1
|
Shi J, Tong W, Yu Z, Tong L, Chen H, Jin J, Zhu Y. Pollution-Free and Highly Sensitive Lactate Detection in Cell Culture Based on a Microfluidic Chip. MICROMACHINES 2023; 14:770. [PMID: 37421003 DOI: 10.3390/mi14040770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 07/09/2023]
Abstract
Cell metabolite detection is important for cell analysis. As a cellular metabolite, lactate and its detection play an important role in disease diagnosis, drug screening and clinical therapeutics. This paper reports a microfluidic chip integrated with a backflow prevention channel for cell culture and lactate detection. It can effectively realize the upstream and downstream separation of the culture chamber and the detection zone, and prevent the pollution of cells caused by the potential backflow of reagent and buffer solutions. Due to such a separation, it is possible to analyze the lactate concentration in the flow process without contamination of cells. With the information of residence time distribution of the microchannel networks and the detected time signal in the detection chamber, it is possible to calculate the lactate concentration as a function of time using the de-convolution method. We have further demonstrated the suitability of this detection method by measuring lactate production in human umbilical vein endothelial cells (HUVEC). The microfluidic chip presented here shows good stability in metabolite quick detection and can work continuously for more than a few days. It sheds new insights into pollution-free and high-sensitivity cell metabolism detection, showing broad application prospects in cell analysis, drug screening and disease diagnosis.
Collapse
Affiliation(s)
- Jiaming Shi
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Wenqiang Tong
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Zhihang Yu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Lei Tong
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Huaying Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Jing Jin
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| | - Yonggang Zhu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| |
Collapse
|
2
|
Fattahi E, Taheri S, Schilling AF, Becker T, Pörtner R. Generation and evaluation of input values for computational analysis of transport processes within tissue cultures. Eng Life Sci 2022; 22:681-698. [PMID: 36348656 PMCID: PMC9635004 DOI: 10.1002/elsc.202100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 11/15/2022] Open
Abstract
Techniques for tissue culture have seen significant advances during the last decades and novel 3D cell culture systems have become available. To control their high complexity, experimental techniques and their Digital Twins (modelling and computational tools) are combined to link different variables to process conditions and critical process parameters. This allows a rapid evaluation of the expected product quality. However, the use of mathematical simulation and Digital Twins is critically dependent on the precise description of the problem and correct input parameters. Errors here can lead to dramatically wrong conclusions. The intention of this review is to provide an overview of the state-of-the-art and remaining challenges with respect to generating input values for computational analysis of mass and momentum transport processes within tissue cultures. It gives an overview on relevant aspects of transport processes in tissue cultures as well as modelling and computational tools to tackle these problems. Further focus is on techniques used for the determination of cell-specific parameters and characterization of culture systems, including sensors for on-line determination of relevant parameters. In conclusion, tissue culture techniques are well-established, and modelling tools are technically mature. New sensor technologies are on the way, especially for organ chips. The greatest remaining challenge seems to be the proper addressing and handling of input parameters required for mathematical models. Following Good Modelling Practice approaches when setting up and validating computational models is, therefore, essential to get to better estimations of the interesting complex processes inside organotypic tissue cultures in the future.
