harshbarger
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; and Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Seo EY, Jung D, Epstein SS, Zhang W, Owen JS, Baba H, Yamamoto A, Harada M, Nakashimada Y, Kato S, Aoi Y, He S. A targeted liquid cultivation method for previously uncultured non-colony forming microbes. Front Microbiol 2023; 14:1194466. [PMID: 37362942 PMCID: PMC10288195 DOI: 10.3389/fmicb.2023.1194466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
A large number of microbes are not able to form colonies using agar-plating methods, which is one of the reasons that cultivation based on solid media leaves the majority of microbial diversity in the environment inaccessible. We developed a new Non-Colony-Forming Liquid Cultivation method (NCFLC) that can selectively isolate non-colony-forming microbes that exclusively grow in liquid culture. The NCFLC method involves physically separating cells using dilution-to-extinction (DTE) cultivation and then selecting those that could not grow on a solid medium. The NCFLC was applied to marine samples from a coastal intertidal zone and soil samples from a forest area, and the results were compared with those from the standard direct plating method (SDP). The NCFLC yielded fastidious bacteria from marine samples such as Acidobacteriota, Epsilonproteobacteria, Oligoflexia, and Verrucomicrobiota. Furthermore, 62% of the isolated strains were potential new species, whereas only 10% were novel species from SDP. From soil samples, isolates belonging to Acidobacteriota and Armatimonadota (which are known as rare species among identified isolates) were exclusively isolated by NCFLC. Colony formation capabilities of isolates cultivated by NCFLC were tested using solid agar plates, among which approximately one-third of the isolates were non-colony-forming, approximately half-formed micro-colonies, and only a minority could form ordinary size colonies. This indicates that the majority of the strains cultivated by NCFLC were previously uncultured microbial species unavailable using the SDP method. The NCFCL method described here can serve as a new approach to accessing the hidden microbial dark matter.
Collapse
Affiliation(s)
- Eun-Young Seo
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
| | - Dawoon Jung
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
| | - Slava S. Epstein
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Weiyan Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jeffrey S. Owen
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| | - Hiroaki Baba
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Akina Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Mifuyu Harada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Setsu Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yoshiteru Aoi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
| |
Collapse
|
7
|
Bandeliuk O, Assaf A, Bittel M, Durand MJ, Thouand G. Development and Automation of a Bacterial Biosensor to the Targeting of the Pollutants Toxic Effects by Portable Raman Spectrometer. SENSORS 2022; 22:s22124352. [PMID: 35746134 PMCID: PMC9228378 DOI: 10.3390/s22124352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023]
Abstract
Water quality monitoring requires a rapid and sensitive method that can detect multiple hazardous pollutants at trace levels. This study aims to develop a new generation of biosensors using a low-cost fiber-optic Raman device. An automatic measurement system was thus conceived, built and successfully tested with toxic substances of three different types: antibiotics, heavy metals and herbicides. Raman spectroscopy provides a multiparametric view of metabolic responses of biological organisms to these toxic agents through their spectral fingerprints. Spectral analysis identified the most susceptible macromolecules in an E. coli model strain, providing a way to determine specific toxic effects in microorganisms. The automation of Raman analysis reduces the number of spectra required per sample and the measurement time: for four samples, time was cut from 3 h to 35 min by using a multi-well sample holder without intervention from an operator. The correct classifications were, respectively, 99%, 82% and 93% for the different concentrations of norfloxacin, while the results were 85%, 93% and 81% for copper and 92%, 90% and 96% for 3,5-dichlorophenol at the three tested concentrations. The work initiated here advances the technology needed to use Raman spectroscopy coupled with bioassays so that together, they can advance field toxicological testing.
Collapse
Affiliation(s)
- Oleksandra Bandeliuk
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, 85000 La Roche-sur-Yon, France; (O.B.); (A.A.); (M.-J.D.)
- Tronico-Tame-Water, 26 Rue du Bocage, 85660 Saint-Philbert-de-Bouaine, France;
| | - Ali Assaf
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, 85000 La Roche-sur-Yon, France; (O.B.); (A.A.); (M.-J.D.)
| | - Marine Bittel
- Tronico-Tame-Water, 26 Rue du Bocage, 85660 Saint-Philbert-de-Bouaine, France;
| | - Marie-Jose Durand
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, 85000 La Roche-sur-Yon, France; (O.B.); (A.A.); (M.-J.D.)
| | - Gérald Thouand
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, 85000 La Roche-sur-Yon, France; (O.B.); (A.A.); (M.-J.D.)
- Correspondence:
| |
Collapse
|
8
|
Altay R, Yapici MK, Koşar A. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study. BIOSENSORS 2022; 12:bios12030171. [PMID: 35323441 PMCID: PMC8946654 DOI: 10.3390/bios12030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 05/28/2023]
Abstract
The separation of circulating tumor cells (CTCs) from blood samples is crucial for the early diagnosis of cancer. During recent years, hybrid microfluidics platforms, consisting of both passive and active components, have been an emerging means for the label-free enrichment of circulating tumor cells due to their advantages such as multi-target cell processing with high efficiency and high sensitivity. In this study, spiral microchannels with different dimensions were coupled with surface acoustic waves (SAWs). Numerical simulations were conducted at different Reynolds numbers to analyze the performance of hybrid devices in the sorting and separation of CTCs from red blood cells (RBCs) and white blood cells (WBCs). Overall, in the first stage, the two-loop spiral microchannel structure allowed for the utilization of inertial forces for passive separation. In the second stage, SAWs were introduced to the device. Thus, five nodal pressure lines corresponding to the lateral position of the five outlets were generated. According to their physical properties, the cells were trapped and lined up on the corresponding nodal lines. The results showed that three different cell types (CTCs, RBCs, and WBCs) were successfully focused and collected from the different outlets of the microchannels by implementing the proposed multi-stage hybrid system.
