1
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
2
|
Chen X, Yao H, Song D, Lin J, Zhou H, Yuan W, Song P, Sun G, Xu M. A novel antimony-selective ArsR transcriptional repressor and its specific detection of antimony trioxide in environmental samples via bacterial biosensor. Biosens Bioelectron 2022; 220:114838. [DOI: 10.1016/j.bios.2022.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
3
|
Zhang D, Tang T, Zhang Z, Le L, Xu Z, Lu H, Tong Z, Zeng D, Wong WY, Yin SF, Ghaderi A, Kambe N, Qiu R. Nickel- and Palladium-Catalyzed Cross-Coupling of Stibines with Organic Halides: Site-Selective Sequential Reactions with Polyhalogenated Arenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dejiang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ting Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhi Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hao Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dishu Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Arash Ghaderi
- Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Wang R, Wei Y, Wang M, Yan P, Jiang H, Du Z. Interaction of Natural Compounds in Licorice and Turmeric with HIV-NCp7 Zinc Finger Domain: Potential Relevance to the Mechanism of Antiviral Activity. Molecules 2021; 26:molecules26123563. [PMID: 34200973 PMCID: PMC8230585 DOI: 10.3390/molecules26123563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023] Open
Abstract
Nucleocapsid proteins (NCp) are zinc finger (ZF) proteins, and they play a central role in HIV virus replication, mainly by interacting with nucleic acids. Therefore, they are potential targets for anti-HIV therapy. Natural products have been shown to be able to inhibit HIV, such as turmeric and licorice, which is widely used in traditional Chinese medicine. Liquiritin (LQ), isoliquiritin (ILQ), glycyrrhizic acid (GL), glycyrrhetinic acid (GA) and curcumin (CUR), which were the major active components, were herein chosen to study their interactions with HIV-NCp7 C-terminal zinc finger, aiming to find the potential active compounds and reveal the mechanism involved. The stacking interaction between NCp7 tryptophan and natural compounds was evaluated by fluorescence. To elucidate the binding mode, mass spectrometry was used to characterize the reaction mixture between zinc finger proteins and active compounds. Subsequently, circular dichroism (CD) spectroscopy and molecular docking were used to validate and reveal the binding mode from a structural perspective. The results showed that ILQ has the strongest binding ability among the tested compounds, followed by curcumin, and the interaction between ILQ and the NCp7 zinc finger peptide was mediated by a noncovalent interaction. This study provided a scientific basis for the antiviral activity of turmeric and licorice.
Collapse
Affiliation(s)
- Runjing Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
- Ningxia Pharmaceutical Inspection and Research Institute, Yinchuan 750001, China
| | - Yinyu Wei
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
| | - Meiqin Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
| | - Pan Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
- Correspondence:
| |
Collapse
|
5
|
Leishmaniasis: where are we and where are we heading? Parasitol Res 2021; 120:1541-1554. [PMID: 33825036 DOI: 10.1007/s00436-021-07139-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/24/2021] [Indexed: 01/19/2023]
Abstract
Leishmaniasis is a zoonotic disease in humans caused by the bite of a parasite-infected sandfly. The disease, widely referred to as "poor man's disease," affects millions of people worldwide. The clinical manifestation of the disease depends upon the species of the parasite and ranges from physical disfigurement to death if left untreated. Here, we review the past, present, and future of leishmaniasis in detail. The life cycle of Leishmania sp., along with its epidemiology, is discussed, and in addition, the line of therapeutics available for treatment currently is examined. The current status of the disease is critically evaluated, keeping emerging threats like human immunodeficiency virus (HIV) coinfection and post kala-azar dermal leishmaniasis (PKDL) into consideration. In summary, the review proposes a dire need for new therapeutics and reassessment of the measures and policies concerning emerging threats. New strategies are essential to achieve the goal of leishmaniasis eradication in the next few decades.