Collapse
Affiliation(s)
- Ehsan Fattahi
- Chair of Brewing and Beverage TechnologyTUM School of Life SciencesTechnische Universität MünchenFreisingGermany
| | - Shahed Taheri
- Department of Trauma SurgeryOrthopaedics and Plastic SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Arndt F. Schilling
- Department of Trauma SurgeryOrthopaedics and Plastic SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Thomas Becker
- Chair of Brewing and Beverage TechnologyTUM School of Life SciencesTechnische Universität MünchenFreisingGermany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| |
Collapse
|
3
|
Palacio-Castañeda V, Velthuijs N, Le Gac S, Verdurmen WPR. Oxygen control: the often overlooked but essential piece to create better in vitro systems. LAB ON A CHIP 2022; 22:1068-1092. [PMID: 35084420 DOI: 10.1039/d1lc00603g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Variations in oxygen levels play key roles in numerous physiological and pathological processes, but are often not properly controlled in in vitro models, introducing a significant bias in experimental outcomes. Recent developments in microfluidic technology have introduced a paradigm shift by providing new opportunities to better mimic physiological and pathological conditions, which is achieved by both regulating and monitoring oxygen levels at the micrometre scale in miniaturized devices. In this review, we first introduce the nature and relevance of oxygen-dependent pathways in both physiological and pathological contexts. Subsequently, we discuss strategies to control oxygen in microfluidic devices, distinguishing between engineering approaches that operate at the device level during its fabrication and chemical approaches that involve the active perfusion of fluids oxygenated at a precise level or supplemented with oxygen-producing or oxygen-scavenging materials. In addition, we discuss readout approaches for monitoring oxygen levels at the cellular and tissue levels, focusing on electrochemical and optical detection schemes for high-resolution measurements directly on-chip. An overview of different applications in which microfluidic devices have been utilized to answer biological research questions is then provided. In the final section, we provide our vision for further technological refinements of oxygen-controlling devices and discuss how these devices can be employed to generate new fundamental insights regarding key scientific problems that call for emulating oxygen levels as encountered in vivo. We conclude by making the case that ultimately emulating physiological or pathological oxygen levels should become a standard feature in all in vitro cell, tissue, and organ models.
Collapse
Affiliation(s)
- Valentina Palacio-Castañeda
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| | - Niels Velthuijs
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, Organ-on-a-chip Centre, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands.
| | - Wouter P R Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Ando Y, Mariano C, Shen K. Engineered in vitro tumor models for cell-based immunotherapy. Acta Biomater 2021; 132:345-359. [PMID: 33857692 PMCID: PMC8434941 DOI: 10.1016/j.actbio.2021.03.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Tumor immunotherapy is rapidly evolving as one of the major pillars of cancer treatment. Cell-based immunotherapies, which utilize patient's own immune cells to eliminate cancer cells, have shown great promise in treating a range of malignancies, especially those of hematopoietic origins. However, their performance on a broader spectrum of solid tumor types still fall short of expectations in the clinical stage despite promising preclinical assessments. In this review, we briefly introduce cell-based immunotherapies and the inhibitory mechanisms in tumor microenvironments that may have contributed to this discrepancy. Specifically, a major obstacle to the clinical translation of cell-based immunotherapies is in the lack of preclinical models that can accurately assess the efficacies and mechanisms of these therapies in a (patho-)physiologically relevant manner. Lately, tissue engineering and organ-on-a-chip tools and microphysiological models have allowed for more faithful recapitulation of the tumor microenvironments, by incorporating crucial tumor tissue features such as cellular phenotypes, tissue architecture, extracellular matrix, physical parameters, and their dynamic interactions. This review summarizes the existing engineered tumor models with a focus on tumor immunology and cell-based immunotherapy. We also discuss some key considerations for the future development of engineered tumor models for immunotherapeutics. STATEMENT OF SIGNIFICANCE: Cell-based immunotherapies have shown great promise in treating hematological malignancies and some epithelial tumors. However, their performance on a broader spectrum of solid tumor types still fall short of expectations. Major obstacles include the inhibitory mechanisms in tumor microenvironments (TME) and the lack of preclinical models that can accurately assess the efficacies and mechanisms of cellular therapies in a (patho-)physiologically relevant manner. In this review, we introduce recent progress in tissue engineering and microphysiological models for more faithful recapitulation of TME for cell-based immunotherapies, and some key considerations for the future development of engineered tumor models. This overview will provide a better understanding on the role of engineered models in accelerating immunotherapeutic discoveries and clinical translations.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Chelsea Mariano
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
5
|
Siwczak F, Loffet E, Kaminska M, Koceva H, Mahe MM, Mosig AS. Intestinal Stem Cell-on-Chip to Study Human Host-Microbiota Interaction. Front Immunol 2021; 12:798552. [PMID: 34938299 PMCID: PMC8685395 DOI: 10.3389/fimmu.2021.798552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
The gut is a tubular organ responsible for nutrient absorption and harbors our intestinal microbiome. This organ is composed of a multitude of specialized cell types arranged in complex barrier-forming crypts and villi covered by a mucosal layer controlling nutrient passage and protecting from invading pathogens. The development and self-renewal of the intestinal epithelium are guided by niche signals controlling the differentiation of specific cell types along the crypt-villus axis in the epithelium. The emergence of microphysiological systems, or organ-on-chips, has paved the way to study the intestinal epithelium within a dynamic and controlled environment. In this review, we describe the use of organ-on-chip technology to control and guide these differentiation processes in vitro. We further discuss current applications and forthcoming strategies to investigate the mechanical processes of intestinal stem cell differentiation, tissue formation, and the interaction of the intestine with the microbiota in the context of gastrointestinal diseases.