Collapse
Affiliation(s)
- Rana Altay
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (R.A.); (M.K.Y.)
| | - Murat Kaya Yapici
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (R.A.); (M.K.Y.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (R.A.); (M.K.Y.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
9
|
Rämä T, Quandt CA. Improving Fungal Cultivability for Natural Products Discovery. Front Microbiol 2021; 12:706044. [PMID: 34603232 PMCID: PMC8481835 DOI: 10.3389/fmicb.2021.706044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
The pool of fungal secondary metabolites can be extended by activating silent gene clusters of cultured strains or by using sensitive biological assays that detect metabolites missed by analytical methods. Alternatively, or in parallel with the first approach, one can increase the diversity of existing culture collections to improve the access to new natural products. This review focuses on the latter approach of screening previously uncultured fungi for chemodiversity. Both strategies have been practiced since the early days of fungal biodiscovery, yet relatively little has been done to overcome the challenge of cultivability of as-yet-uncultivated fungi. Whereas earlier cultivability studies using media formulations and biological assays to scrutinize fungal growth and associated factors were actively conducted, the application of modern omics methods remains limited to test how to culture the fungal dark matter and recalcitrant groups of described fungi. This review discusses the development of techniques to increase the cultivability of filamentous fungi that include culture media formulations and the utilization of known chemical growth factors, in situ culturing and current synthetic biology approaches that build upon knowledge from sequenced genomes. We list more than 100 growth factors, i.e., molecules, biological or physical factors that have been demonstrated to induce spore germination as well as tens of inducers of mycelial growth. We review culturing conditions that can be successfully manipulated for growth of fungi and visit recent information from omics methods to discuss the metabolic basis of cultivability. Earlier work has demonstrated the power of co-culturing fungi with their host, other microorganisms or their exudates to increase their cultivability. Co-culturing of two or more organisms is also a strategy used today for increasing cultivability. However, fungi possess an increased risk for cross-contaminations between isolates in existing in situ or microfluidics culturing devices. Technological improvements for culturing fungi are discussed in the review. We emphasize that improving the cultivability of fungi remains a relevant strategy in drug discovery and underline the importance of ecological and taxonomic knowledge in culture-dependent drug discovery. Combining traditional and omics techniques such as single cell or metagenome sequencing opens up a new era in the study of growth factors of hundreds of thousands of fungal species with high drug discovery potential.
Collapse
Affiliation(s)
- Teppo Rämä
- Marbio, Norwegian College of Fishery Science, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
10
|
Wang Y, Wang DF, Wang HF, Wang JW, Pan JZ, Guo XG, Fang Q. A microfluidic robot for rare cell sorting based on machine vision identification and multi-step sorting strategy. Talanta 2021; 226:122136. [PMID: 33676690 DOI: 10.1016/j.talanta.2021.122136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
The identification, sorting and analysis of rare target single cells in human blood has always been a clinically meaningful medical challenge. Here, we developed a microfluidic robot platform for sorting specific rare cells from complex clinical blood samples based on machine vision-based image identification, liquid handling robot and droplet-based microfluidic techniques. The robot integrated a cell capture and droplet generation module, a laser-induced fluorescence imaging module, a target cell identification and data analysis module, and a system control module, which could automatically achieve the scanning imaging of cell array, cell identification, capturing, and droplet generation of rare target cells from blood samples containing large numbers of normal cells. Based on the robot platform, a novel "gold panning" multi-step sorting strategy was proposed to achieve the sorting of rare target cells in large-scale cell samples with high operation efficiency and high sorting purity (>90%). The robot platform and the multi-step sorting strategy were applied in the sorting of circulating endothelial progenitor cells (CEPCs) in human blood to demonstrate their feasibility and application potential in the sorting and analysis of rare specific cells. Approximately 1,000 CEPCs were automatically identified from 3,000,000 blood cells at a scanning speed of ca. 4,000 cells/s, and 20 25-nL droplets containing single CEPCs were generated.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Fei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hui-Feng Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Gang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol 2021; 19:225-240. [PMID: 33093661 DOI: 10.1038/s41579-020-00458-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
Despite the surge of microbial genome data, experimental testing is important to confirm inferences about the cell biology, ecological roles and evolution of microorganisms. As the majority of archaeal and bacterial diversity remains uncultured and poorly characterized, culturing is a priority. The growing interest in and need for efficient cultivation strategies has led to many rapid methodological and technological advances. In this Review, we discuss common barriers that can hamper the isolation and culturing of novel microorganisms and review emerging, innovative methods for targeted or high-throughput cultivation. We also highlight recent examples of successful cultivation of novel archaea and bacteria, and suggest key microorganisms for future cultivation attempts.
Collapse
Affiliation(s)
- William H Lewis
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Guillaume Tahon
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Patricia Geesink
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Appl Microbiol Biotechnol 2021; 105:1315-1331. [PMID: 33481066 DOI: 10.1007/s00253-020-11081-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022]
Abstract
Understanding the metabolic interactions between bacteria in natural habitat at the single-cell level and the contribution of individual cell to their functions is essential for exploring the dark matter of uncultured bacteria. The combination of Raman-activated cell sorting (RACS) and single-cell Raman spectra (SCRS) with unique fingerprint characteristics makes it possible for research in the field of microbiology to enter the single cell era. This review presents an overview of current knowledge about the research progress of recognition and assessment of single bacterium cell based on RACS and further research perspectives. We first systematically summarize the label-free and non-destructive RACS strategies based on microfluidics, microdroplets, optical tweezers, and specially made substrates. The importance of RACS platforms in linking target cell genotype and phenotype is highlighted and the approaches mentioned in this paper for distinguishing single-cell phenotype include surface-enhanced Raman scattering (SERS), biomarkers, stable isotope probing (SIP), and machine learning. Finally, the prospects and challenges of RACS in exploring the world of unknown microorganisms are discussed. KEY POINTS: • Analysis of single bacteria is essential for further understanding of the microbiological world. • Raman-activated cell sorting (RACS) systems are significant protocol for characterizing phenotypes and genotypes of individual bacteria.
Collapse
|
13
|
Lyu Y, Yuan X, Glidle A, Fu Y, Furusho H, Yang T, Yin H. Automated Raman based cell sorting with 3D microfluidics. LAB ON A CHIP 2020; 20:4235-4245. [PMID: 33057530 DOI: 10.1039/d0lc00679c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Raman activated cell sorting has emerged as a label-free technology that can link phenotypic function with genotypic properties of cells. However, its broad implementation is limited by challenges associated with throughput and the complexity of biological systems. Here, we describe a three-dimensional hydrodynamic focusing microfluidic system for a fully automated, continuous Raman activated cell sorting (3D-RACS). The system consists of a 3D printed detection chamber (1 mm3) that is integrated with a PDMS based sorting unit, optical sensors and an in-line collection module. It has the ability to precisely position cells in the detection chamber for Raman measurements, effectively eliminating spectroscopic interference from the device materials. This enables the sorting of a range of cell sizes (from 1 μm bacteria to 10's μm mammalian cells) with stable operation over >8 hours and high throughput. As a proof-of-concept demonstration, Raman-activated sorting of mixtures of Chlorella vulgaris and E. coli has demonstrated a purity level of 92.0% at a throughput of 310 cells per min. The platform employed in this demonstration features a simple "Raman window" detection system, enabling it to be built on a standard, inverted microscope. Together with its facile and robust operation, it provides a versatile tool for function-based flow cytometry and sorting applications in the fields of microbiology, biotechnology, life science and diagnostics.