Collapse
|
6
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
7
|
de Paiva REF, Marçal Neto A, Santos IA, Jardim ACG, Corbi PP, Bergamini FRG. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans 2020; 49:16004-16033. [PMID: 33030464 DOI: 10.1039/d0dt02478c] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In light of the Covid-19 outbreak, this review brings together historical and current literature efforts towards the development of antiviral metallodrugs. Classical compounds such as CTC-96 and auranofin are discussed in depth, as pillars for future metallodrug development. From the recent literature, both cell-based results and biophysical assays against potential viral biomolecule targets are summarized here. The comprehension of the biomolecular targets and their interactions with coordination compounds are emphasized as fundamental strategies that will foment further development of metal-based antivirals. We also discuss other possible and unexplored methods for unveiling metallodrug interactions with biomolecules related to viral replication and highlight the specific challenges involved in the development of antiviral metallodrugs.
Collapse
Affiliation(s)
- Raphael E F de Paiva
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP - 05508-000, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
Andrade JM, Gonçalves LO, Liarte DB, Lima DA, Guimarães FG, de Melo Resende D, Santi AMM, de Oliveira LM, Velloso JPL, Delfino RG, Pescher P, Späth GF, Ruiz JC, Murta SMF. Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines. Parasit Vectors 2020; 13:600. [PMID: 33256787 PMCID: PMC7706067 DOI: 10.1186/s13071-020-04486-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
Background One of the major challenges to leishmaniasis treatment is the emergence of parasites resistant to antimony. To study differentially expressed genes associated with drug resistance, we performed a comparative transcriptomic analysis between wild-type and potassium antimonyl tartrate (SbIII)-resistant Leishmania infantum lines using high-throughput RNA sequencing. Methods All the cDNA libraries were constructed from promastigote forms of each line, sequenced and analyzed using STAR for mapping the reads against the reference genome (L. infantum JPCM5) and DESeq2 for differential expression statistical analyses. All the genes were functionally annotated using sequence similarity search. Results The analytical pipeline considering an adjusted p-value < 0.05 and fold change > 2.0 identified 933 transcripts differentially expressed (DE) between wild-type and SbIII-resistant L. infantum lines. Out of 933 DE transcripts, 504 presented functional annotation and 429 were assigned as hypothetical proteins. A total of 837 transcripts were upregulated and 96 were downregulated in the SbIII-resistant L. infantum line. Using this DE dataset, the proteins were further grouped in functional classes according to the gene ontology database. The functional enrichment analysis for biological processes showed that the upregulated transcripts in the SbIII-resistant line are associated with protein phosphorylation, microtubule-based movement, ubiquitination, host–parasite interaction, cellular process and other categories. The downregulated transcripts in the SbIII-resistant line are assigned in the GO categories: ribonucleoprotein complex, ribosome biogenesis, rRNA processing, nucleosome assembly and translation. Conclusions The transcriptomic profile of L. infantum showed a robust set of genes from different metabolic pathways associated with the antimony resistance phenotype in this parasite. Our results address the complex and multifactorial antimony resistance mechanisms in Leishmania, identifying several candidate genes that may be further evaluated as molecular targets for chemotherapy of leishmaniasis.![]()
Collapse
Affiliation(s)
- Juvana Moreira Andrade
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Leilane Oliveira Gonçalves
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.,Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Davi Alvarenga Lima
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.,Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | | | - Daniela de Melo Resende
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.,Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Ana Maria Murta Santi
- Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Luciana Marcia de Oliveira
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | | | - Renato Guimarães Delfino