Collapse
Affiliation(s)
- Fatina Siwczak
- Center for Sepsis Control and Care & Institute of Biochemistry II, University Hospital Jena, Jena, Germany
| | - Elise Loffet
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Mathilda Kaminska
- Center for Sepsis Control and Care & Institute of Biochemistry II, University Hospital Jena, Jena, Germany
| | - Hristina Koceva
- Center for Sepsis Control and Care & Institute of Biochemistry II, University Hospital Jena, Jena, Germany
| | - Maxime M. Mahe
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Maxime M. Mahe, ; Alexander S. Mosig,
| | - Alexander S. Mosig
- Center for Sepsis Control and Care & Institute of Biochemistry II, University Hospital Jena, Jena, Germany
- *Correspondence: Maxime M. Mahe, ; Alexander S. Mosig,
| |
Collapse
|
6
|
Shi J, Tong L, Tong W, Chen H, Lan M, Sun X, Zhu Y. Current progress in long-term and continuous cell metabolite detection using microfluidics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Rivera KR, Yokus MA, Erb PD, Pozdin VA, Daniele M. Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst 2019; 144:3190-3215. [PMID: 30968094 PMCID: PMC6564678 DOI: 10.1039/c8an02201a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As microfabrication techniques and tissue engineering methods improve, microphysiological systems (MPS) are being engineered that recapitulate complex physiological and pathophysiological states to supplement and challenge traditional animal models. Although MPS provide unique microenvironments that transcend common 2D cell culture, without proper regulation of oxygen content, MPS often fail to provide the biomimetic environment necessary to activate and investigate fundamental pathways of cellular metabolism and sub-cellular level. Oxygen exists in the human body in various concentrations and partial pressures; moreover, it fluctuates dramatically depending on fasting, exercise, and sleep patterns. Regulating oxygen content inside MPS necessitates a sensitive biological sensor to quantify oxygen content in real-time. Measuring oxygen in a microdevice is a non-trivial requirement for studies focused on understanding how oxygen impacts cellular processes, including angiogenesis and tumorigenesis. Quantifying oxygen inside a microdevice can be achieved via an array of technologies, with each method having benefits and limitations in terms of sensitivity, limits of detection, and invasiveness that must be considered and optimized. This article will review oxygen physiology in organ systems and offer comparisons of organ-specific MPS that do and do not consider oxygen microenvironments. Materials used in microphysiological models will also be analyzed in terms of their ability to control oxygen. Finally, oxygen sensor technologies are critically compared and evaluated for use in MPS.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
8
|
Loukas CM, Mowlem MC, Tsaloglou MN, Green NG. A novel portable filtration system for sampling and concentration of microorganisms: Demonstration on marine microalgae with subsequent quantification using IC-NASBA. HARMFUL ALGAE 2018; 75:94-104. [PMID: 29778229 DOI: 10.1016/j.hal.2018.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
This paper presents a novel portable sample filtration/concentration system, designed for use on samples of microorganisms with very low cell concentrations and large volumes, such as water-borne parasites, pathogens associated with faecal matter, or toxic phytoplankton. The example application used for demonstration was the in-field collection and concentration of microalgae from seawater samples. This type of organism is responsible for Harmful Algal Blooms (HABs), an example of which is commonly referred to as "red tides", which are typically the result of rapid proliferation and high biomass accumulation of harmful microalgal species in the water column or at the sea surface. For instance, Karenia brevis red tides are the cause of aquatic organism mortality and persistent blooms may cause widespread die-offs of populations of other organisms including vertebrates. In order to respond to, and adequately manage HABs, monitoring of toxic microalgae is required and large-volume sample concentrators would be a useful tool for in situ monitoring of HABs. The filtering system presented in this work enables consistent sample collection and concentration from 1 L to 1 mL in five minutes, allowing for subsequent benchtop sample extraction and analysis using molecular methods such as NASBA and IC-NASBA. The microalga Tetraselmis suecica was successfully detected at concentrations ranging from 2 × 105 cells/L to 20 cells/L. Karenia brevis was also detected and quantified at concentrations between 10 cells/L and 106 cells/L. Further analysis showed that the filter system, which concentrates cells from very large volumes with consequently more reliable sampling, produced samples that were more consistent than the independent non-filtered samples (benchtop controls), with a logarithmic dependency on increasing cell numbers. This filtering system provides simple, rapid, and consistent sample collection and concentration for further analysis, and could be applied to a wide range of different samples and target organisms in situations lacking laboratories.