Collapse
Affiliation(s)
- Yingkai Lyu
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK. and Key Laboratory of the Ministry of Education on Optoelectronic Information Technology, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaofei Yuan
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK. and School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Andrew Glidle
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Yuchen Fu
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Hitoshi Furusho
- Nissan Chemical Ltd., 5-1, Nihonbashi 2-Chome, Chuo-ku, Tokyo 103-6119, Japan
| | - Tianxin Yang
- Key Laboratory of the Ministry of Education on Optoelectronic Information Technology, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| |
Collapse
|
14
|
Azemtsop Matanfack G, Rüger J, Stiebing C, Schmitt M, Popp J. Imaging the invisible-Bioorthogonal Raman probes for imaging of cells and tissues. JOURNAL OF BIOPHOTONICS 2020; 13:e202000129. [PMID: 32475014 DOI: 10.1002/jbio.202000129] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
A revolutionary avenue for vibrational imaging with super-multiplexing capability can be seen in the recent development of Raman-active bioortogonal tags or labels. These tags and isotopic labels represent groups of chemically inert and small modifications, which can be introduced to any biomolecule of interest and then supplied to single cells or entire organisms. Recent developments in the field of spontaneous Raman spectroscopy and stimulated Raman spectroscopy in combination with targeted imaging of biomolecules within living systems are the main focus of this review. After having introduced common strategies for bioorthogonal labeling, we present applications thereof for profiling of resistance patterns in bacterial cells, investigations of pharmaceutical drug-cell interactions in eukaryotic cells and cancer diagnosis in whole tissue samples. Ultimately, this approach proves to be a flexible and robust tool for in vivo imaging on several length scales and provides comparable information as fluorescence-based imaging without the need of bulky fluorescent tags.
Collapse
Affiliation(s)
- Georgette Azemtsop Matanfack
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| | - Jan Rüger
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
| | - Clara Stiebing
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| |
Collapse
|
15
|
Abstract
The advent of image-activated cell sorting and imaging-based cell picking has advanced our knowledge and exploitation of biological systems in the last decade. Unfortunately, they generally rely on fluorescent labeling for cellular phenotyping, an indirect measure of the molecular landscape in the cell, which has critical limitations. Here we demonstrate Raman image-activated cell sorting by directly probing chemically specific intracellular molecular vibrations via ultrafast multicolor stimulated Raman scattering (SRS) microscopy for cellular phenotyping. Specifically, the technology enables real-time SRS-image-based sorting of single live cells with a throughput of up to ~100 events per second without the need for fluorescent labeling. To show the broad utility of the technology, we show its applicability to diverse cell types and sizes. The technology is highly versatile and holds promise for numerous applications that are previously difficult or undesirable with fluorescence-based technologies. Most current cell sorting methods are based on fluorescence detection with no imaging capability. Here the authors generate and use Raman image-activated cell sorting with a throughput of around 100 events per second, providing molecular images with no need for labeling.
Collapse
|
16
|
Nan F, Yan Z. Optical Sorting at the Single-Particle Level with Single-Nanometer Precision Using Coordinated Intensity and Phase Gradient Forces. ACS NANO 2020; 14:7602-7609. [PMID: 32428394 DOI: 10.1021/acsnano.0c03478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Position-controlled sorting of colloidal nanoparticles (NPs) at the single-particle level is a challenge in nanoscience. Optofluidic potential wells can partially address this challenge, but they have limited flexibility, reconfigurability, and precision. Here we introduce a strategy by feedback-controlled manipulation of NPs using reconfigurable optical traps with designed intensity and phase gradient. Spatiotemporal patterns of these optical traps coordinatively manipulate the NPs based on machine vision of their positions and differentiated scattering intensities. The NPs are always kept inside the optical field during the manipulation and stably trapped once the sorting is accomplished. To substantiate the key advantages of our approach, we present position-controlled optical sorting of single Ag and Au NPs of the same size (150 nm diameter) and ordering of monodisperse Au NPs (80 ± 9 nm diameter) according to their sub-10 nm radius variation, which can hardly be done via other approaches.
Collapse
Affiliation(s)
- Fan Nan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Su X, Gong Y, Gou H, Jing X, Xu T, Zheng X, Chen R, Li Y, Ji Y, Ma B, Xu J. Rational Optimization of Raman-Activated Cell Ejection and Sequencing for Bacteria. Anal Chem 2020; 92:8081-8089. [PMID: 32401011 DOI: 10.1021/acs.analchem.9b05345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Raman-activated cell ejection and sequencing (RACE-Seq), success rate and sequence coverage have generally been low for shotgun sequencing of individual post-RACE cells. Here we quantitatively evaluated the influence of cell lysis condition, nucleic acid amplification condition, and parameters of Raman measurement on RACE-Seq performance. Variations in laser energy input during Raman signal acquisition, but not duration of alkaline lysate lysis, temperature, or measurement under dry or aqueous conditions, are vital to the success of multiple displacement amplification (MDA). In fact, laser irradiation is reversely linked to MDA product quality. However, introduction of oils prior to MDA, by mitigating such negative effects of Raman irradiation, elevates genome coverage of post-RACE Escherichia coli cells from <20% to ∼50%, while greatly improving the success rate of RACE-Seq for soil microbiota. Our findings provide a practical solution for enhancing RACE-Seq performance and pinpoint protection of cells from laser irradiation as a priority in method development.
Collapse
Affiliation(s)
- Xiaolu Su
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Honglei Gou
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaoshan Zheng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Rongze Chen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
18
|
Torres-Tiji Y, Fields FJ, Mayfield SP. Microalgae as a future food source. Biotechnol Adv 2020; 41:107536. [PMID: 32194145 DOI: 10.1016/j.biotechadv.2020.107536] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
One of the key challenges that we face in the 21st century is the need to feed an ever-increasing human population with increasingly limited natural resources. Even today it is estimated that roughly 1 out of 9 people in the world are undernourished, of which the most important factor is protein-energy malnutrition. By establishing microalgae as a new food and feed platform, we have the opportunity to increase the supply of these essential products to address global demands in a more efficient and environmentally sustainable way. Many types of algae are nutritionally complete foods, their yields outperform most plant crops, and there is a growing set of tools to develop improved strains of algae. Similar improvements were achieved in traditional crops through thousands of years of breeding and strain selection, whereas with the newest genetic engineering tools and advanced strain selection techniques, similar changes can be implemented in microalgae in just a few years. Here we describe different strategies that could be used to enhance the nutritional content, productivity, and organoleptic traits of algae to help drive development of this new crop. Clearly developing more efficient, sustainable, and nutritious foods and feed would be an enormous benefit for the planet, and algae represents an opportunity to develop a new crop that would complement traditional agriculture, and one that could potential result in a more efficient means to meet the world's food and feed supply.