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Pascale Pescher
- Unité de Parasitologie moléculaire et Signalisation, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Gerald F Späth
- Unité de Parasitologie moléculaire et Signalisation, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Jeronimo Conceição Ruiz
- Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil. .,Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
9
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Synthesis of heteroleptic pentavalent antimonials bearing heterocyclic cinnamate moieties and their biological studies. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Shimberg GD, Ok K, Neu HM, Splan KE, Michel SLJ. Cu(I) Disrupts the Structure and Function of the Nonclassical Zinc Finger Protein Tristetraprolin (TTP). Inorg Chem 2017; 56:6838-6848. [PMID: 28557421 DOI: 10.1021/acs.inorgchem.7b00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tristetraprolin (TTP) is a nonclassical zinc finger (ZF) protein that plays a key role in regulating inflammatory response. TTP regulates cytokines at the mRNA level by binding to AU-rich sequences present at the 3'-untranslated region, forming a complex that is then degraded. TTP contains two conserved CCCH domains with the sequence CysX8CysX5CysX3His that are activated to bind RNA when zinc is coordinated. During inflammation, copper levels are elevated, which is associated with increased inflammatory response. A potential target for Cu(I) during inflammation is TTP. To determine whether Cu(I) binds to TTP and how Cu(I) can affect TTP/RNA binding, two TTP constructs were prepared. One construct contained just the first CCCH domain (TTP-1D) and serves as a peptide model for a CCCH domain; the second construct contains both CCCH domains (TTP-2D) and is functional (binds RNA) when Zn(II) is coordinated. Cu(I) binding to TTP-1D was assessed via electronic absorption spectroscopy titrations, and Cu(I) binding to TTP-2D was assessed via both absorption spectroscopy and a spin filter/inductively coupled plasma mass spectrometry (ICP-MS) assay. Cu(I) binds to TTP-1D with a 1:1 stoichiometry and to TTP-2D with a 3:1 stoichiometry. The CD spectrum of Cu(I)-TTP-2D did not exhibit any secondary structure, matching that of apo-TTP-2D, while Zn(II)-TTP-2D exhibited a secondary structure. Measurement of RNA binding via fluorescence anisotropy revealed that Cu(I)-TTP-2D does not bind to the TTP-2D RNA target sequence UUUAUUUAUUU with any measurable affinity, while Zn(II)-TTP-2D binds to this site with nanomolar affinity. Similarly, addition of Cu(I) to the Zn(II)-TTP-2D/RNA complex resulted in inhibition of RNA binding. Together, these data indicate that, while Cu(I) binds to TTP-2D, it does not result in a folded or functional protein and that Cu(I) inhibits Zn(II)-TTP-2D/RNA binding.
Collapse
Affiliation(s)
- Geoffrey D Shimberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kiwon Ok
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Heather M Neu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kathryn E Splan
- Department of Chemistry, Macalester College , 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
12
|
Verdugo M, Ogra Y, Quiroz W. Mechanisms underlying the toxic effects of antimony species in human embryonic kidney cells (HEK-293) and their comparison with arsenic species. J Toxicol Sci 2017; 41:783-792. [PMID: 27853107 DOI: 10.2131/jts.41.783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antimony cytotoxicity was assessed in human embryonic kidney cells (HEK-293). Uptake, mitochondrial respiratory activity, ROS generation and diffusional kinetics were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, the toxic effect induced by Sb was compared with As toxicity in regard to ROS generation and diffusional kinetics, which provides information on the protein aggregation process. Our results show a favored uptake of Sb(III) and a more severe effect, decreasing the mitochondrial activity more than in the presence of Sb(V). In comparison with As, the Sb species did not generate a significant increase in ROS generation, which was observed with As(III) and As(V). FRAP analysis yielded important information on the diffusion and binding dynamics of live cells in presence of these metalloids. The mobile fraction showed a strong decrease with the As species and Sb(III). The diffusion rate and the koff-rate were significantly decreased for the As and Sb species but were more strong in the presence of As(III).