Collapse
Affiliation(s)
- Christos-Moritz Loukas
- National Oceanography Centre (NOC), University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom; Department of Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom.
| | - Matthew C Mowlem
- National Oceanography Centre (NOC), University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom.
| | - Maria-Nefeli Tsaloglou
- National Oceanography Centre (NOC), University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom; Department of Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom; Institute for Life Sciences, University of Southampton Highfield Campus, Highfield, Southampton, SO17 1BJ, United Kingdom.
| | - Nicolas G Green
- Institute for Life Sciences, University of Southampton Highfield Campus, Highfield, Southampton, SO17 1BJ, United Kingdom; School of Electronics and Computer Science (ECS), University of Southampton Highfield Campus, Highfield, Southampton, SO17 1BJ, United Kingdom.
| |
Collapse
|
9
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
10
|
Gruber P, Marques MPC, Szita N, Mayr T. Integration and application of optical chemical sensors in microbioreactors. LAB ON A CHIP 2017; 17:2693-2712. [PMID: 28725897 DOI: 10.1039/c7lc00538e] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available.
Collapse
Affiliation(s)
- Pia Gruber
- Department of Biochemical Engineering, University College London, Gower Street, WC1E 6BT, London, UK.
| | | | | | | |
Collapse
|
11
|
Super A, Jaccard N, Cardoso Marques MP, Macown RJ, Griffin LD, Veraitch FS, Szita N. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device. Biotechnol J 2016; 11:1179-89. [PMID: 27214658 PMCID: PMC5103178 DOI: 10.1002/biot.201500479] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 02/15/2016] [Accepted: 05/12/2016] [Indexed: 01/07/2023]
Abstract
Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies.
Collapse
Affiliation(s)
- Alexandre Super
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Nicolas Jaccard
- Department of Biochemical Engineering, University College London, London, United Kingdom.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom.,Department of Computer Science, University College London, London, United Kingdom
| | | | - Rhys Jarred Macown
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Lewis Donald Griffin
- Department of Computer Science, University College London, London, United Kingdom
| | - Farlan Singh Veraitch
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London, United Kingdom.
| |
Collapse
|
12
|
Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci Rep 2016; 6:21155. [PMID: 26852806 PMCID: PMC4745075 DOI: 10.1038/srep21155] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/30/2015] [Indexed: 12/02/2022] Open
Abstract
Microalgae possess great potential as a source of sustainable energy, but the intrinsic inefficiency of photosynthesis is a major challenge to realize this potential. Photosynthetic organisms evolved phototaxis to find optimal light condition for photosynthesis. Here we report a microfluidic screening using competitive phototaxis of the model alga, Chlamydomonas reinhardtii, for rapid isolation of strains with improved photosynthetic efficiencies. We demonstrated strong relationship between phototaxis and photosynthetic efficiency by quantitative analysis of phototactic response at the single-cell level using a microfluidic system. Based on this positive relationship, we enriched the strains with improved photosynthetic efficiency by isolating cells showing fast phototactic responses from a mixture of 10,000 mutants, thereby greatly improving selection efficiency over 8 fold. Among 147 strains isolated after screening, 94.6% showed improved photoautotrophic growth over the parental strain. Two mutants showed much improved performances with up to 1.9- and 8.1-fold increases in photoautotrophic cell growth and lipid production, respectively, a substantial improvement over previous approaches. We identified candidate genes that might be responsible for fast phototactic response and improved photosynthesis, which can be useful target for further strain engineering. Our approach provides a powerful screening tool for rapid improvement of microalgal strains to enhance photosynthetic productivity.