Collapse
Affiliation(s)
- Yasin Torres-Tiji
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Francis J Fields
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Stephen P Mayfield
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv 2019; 37:107388. [DOI: 10.1016/j.biotechadv.2019.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|
20
|
Fang T, Shang W, Liu C, Xu J, Zhao D, Liu Y, Ye A. Nondestructive Identification and Accurate Isolation of Single Cells through a Chip with Raman Optical Tweezers. Anal Chem 2019; 91:9932-9939. [PMID: 31251569 DOI: 10.1021/acs.analchem.9b01604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Raman optical tweezers (ROT) as a label-free technique plays an important role in single-cell study such as heterogeneity of tumor and microbial cells. Herein we designed a chip utilizing ROT to isolate a specific single cell. The chip was made from a polydimethylsiloxane (PDMS) slab and formed into a gourd-shaped reservoir with a connected channel on a cover glass. On the chip an individual cell could be isolated from a cell crowd and then extracted with ∼0.5 μL of phosphate-buffered saline (PBS) via pipet immediately after Raman spectral measurements of the same cell. As verification, we separated four different type of cells including BGC823 gastric cancer cells, erythrocytes, lymphocytes, and E. coli cells and quantifiably characterized the heterogeneity of the cancer cells, leukocyte subtype, and erythrocyte status, respectively. The average time of identifying and isolating a specific cell was 3 min. Cell morphology comparison and viability tests showed that the successful rate of single-cell isolation was about 90%. Thus, we believe our platform could further couple other single-cell techniques such as single-cell sequencing and become a multiperspective analytical approach at the level of a single cell.
Collapse
|
21
|
Zheng T, Zhang Z, Zhu R. Flexible Trapping and Manipulation of Single Cells on a Chip by Modulating Phases and Amplitudes of Electrical Signals Applied onto Microelectrodes. Anal Chem 2019; 91:4479-4487. [DOI: 10.1021/acs.analchem.8b05228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tianyang Zheng
- State Key Laboratory of Precision Measurement
Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zhizhong Zhang
- State Key Laboratory of Precision Measurement
Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement
Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2019; 143:2936-2970. [PMID: 29796523 DOI: 10.1039/c7an01979c] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of tumor-related death, and the dispersal of tumor cells through the circulatory system is a critical step in the metastatic process. Early detection and analysis of circulating tumor cells (CTCs) is therefore important for early diagnosis, prognosis, and effective treatment of cancer, enabling favorable clinical outcomes in cancer patients. Accurate and reliable methods for isolating and detecting CTCs are necessary to obtain this clinical information. Over the past two decades, microfluidic technologies have demonstrated great potential for isolating and detecting CTCs from blood. The present paper reviews current advanced microfluidic technologies for isolating CTCs based on various biological and physical principles, and discusses their fundamental advantages and drawbacks for subsequent cellular and molecular assays. Owing to significant genetic heterogeneity among CTCs, microfluidic technologies for isolating individual CTCs have recently been developed. We discuss these single-cell isolation methods, as well as approaches to overcoming the limitations of current microfluidic CTC isolation technologies. Finally, we provide an overview of future innovative microfluidic platforms.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
23
|
Verma RS, Ahlawat S, Uppal A. Optical guiding-based cell focusing for Raman flow cell cytometer. Analyst 2019; 143:2648-2655. [PMID: 29756139 DOI: 10.1039/c8an00037a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the use of an optical guiding arrangement generated in a microfluidic channel to produce a stream of single cells in a line for single-cell Raman spectroscopic analysis. The optical guiding arrangement consisted of dual-line optical tweezers, generated using a 1064 nm laser, aligned in the shape of a '' symbol. By controlling the laser power in the tweezers and the flow rate in the microfluidic channel, a single line flow of cells could be produced in the tail of the guiding arrangement, where the 514.5 nm Raman excitation beam was also located. Furthermore, by resonantly exciting the Raman spectrum, a good-quality Raman spectrum could be recorded from the flowing single cells as they passed through the Raman excitation focal spot without the need to trap the cells. As a proof of concept, it was shown that red blood cells (RBCs) could be guided to the tail of the optical guide and the Raman spectra of the resonantly excited cells could be recorded in a continuous manner without trapping the cells at a cell flow rate of ∼500 cells per h. From the recorded spectra, we were able to distinguish between RBCs containing hemoglobin in the normal form (normal-RBCs) and the met form (met-RBCs) from a mixture of RBCs comprising met-RBCs and normal-RBCs in a ratio of 1 : 9.
Collapse
|
24
|
Dalili A, Samiei E, Hoorfar M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 2019; 144:87-113. [DOI: 10.1039/c8an01061g] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have reviewed the microfluidic approaches for cell/particle isolation and sorting, and extensively explained the mechanism behind each method.
Collapse
Affiliation(s)
- Arash Dalili
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| | - Ehsan Samiei
- University of Victoria
- Department of Mechanical Engineering
- Victoria
- Canada
| | - Mina Hoorfar
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| |
Collapse
|
25
|
Hiramatsu K, Ideguchi T, Yonamine Y, Lee S, Luo Y, Hashimoto K, Ito T, Hase M, Park JW, Kasai Y, Sakuma S, Hayakawa T, Arai F, Hoshino Y, Goda K. High-throughput label-free molecular fingerprinting flow cytometry. SCIENCE ADVANCES 2019; 5:eaau0241. [PMID: 30746443 PMCID: PMC6357763 DOI: 10.1126/sciadv.aau0241] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 12/06/2018] [Indexed: 05/03/2023]
Abstract
Flow cytometry is an indispensable tool in biology for counting and analyzing single cells in large heterogeneous populations. However, it predominantly relies on fluorescent labeling to differentiate cells and, hence, comes with several fundamental drawbacks. Here, we present a high-throughput Raman flow cytometer on a microfluidic chip that chemically probes single live cells in a label-free manner. It is based on a rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectrometer as an optical interrogator, enabling us to obtain the broadband molecular vibrational spectrum of every single cell in the fingerprint region (400 to 1600 cm-1) with a record-high throughput of ~2000 events/s. As a practical application of the method not feasible with conventional flow cytometry, we demonstrate high-throughput label-free single-cell analysis of the astaxanthin productivity and photosynthetic dynamics of Haematococcus lacustris.