Collapse
|
13
|
Pfeiffer SA, Nagl S. Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications. Methods Appl Fluoresc 2015; 3:034003. [DOI: 10.1088/2050-6120/3/3/034003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Sun S, Ungerböck B, Mayr T. Imaging of oxygen in microreactors and microfluidic systems. Methods Appl Fluoresc 2015; 3:034002. [DOI: 10.1088/2050-6120/3/3/034002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Giuntini F, Chauhan VM, Aylott JW, Rosser GA, Athanasiadis A, Beeby A, MacRobert AJ, Brown RA, Boyle RW. Conjugatable water-soluble Pt(II) and Pd(II) porphyrin complexes: novel nano- and molecular probes for optical oxygen tension measurement in tissue engineering. Photochem Photobiol Sci 2014; 13:1039-51. [PMID: 24818569 DOI: 10.1039/c4pp00026a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurement of oxygen tension in compressed collagen sheets was performed using matrix-embedded optical oxygen sensors based on platinum(II) and palladium(II) porphyrins supported on polyacrylamide nanoparticles. Bespoke, fully water-soluble, mono-functionalised Pt(II) and Pd(II) porphyrin complexes designed for conjugation under mild conditions were obtained using microwave-assisted metallation. The new sensors display a linear response (1/τ vs. O2) to varying oxygen tension over a biologically relevant range (7.0 × 10(-4) to 2.7 × 10(-1) mM) in aqueous solutions; a behaviour that is maintained following conjugation to polyacrylamide nanoparticles, and following embedding of the nanosensors in compressed collagen sheets, paving the way to innovative approaches for real-time resolution of oxygen gradients throughout 3D matrices useful for tissue regeneration.
Collapse
Affiliation(s)
- F Giuntini
- Department of Chemistry, University of Hull, Hull, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gitlin L, Hoera C, Meier RJ, Nagl S, Belder D. Micro flow reactor chips with integrated luminescent chemosensors for spatially resolved on-line chemical reaction monitoring. LAB ON A CHIP 2013; 13:4134-41. [PMID: 23970303 DOI: 10.1039/c3lc50387a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Real-time chemical reaction monitoring in microfluidic environments is demonstrated using luminescent chemical sensors integrated in PDMS/glass-based microscale reactors. A fabrication procedure is presented that allows for straightforward integration of thin polymer layers with optical sensing functionality in microchannels of glass-PDMS chips of only 150 μm width and of 10 to 35 μm height. Sensor layers consisting of polystyrene and an oxygen-sensitive platinum porphyrin probe with film thicknesses of about 0.5 to 4 μm were generated by combining spin coating and abrasion techniques. Optimal coating procedures were developed and evaluated. The chip-integrated sensor layers were calibrated and investigated with respect to stability, reproducibility and response times. These microchips allowed observation of dissolved oxygen concentration in the range of 0 to over 40 mg L(-1) with a detection limit of 368 μg L(-1). The sensor layers were then used for observation of a model reaction, the oxidation of sulphite to sulphate in a microfluidic chemical reactor and could observe sulphite concentrations of less than 200 μM. Real-time on-line monitoring of this chemical reaction was realized at a fluorescence microscope setup with 405 nm LED excitation and CCD camera detection.
Collapse
Affiliation(s)
- Leonid Gitlin
- Institut für Analytische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
17
|
Ungerböck B, Charwat V, Ertl P, Mayr T. Microfluidic oxygen imaging using integrated optical sensor layers and a color camera. LAB ON A CHIP 2013; 13:1593-601. [PMID: 23443957 DOI: 10.1039/c3lc41315b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this work we present a high resolution oxygen imaging approach, which can be used to study 2D oxygen distribution inside microfluidic environments. The presented setup comprises a fabrication process of microfluidic chips with integrated luminescent sensing films combined with referenced oxygen imaging applying a color CCD-camera. Enhancement of the sensor performance was achieved by applying the principle of light harvesting. This principle enabled ratiometric imaging employing the red and the green channel of a color CCD-camera. The oxygen sensitive emission of platinum(ii)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin (PtTFPP) was detected by the red channel, while the emission of a reference dye was detected by the green channel. This measurement setup allowed for accurate real-time 2D oxygen imaging with superior quality compared to intensity imaging. The sensor films were subsequently used to measure the respiratory activity of human cell cultures (HeLa carcinoma cells and normal human dermal fibroblasts) in a microfluidic system. The sensor setup is well suited for different applications from spatially and temporally resolving oxygen concentration inside microfluidic channels to parallelization of oxygen measurements and paves the way to novel cell based assays, e.g. in tissue engineering, tumor biology and hypoxia reperfusion phenomena.
Collapse
Affiliation(s)
- Birgit Ungerböck
- Applied Sensors, Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9/3, 8010 Graz, Austria
| | | | | | | |
Collapse
|
18
|
Kantak C, Zhu Q, Beyer S, Bansal T, Trau D. Utilizing microfluidics to synthesize polyethylene glycol microbeads for Förster resonance energy transfer based glucose sensing. BIOMICROFLUIDICS 2012; 6:22006-220069. [PMID: 22655010 PMCID: PMC3360714 DOI: 10.1063/1.3694869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/01/2012] [Indexed: 05/23/2023]
Abstract
Here, we utilize microfluidic droplet technology to generate photopolymerizeable polyethylene glycol (PEG) hydrogel microbeads incorporating a fluorescence-based glucose bioassay. A microfluidic T-junction and multiphase flow of fluorescein isothiocyanate dextran, tetramethyl rhodamine isothiocyanate concanavalin A, and PEG in water were used to generate microdroplets in a continuous stream of hexadecane. The microdroplets were photopolymerized mid-stream with ultraviolet light exposure to form PEG microbeads and were collected at the outlet for further analysis. Devices were prototyped in PDMS and generated highly monodisperse 72 ± 2 μm sized microbeads (measured after transfer into aqueous phase) at a continuous flow rate between 0.04 ml/h-0.06 ml/h. Scanning electron microscopy analysis was conducted to analyze and confirm microbead integrity and surface morphology. Glucose sensing was carried out using a Förster resonance energy transfer (FRET) based assay. A proportional fluorescence intensity increase was measured within a 1-10 mM glucose concentration range. Microfluidically synthesized microbeads encapsulating sensing biomolecules offer a quick and low cost method to generate monodisperse biosensors for a variety of applications including cell cultures systems, tissue engineering, etc.
Collapse
|
19
|
Gao D, Liu H, Jiang Y, Lin JM, Gao D, Liu H, Jiang Y. Recent developments in microfluidic devices for in vitro cell culture for cell-biology research. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Chandrasekaran S, Giang UBT, King MR, DeLouise LA. Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes (HaCaT) cultured in microbubbles formed in polydimethylsiloxane. Biomaterials 2011; 32:7159-68. [PMID: 21724250 DOI: 10.1016/j.biomaterials.2011.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/07/2011] [Indexed: 11/24/2022]
Abstract
The in vivo cellular microenvironment is regulated by a complex interplay of soluble factors and signaling molecules secreted by cells and it plays a critical role in the growth and development of normal and diseased tissues. In vitro systems that can recapitulate the microenvironment at the cellular level are needed to investigate the influence of autocrine signaling and extracellular matrix effects on tissue homeostasis, regeneration, disease development and progression. In this study, we report the use of microbubble technology as a means to culture cells in a controlled microenvironment in which cells can influence their function through autocrine signaling. Microbubbles (MB) are small spherical cavities about 100-300 μm in diameter formed in hydrophobic polydimethylsiloxane (PDMS) with ∼60-100 μm circular openings and aspect ratio ∼3.0. We demonstrate that the unique architecture of the microbubble compartment is advantaged for cell culture using HaCaT cells, an immortalized keratinocyte cell line. We observe that HaCaT cells, seeded in microbubbles (15-20 cells/MB) and cultured under standard conditions, adopt a compact 3D spheroidal morphology. Within 2-3 days, the cells transition to a sheeting morphology. Through experimentation and simulation we show that this transition in morphology is due to the unique architecture of the microbubble compartment which enables cells to condition their local microenvironment. The small media volume per cell and the development of shallow concentration gradients allow factors secreted by the cells to rise to bioactive levels. The kinetics of the morphology transition depends on the number of cells seeded per microbubble; higher cell seeding induces a more rapid transition. HaCaT cells seeded onto PDMS cured in 96-well plates also form compact spheroids but they do not undergo a transition to a sheeting morphology even after several weeks of culture. The importance of soluble factor accumulation in driving this morphology transition in microbubbles is supported by the observation that spheroids do not form when cells - seeded into microbubbles or onto PDMS cured in 96-well plates - are cultured in media conditioned by HaCaT cells grown in standard tissue culture plate. We observed that the addition of TGF-β1 to the growth media induced cells to proliferate in a sheeting morphology from the onset both on PDMS cured in 96-well plates and in microbubbles. TGF-β1 is a morphogen known to regulate epithelial-to-mesenchymal transition (EMT). Studies of the role of Ca(2+) concentration and changes in E-cadherin expression additionally support an EMT-like HaCaT morphology transition. These findings taken together validate the microbubble compartment as a unique cell culture platform that can potentially transform investigative studies in cell biology and in particular the tumor microenvironment. Targeting the tumor microenvironment is an emerging area of anti-cancer therapy.
Collapse
|
21
|
Nagl S, Schulze P, Ohla S, Beyreiss R, Gitlin L, Belder D. Microfluidic chips for chirality exploration. Anal Chem 2011; 83:3232-8. [DOI: 10.1021/ac200150w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Huang M, Fan S, Xing W, Liu C. Microfluidic cell culture system studies and computational fluid dynamics. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.mcm.2010.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Grist SM, Chrostowski L, Cheung KC. Optical oxygen sensors for applications in microfluidic cell culture. SENSORS (BASEL, SWITZERLAND) 2010; 10:9286-316. [PMID: 22163408 PMCID: PMC3230974 DOI: 10.3390/s101009286] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/17/2010] [Accepted: 10/10/2010] [Indexed: 01/09/2023]
Abstract
The presence and concentration of oxygen in biological systems has a large impact on the behavior and viability of many types of cells, including the differentiation of stem cells or the growth of tumor cells. As a result, the integration of oxygen sensors within cell culture environments presents a powerful tool for quantifying the effects of oxygen concentrations on cell behavior, cell viability, and drug effectiveness. Because microfluidic cell culture environments are a promising alternative to traditional cell culture platforms, there is recent interest in integrating oxygen-sensing mechanisms with microfluidics for cell culture applications. Optical, luminescence-based oxygen sensors, in particular, show great promise in their ability to be integrated with microfluidics and cell culture systems. These sensors can be highly sensitive and do not consume oxygen or generate toxic byproducts in their sensing process. This paper presents a review of previously proposed optical oxygen sensor types, materials and formats most applicable to microfluidic cell culture, and analyzes their suitability for this and other in vitro applications.
Collapse
Affiliation(s)
- Samantha M. Grist
- Department of Electrical & Computer Engineering, University of British Columbia/2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; E-Mails: (L.C.); (K.C.C.)
| | - Lukas Chrostowski
- Department of Electrical & Computer Engineering, University of British Columbia/2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; E-Mails: (L.C.); (K.C.C.)
| | - Karen C. Cheung
- Department of Electrical & Computer Engineering, University of British Columbia/2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; E-Mails: (L.C.); (K.C.C.)
| |
Collapse
|
24
|
Salieb-Beugelaar GB, Simone G, Arora A, Philippi A, Manz A. Latest developments in microfluidic cell biology and analysis systems. Anal Chem 2010; 82:4848-64. [PMID: 20462184 DOI: 10.1021/ac1009707] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|