Collapse
Affiliation(s)
- Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Research Centre for Spectrochemistry, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Takuro Ideguchi
- Research Centre for Spectrochemistry, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Yonamine
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - SangWook Lee
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yizhi Luo
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Hashimoto
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuro Ito
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Misa Hase
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jee-Woong Park
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kasai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Aichi 464-8603, Japan
| | - Shinya Sakuma
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Aichi 464-8603, Japan
| | - Takeshi Hayakawa
- Institute of Innovation for Future Society, Nagoya University, Aichi 464-8603, Japan
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Aichi 464-8603, Japan
- Institute of Innovation for Future Society, Nagoya University, Aichi 464-8603, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
26
|
Varma S, Voldman J. Caring for cells in microsystems: principles and practices of cell-safe device design and operation. LAB ON A CHIP 2018; 18:3333-3352. [PMID: 30324208 PMCID: PMC6254237 DOI: 10.1039/c8lc00746b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic device designers and users continually question whether cells are 'happy' in a given microsystem or whether they are perturbed by micro-scale technologies. This issue is normally brought up by engineers building platforms, or by external reviewers (academic or commercial) comparing multiple technological approaches to a problem. Microsystems can apply combinations of biophysical and biochemical stimuli that, although essential to device operation, may damage cells in complex ways. However, assays to assess the impact of microsystems upon cells have been challenging to conduct and have led to subjective interpretation and evaluation of cell stressors, hampering development and adoption of microsystems. To this end, we introduce a framework that defines cell health, describes how device stimuli may stress cells, and contrasts approaches to measure cell stress. Importantly, we provide practical guidelines regarding device design and operation to minimize cell stress, and recommend a minimal set of quantitative assays that will enable standardization in the assessment of cell health in diverse devices. We anticipate that as microsystem designers, reviewers, and end-users enforce such guidelines, we as a community can create a set of essential principles that will further the adoption of such technologies in clinical, translational and commercial applications.
Collapse
Affiliation(s)
- Sarvesh Varma
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
77 Massachusetts Avenue, Room 36-824
, Cambridge
, USA
.
; Fax: +617 258 5846
; Tel: +617 253 1583
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
77 Massachusetts Avenue, Room 36-824
, Cambridge
, USA
.
; Fax: +617 258 5846
; Tel: +617 253 1583
| |
Collapse
|
27
|
Gong Y, Fan N, Yang X, Peng B, Jiang H. New advances in microfluidic flow cytometry. Electrophoresis 2018; 40:1212-1229. [PMID: 30242856 DOI: 10.1002/elps.201800298] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 01/22/2023]
Abstract
In recent years, researchers are paying the increasing attention to the development of portable microfluidic diagnostic devices including microfluidic flow cytometry for the point-of-care testing. Microfluidic flow cytometry, where microfluidics and flow cytometry work together to realize novel functionalities on the microchip, provides a powerful tool for measuring the multiple characteristics of biological samples. The development of a portable, low-cost, and compact flow cytometer can benefit the health care in underserved areas such as Africa or Asia. In this article, we review recent advancements of microfluidics including sample pumping, focusing and sorting, novel detection approaches, and data analysis in the field of flow cytometry. The challenge of microfluidic flow cytometry is also examined briefly.
Collapse
Affiliation(s)
- Yanli Gong
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Na Fan
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xu Yang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
28
|
Sinjab F, Awuah D, Gibson G, Padgett M, Ghaemmaghami AM, Notingher I. Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells. OPTICS EXPRESS 2018; 26:25211-25225. [PMID: 30469626 DOI: 10.1364/oe.26.025211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/20/2018] [Indexed: 06/09/2023]
Abstract
We present a new approach for combining holographic optical tweezers with confocal Raman spectroscopy. Multiple laser foci, generated using a liquid-crystal spatial light modulator, are individually used for both optical trapping and excitation of spontaneous Raman spectroscopy from trapped objects. Raman scattering from each laser focus is spatially filtered using reflective apertures on a digital micro-mirror device, which can be reconfigured with flexible patterns at video rate. We discuss operation of the instrument, and performance and viability considerations for biological measurements. We then demonstrate the capability of the instrument for fast, flexible, and interactive manipulation with molecular measurement of interacting live cell systems.
Collapse
|
29
|
Ideguchi T, Nakamura T, Takizawa S, Tamamitsu M, Lee S, Hiramatsu K, Ramaiah-Badarla V, Park JW, Kasai Y, Hayakawa T, Sakuma S, Arai F, Goda K. Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy. OPTICS LETTERS 2018; 43:4057-4060. [PMID: 30106951 DOI: 10.1364/ol.43.004057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Label-free particle analysis is a powerful tool in chemical, pharmaceutical, and cosmetic industries as well as in basic sciences, but its throughput is significantly lower than that of fluorescence-based counterparts. Here we present a label-free single-particle analyzer based on broadband dual-comb coherent Raman scattering spectroscopy operating at a spectroscopic scan rate of 10 kHz. As a proof-of-concept demonstration, we perform broadband coherent anti-Stokes Raman scattering measurements of polystyrene microparticles flowing on an acoustofluidic chip at a high throughput of >1000 particles per second. This high-throughput label-free particle analyzer has the potential for high-precision statistical analysis of a large number of microparticles including biological cells.
Collapse
|
30
|
Rong X, Wei F, Luo RQ, Yuan X, Kuang QQ, Yin DP, Huang SS, Jiang YM, Liu H. Discrimination of Single Living Rat Pancreatic α, β, δ, and Pancreatic Polypeptide (PP) Cells Using Raman Spectroscopy. APPLIED SPECTROSCOPY 2018; 72:706-714. [PMID: 29350550 DOI: 10.1177/0003702818757993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Primary pancreatic α, β, δ, and pancreatic polypeptide (PP) cells are reliable cell models for diabetes research. However, the separation and purification of these cells in living conditions remains an obstacle for researchers. The interaction of visible light with cellular molecules can produce Raman scattering, which can be analyzed to obtain cellular intrinsic molecular fingerprints. It has been speculated that primary pancreatic α, β, δ, and PP cells can be identified and separated from each other according to their spectral differences. To test this hypothesis, Raman spectra detection was performed on rat islet cells. Single islet cells identified by Raman scattering under living conditions were verified using immunohistochemistry. Thus, Raman data were acquired from a pure line of islet cells as a training sample and then used to establish the discriminant function. Then, using the principal component analysis-linear discriminate analysis (PCA-LDA) method, the four types of islet cells could be identified and discriminated by Raman spectroscopy. This study provides a label-free and noninvasive method for discriminating islet cell types in a randomly distributed mixed islet cell population via their physical properties rather than by using antibodies or fluorescence labeling.
Collapse
Affiliation(s)
- Xi Rong
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| | - Fang Wei
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| | - Rui-Qiong Luo
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| | - Xue Yuan
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| | - Qi-Qi Kuang
- 2 74626 Guangxi Medical University, Nanning, China
| | | | - Shu-Shi Huang
- 3 245477 The Laboratory of Biophysics, Guangxi Academy of Sciences, Nanning, China
| | - Yue-Ming Jiang
- 4 74626 Department of Health Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hong Liu
- 1 The Department of Geriatric Endocrinology, the First Affiliated Hospital of 74626 Guangxi Medical University, Nanning, China
| |
Collapse
|
31
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
32
|
Hinnouho GM, Barffour MA, Wessells KR, Brown KH, Kounnavong S, Chanhthavong B, Ratsavong K, Kewcharoenwong C, Hess SY. Comparison of haemoglobin assessments by HemoCue and two automated haematology analysers in young Laotian children. J Clin Pathol 2017; 71:532-538. [PMID: 29197856 PMCID: PMC5969348 DOI: 10.1136/jclinpath-2017-204786] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
Abstract
Background Haemoglobin (Hb) assessment by Hemocue is used widely for anaemia screening in both adults and children. However, few studies have compared the diagnostic accuracy of Hemocue with an automated haematology analyser in young children. Aim To compare Hb concentrations by Hemocue Hb301 and two automated haematology analysers in young children in rural communities of Lao PDR. Methods Capillary blood was collected from 6-month-old to 23-month-old children (n=1487) for determination of Hb concentration by Hemocue Hb301. On the same day, venous blood was collected for complete blood count using one of two haematology analysers (XT-1800i, Sysmex, and BC-3000Plus, Mindray Medical International). In a subsample of children (n=129), venous Hb was also measured by HemoCue Hb301. Agreement between the two methods was estimated using Bland-Altman plots. Results Mean capillary Hb by Hemocue was significantly higher than mean venous Hb by haematology analysers combined (108.4±10.3 g/L vs 102.3±13.1 g/L; P<0.001), resulting in a significantly lower anaemia prevalence (Hb <110 g/L) by Hemocue (53.7% vs 73.9%; P<0.001). The Bland-Altman assessment of agreement showed a bias of 6.1 g/L and limits of agreement were −11.5 g/L to 23.7 g/L. Mean venous Hb concentration by Hemocue Hb301 (113.6±14.0 g/L) was significantly higher than mean capillary Hb concentration by Hemocue Hb301 (110.0±10.7; P=0.03 g/L), which in turn was significantly higher than mean venous Hb concentration by the Mindray BC-3000Plus (102.3±17.4 g/L). Conclusion Capillary and venous Hb concentrations assessed by Hemocue Hb301 showed poor agreement compared with venous Hb by automated haematology analysers, resulting in significantly different anaemia prevalences.
Collapse
Affiliation(s)
- Guy-Marino Hinnouho
- Department of Nutrition, Program in International and Community Nutrition, University of California, Davis, California, USA
| | - Maxwell A Barffour
- Department of Nutrition, Program in International and Community Nutrition, University of California, Davis, California, USA
| | - K Ryan Wessells
- Department of Nutrition, Program in International and Community Nutrition, University of California, Davis, California, USA
| | - Kenneth H Brown
- Department of Nutrition, Program in International and Community Nutrition, University of California, Davis, California, USA.,Nutrition and Global Development, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | | | | | | | - Chidchamai Kewcharoenwong
- Faculty of Associated Medical Sciences, Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| | - Sonja Y Hess
- Department of Nutrition, Program in International and Community Nutrition, University of California, Davis, California, USA
| |
Collapse
|
33
|
Ahmad IL, Ahmad MR, Takeuchi M, Nakajima M, Hasegawa Y. Tapered Microfluidic for Continuous Micro-Object Separation Based on Hydrodynamic Principle. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1413-1421. [PMID: 29293427 DOI: 10.1109/tbcas.2017.2764118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in microfluidic technologies have created a demand for a simple and efficient separation intended for various applications such as food industries, biological preparation, and medical diagnostic. In this paper, we report a tapered microfluidic device for passive continuous separation of microparticles by using hydrodynamic separation. By exploiting the hydrodynamic properties of the fluid flow and physical characteristics of micro particles, effective size based separation is demonstrated. The tapered microfluidic device has widening geometries with respect to specific taper angle which amplify the sedimentation effect experienced by particles of different sizes. A mixture of 3-μm and 10-μm polystyrene microbeads are successfully separated using 20° and 25° taper angles. The results obtained are in agreement with three-dimensional finite element simulation conducted using Abaqus 6.12. Moreover, the feasibility of this mechanism for biological separation is demonstrated by using polydisperse samples consists of 3-μm polystyrene microbeads and human epithelial cervical carcinoma (HeLa) cells. 98% of samples purity is recovered at outlet 1 and outlet 3 with flow rate of 0.5-3.0 μl/min. Our device is interesting despite adopting passive separation approach. This method enables straightforward, label-free, and continuous separation of multiparticles in a stand-alone device without the need for bulky apparatus. Therefore, this device may become an enabling technology for point of care diagnosis tools and may hold potential for micrototal analysis system applications.
Collapse
|
34
|
Wang X, Ren L, Su Y, Ji Y, Liu Y, Li C, Li X, Zhang Y, Wang W, Hu Q, Han D, Xu J, Ma B. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells. Anal Chem 2017; 89:12569-12577. [DOI: 10.1021/acs.analchem.7b03884] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xixian Wang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Ren
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yetian Su
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yuetong Ji
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoping Liu
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication,
Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Chunyu Li
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunrong Li
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Wei Wang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication,
Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Qiang Hu
- Center
for Microalgal Biofuels and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Danxiang Han
- Center
for Microalgal Biofuels and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jian Xu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ma
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Hassoun M, Rüger J, Kirchberger-Tolstik T, Schie IW, Henkel T, Weber K, Cialla-May D, Krafft C, Popp J. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering. Anal Bioanal Chem 2017; 410:999-1006. [PMID: 28905087 DOI: 10.1007/s00216-017-0609-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/28/2017] [Indexed: 01/25/2023]
Abstract
A new approach is presented for cell lysate identification which uses SERS-active silver nanoparticles and a droplet-based microfluidic chip. Eighty-nanoliter droplets are generated by injecting silver nanoparticles, KCl as aggregation agent, and cell lysate containing cell constituents, such as nucleic acids, carbohydrates, metabolites, and proteins into a continuous flow of mineral oil. This platform enables accurate mixing of small volumes inside the meandering channels of the quartz chip and allows acquisition of thousands of SERS spectra with 785 nm excitation at an integration time of 1 s. Preparation of three batches of three leukemia cell lines demonstrated the experimental reproducibility. The main advantage of a high number of reproducible spectra is to apply statistics for large sample populations with robust classification results. A support vector machine with leave-one-batch-out cross-validation classified SERS spectra with sensitivities, specificities, and accuracies better than 99% to differentiate Jurkat, THP-1, and MONO-MAC-6 leukemia cell lysates. This approach is compared with previous published reports about Raman spectroscopy for leukemia detection, and an outlook is given for transfer to single cells. A quartz chip was designed for SERS at 785 nm excitation. Principal component analysis of SERS spectra clearly separates cell lysates using variations in band intensity ratios.
Collapse
Affiliation(s)
- Mohamed Hassoun
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07745, Jena, Germany
| | - Jan Rüger
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07745, Jena, Germany
| | - Tatiana Kirchberger-Tolstik
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.,Department of Internal Medicine IV, Division of Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Iwan W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Thomas Henkel
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Karina Weber
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07745, Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07745, Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07745, Jena, Germany
| |
Collapse
|
36
|
Hanson C, Vargis E. Alternative cDEP Design to Facilitate Cell Isolation for Identification by Raman Spectroscopy. SENSORS 2017; 17:s17020327. [PMID: 28208767 PMCID: PMC5335981 DOI: 10.3390/s17020327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 01/17/2023]
Abstract
Dielectrophoresis (DEP) uses non-uniform electric fields to cause motion in particles due to the particles’ intrinsic properties. As such, DEP is a well-suited label-free means for cell sorting. Of the various methods of implementing DEP, contactless dielectrophoresis (cDEP) is advantageous as it avoids common problems associated with DEP, such as electrode fouling and electrolysis. Unfortunately, cDEP devices can be difficult to fabricate, replicate, and reuse. In addition, the operating parameters are limited by the dielectric breakdown of polydimethylsiloxane (PDMS). This study presents an alternative way to fabricate a cDEP device allowing for higher operating voltages, improved replication, and the opportunity for analysis using Raman spectroscopy. In this device, channels were formed in fused silica rather than PDMS. The device successfully trapped 3.3 μm polystyrene spheres for analysis by Raman spectroscopy. The successful implementation indicates the potential to use cDEP to isolate and identify biological samples on a single device.
Collapse
Affiliation(s)
- Cynthia Hanson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA.
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
37
|
Ahlawat S, Chowdhury A, Uppal A, Kumar N, Gupta PK. Use of Raman optical tweezers for cell cycle analysis. Analyst 2017; 141:1339-46. [PMID: 26738697 DOI: 10.1039/c5an00971e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the results of our investigations on the use of Raman optical tweezers for label free analysis of cells in different phases of their cell cycle. The studies performed on human colon adenocarcinoma (Colo-205) cells synchronized in G0/G1 and G2/M phases showed that the DNA Raman band at 783 cm(-1) in the Raman spectra of optically trapped cells can provide information about the DNA content in the nucleus of the cell without the need for the isolation of the nucleus. The histograms of intensity of this band among the cell populations were found to corroborate the results obtained from fluorescence image cytometry performed on DAPI stained cells.
Collapse
Affiliation(s)
- Sunita Ahlawat
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India.
| | - Aniket Chowdhury
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India.
| | - Abha Uppal
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India.
| | - Nitin Kumar
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India.
| | - Pradeep Kumar Gupta
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India.
| |
Collapse
|
38
|
Casabella S, Scully P, Goddard N, Gardner P. Automated analysis of single cells using Laser Tweezers Raman Spectroscopy. Analyst 2017; 141:689-96. [PMID: 26587766 DOI: 10.1039/c5an01851j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, significant progress has been made into the label-free detection and discrimination of individual cancer cells using Laser Tweezers Raman Spectroscopy (LTRS). However, the majority of examples reported have involved manual trapping of cells, which is time consuming and may lead to different cell lines being analysed in discrete batches. A simple, low-cost microfluidic flow chamber is introduced which allows single cells to be optically trapped and analysed in an automated fashion, greatly reducing the level of operator input required. Two implementations of the flow chamber are discussed here; a basic single-channel device in which the fluid velocity is controlled manually, and a dual-channel device which permits the automated capture and analysis of multiple cell lines with no operator input. Results are presented for the discrimination of live epithelial prostate cells and lymphocytes, together with a consideration of the consequences of traditional 'batch analysis' typically used for LTRS of live cells.
Collapse
Affiliation(s)
- S Casabella
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, M1 7DN, UK. and The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - P Scully
- The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - N Goddard
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, M1 7DN, UK.
| | - P Gardner
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, M1 7DN, UK.
| |
Collapse
|
39
|
|
40
|
Krafft C, Schie IW, Meyer T, Schmitt M, Popp J. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem Soc Rev 2016; 45:1819-49. [PMID: 26497570 DOI: 10.1039/c5cs00564g] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
First, the potential role of Raman-based techniques in biomedicine is introduced. Second, an overview about the instrumentation for spontaneous and coherent Raman scattering microscopic imaging is given with a focus of recent developments. Third, imaging strategies are summarized including sequential registration with laser scanning microscopes, line imaging and global or wide-field imaging. Finally, examples of biomedical applications are presented in the context of single cells, laser tweezers, tissue sections, biopsies and whole animals.
Collapse
Affiliation(s)
- C Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - I W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - T Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - M Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - J Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
41
|
Yan S, Zhang J, Yuan D, Li W. Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 2016; 38:238-249. [DOI: 10.1002/elps.201600386] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Sheng Yan
- School of Mechanical, Materials and Mechatronic Engineering; University of Wollongong; Wollongong Australia
| | - Jun Zhang
- School of Mechanical, Materials and Mechatronic Engineering; University of Wollongong; Wollongong Australia
- School of Mechanical Engineering; Nanjing University of Science and Technology; Nanjing P. R. China
| | - Dan Yuan
- School of Mechanical, Materials and Mechatronic Engineering; University of Wollongong; Wollongong Australia
| | - Weihua Li
- School of Mechanical, Materials and Mechatronic Engineering; University of Wollongong; Wollongong Australia
| |
Collapse
|
42
|
Shields CW, Ohiri KA, Szott LM, López GP. Translating microfluidics: Cell separation technologies and their barriers to commercialization. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:115-125. [PMID: 27282966 DOI: 10.1002/cyto.b.21388] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 01/09/2023]
Abstract
Advances in microfluidic cell sorting have revolutionized the ways in which cell-containing fluids are processed, now providing performances comparable to, or exceeding, traditional systems, but in a vastly miniaturized format. These technologies exploit a wide variety of physical phenomena to manipulate cells and fluid flow, such as magnetic traps, sound waves and flow-altering micropatterns, and they can evaluate single cells by immobilizing them onto surfaces for chemotherapeutic assessment, encapsulate cells into picoliter droplets for toxicity screenings and examine the interactions between pairs of cells in response to new, experimental drugs. However, despite the massive surge of innovation in these high-performance lab-on-a-chip devices, few have undergone successful commercialization, and no device has been translated to a widely distributed clinical commodity to date. Persistent challenges such as an increasingly saturated patent landscape as well as complex user interfaces are among several factors that may contribute to their slowed progress. In this article, we identify several of the leading microfluidic technologies for sorting cells that are poised for clinical translation; we examine the principal barriers preventing their routine clinical use; finally, we provide a prospectus to elucidate the key criteria that must be met to overcome those barriers. Once established, these tools may soon transform how clinical labs study various ailments and diseases by separating cells for downstream sequencing and enabling other forms of advanced cellular or sub-cellular analysis. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina, 27708.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708
| | - Korine A Ohiri
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina, 27708.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708
| | - Luisa M Szott
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina, 27708.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708
| | - Gabriel P López
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, North Carolina, 27708.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, 27708.,Center for Biomedical Engineering, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, 87131
| |
Collapse
|
43
|
Wang N, Tan F, Zhao Y, Tsoi CC, Fan X, Yu W, Zhang X. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions. Sci Rep 2016; 6:28928. [PMID: 27352840 PMCID: PMC4926220 DOI: 10.1038/srep28928] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022] Open
Abstract
On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.
Collapse
Affiliation(s)
- Ning Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China.,Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Furui Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China.,Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Yu Zhao
- Institute of Functional Nano &Soft Materials (FUNSOM) &Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials &Devices, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Chi Chung Tsoi
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China.,Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weixing Yu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi, P.R. China
| | - Xuming Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China.,Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| |
Collapse
|
44
|
McIlvenna D, Huang WE, Davison P, Glidle A, Cooper J, Yin H. Continuous cell sorting in a flow based on single cell resonance Raman spectra. LAB ON A CHIP 2016; 16:1420-9. [PMID: 26974400 DOI: 10.1039/c6lc00251j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Single cell Raman spectroscopy measures a spectral fingerprint of the biochemistry of cells, and provides a powerful method for label-free detection of living cells without the involvement of a chemical labelling strategy. However, as the intrinsic Raman signals of cells are inherently weak, there is a significant challenge in discriminating and isolating cells in a flowing stream. Here we report an integrated Raman-microfluidic system for continuous sorting of a stream of cyanobacteria, Synechocystis sp. PCC6803. These carotenoid-containing microorganisms provide an elegant model system enabling us to determine the sorting accuracy using the subtly different resonance Raman spectra of microorganism cultured in a (12)C or (13)C carbon source. Central to the implementation of continuous flow sorting is the use of "pressure dividers" that eliminate fluctuations in flow in the detection region. This has enabled us to stabilise the flow profile sufficiently to allow automated operation with synchronisation of Raman acquisition, real-time classification and sorting at flow rates of ca. <100 μm s(-1), without the need to "trap" the cells. We demonstrate the flexibility of this approach in sorting mixed cell populations with the ability to achieve 96.3% purity of the selected cells at a speed of 0.5 Hz.
Collapse
Affiliation(s)
- David McIlvenna
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Paul Davison
- Kroto Research Institute, Department of Civil and Structural Engineering, North Campus, The University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| | - Andrew Glidle
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Jon Cooper
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
45
|
Smith R, Wright KL, Ashton L. Raman spectroscopy: an evolving technique for live cell studies. Analyst 2016; 141:3590-600. [PMID: 27072718 DOI: 10.1039/c6an00152a] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
One of the most exciting developments in Raman spectroscopy in the last decade has been its application to cells and tissues for diagnostic and pharmaceutical applications, and in particular its use in the analysis of cellular dynamics. Raman spectroscopy is rapidly advancing as a cell imaging method that overcomes many of the limitations of current techniques and is earning its place as a routine tool in cell biology. In this review we focus on important developments in Raman spectroscopy that have evolved into the exciting technique of live-cell Raman microscopy and highlight some of the most recent and significant applications to cell biology.
Collapse
Affiliation(s)
- Rachael Smith
- Department of Chemistry, Lancaster University, LA1 4YG, UK.
| | | | | |
Collapse
|
46
|
Microfluidic assay-based optical measurement techniques for cell analysis: A review of recent progress. Biosens Bioelectron 2016; 77:227-36. [DOI: 10.1016/j.bios.2015.07.068] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023]
|
47
|
Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational spectroscopic methods for cytology and cellular research. Analyst 2015; 139:4411-44. [PMID: 25028699 DOI: 10.1039/c4an00636d] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of vibrational spectroscopy, FTIR and Raman, for cytology and cellular research has the potential to revolutionise the approach to cellular analysis. Vibrational spectroscopy is non-destructive, simple to operate and provides direct information. Importantly it does not require expensive exogenous labels that may affect the chemistry of the cell under analysis. In addition, the advent of spectroscopic microscopes provides the ability to image cells and acquire spectra with a subcellular resolution. This introductory review focuses on recent developments within this fast paced field and highlights potential for the future use of FTIR and Raman spectroscopy. We particularly focus on the development of live cell research and the new technologies and methodologies that have enabled this.
Collapse
Affiliation(s)
- Graeme Clemens
- Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK.
| | | | | | | |
Collapse
|
48
|
Redding B, Schwab M, Pan YL. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles. SENSORS 2015; 15:19021-46. [PMID: 26247952 PMCID: PMC4570358 DOI: 10.3390/s150819021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022]
Abstract
The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.
Collapse
Affiliation(s)
- Brandon Redding
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA.
| | - Mark Schwab
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA.
| | - Yong-le Pan
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA.
| |
Collapse
|
49
|
A guiding light: spectroscopy on digital microfluidic devices using in-plane optical fibre waveguides. Anal Bioanal Chem 2015; 407:7467-75. [DOI: 10.1007/s00216-015-8913-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/24/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
50
|
Huser T, Chan J. Raman spectroscopy for physiological investigations of tissues and cells. Adv Drug Deliv Rev 2015; 89:57-70. [PMID: 26144996 DOI: 10.1016/j.addr.2015.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 12/29/2022]
Abstract
Raman micro-spectroscopy provides a convenient non-destructive and location-specific means of probing cellular physiology and tissue physiology at sub-micron length scales. By probing the vibrational signature of molecules and molecular groups, the distribution and metabolic products of small molecules that cannot be labeled with fluorescent dyes can be analyzed. This method works well for molecular concentrations in the micro-molar range and has been demonstrated as a valuable tool for monitoring drug-cell interactions. If the small molecule of interest does not contain groups that would allow for a discrimination against cytoplasmic background signals, "labeling" of the molecule by isotope substitution or by incorporating other unique small groups, e.g. alkynes provides a stable signal even for time-lapse imaging such compounds in living cells. In this review we highlight recent progress in assessing the physiology of cells and tissue by Raman spectroscopy and imaging.
Collapse
|