Collapse
Affiliation(s)
- Marcelo Verdugo
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | |
Collapse
|
13
|
Mushtaq R, Rauf MK, Bolte M, Nadhman A, Badshah A, Tahir MN, Yasinzai M, Khan KM. Synthesis, characterization and antileishmanial studies of some bioactive heteroleptic pentavalent antimonials. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rabia Mushtaq
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | | | - Michael Bolte
- Institut für Anorganische Chemie, J.W. Goethe-Universität Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt/Main Germany
| | - Akhtar Nadhman
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS); International Islamic University; Islamabad 44000 Pakistan
| | - Amin Badshah
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | | | - Masoom Yasinzai
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS); International Islamic University; Islamabad 44000 Pakistan
| | - Khalid Mohammed Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences; University of Karachi; Karachi 75270 Pakistan
| |
Collapse
|
14
|
Mushtaq R, Rauf MK, Bond M, Badshah A, Ali MI, Nadhman A, Yasinzai M, Tahir MN. A structural investigation of heteroleptic pentavalent antimonials and their leishmanicidal activity. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rabia Mushtaq
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | | | - Marcus Bond
- Department of Chemistry; Southeast Missouri State University; Cape Girardeau, MO 63701 USA
| | - Amin Badshah
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | | | - Akhtar Nadhman
- Department of Biotechnology; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Masoom Yasinzai
- Department of Biotechnology; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | | |
Collapse
|
15
|
No JH. Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Trop 2016; 155:113-23. [PMID: 26748356 DOI: 10.1016/j.actatropica.2015.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/24/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
The current treatments for visceral leishmaniasis are old and toxic with limited routes of administration. The emergence of drug-resistant Leishmania threatens the efficacy of the existing reservoir of antileishmanials, leading to an urgent need to develop new treatments. It is particularly important to review and understand how the current treatments act against Leishmania in order to identify valid drug targets or essential pathways for next-generation antileishmanials. It is equally important to adapt newly emerging biotechnologies to facilitate the current research on the development of novel antileishmanials in an efficient fashion. This review covers the basic background of the current visceral leishmaniasis treatments with an emphasis on the modes of action. It briefly discusses the role of the immune system in aiding the chemotherapy of leishmaniasis, describes potential new antileishmanial drug targets and pathways, and introduces recent progress on the utilization of high-throughput phenotypic screening assays to identify novel antileishmanial compounds.
Collapse
Affiliation(s)
- Joo Hwan No
- Institut Pasteur Korea, Leishmania Research Laboratory, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
16
|
Yamamoto ES, Campos BLS, Jesus JA, Laurenti MD, Ribeiro SP, Kallás EG, Rafael-Fernandes M, Santos-Gomes G, Silva MS, Sessa DP, Lago JHG, Levy D, Passero LFD. The Effect of Ursolic Acid on Leishmania (Leishmania) amazonensis Is Related to Programed Cell Death and Presents Therapeutic Potential in Experimental Cutaneous Leishmaniasis. PLoS One 2015; 10:e0144946. [PMID: 26674781 PMCID: PMC4699202 DOI: 10.1371/journal.pone.0144946] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Among neglected tropical diseases, leishmaniasis is one of the most important ones, affecting more than 12 million people worldwide. The available treatments are not well tolerated, and present diverse side effects, justifying the search for new therapeutic compounds. In the present study, the activity of ursolic acid (UA) and oleanolic acid (OA) were assayed in experimental cutaneous leishmaniasis (in vitro and in vivo). Promastigote forms of L. amazonensis were incubated with OA and UA for 24h, and effective concentration 50% (EC50) was estimated. Ultraestructural alterations in Leishmania amazonensis promastigotes after UA treatment were evaluated by transmission electron microscopy, and the possible mode of action was assayed through Annexin V and propidium iodide staining, caspase 3/7 activity, DNA fragmentation and transmembrane mitochondrial potential. The UA potential was evaluated in intracellular amastigotes, and its therapeutic potential was evaluated in L. amazonensis infected BALB/c mice. UA eliminated L. amazonensis promastigotes with an EC50 of 6.4 μg/mL, comparable with miltefosine, while OA presented only a marginal effect on promastigote forms at 100 μg/mL. The possible mechanism by which promastigotes were eliminated by UA was programmed cell death, independent of caspase 3/7, but it was highly dependent on mitochondria activity. UA was not toxic for peritoneal macrophages from BALB/c mice, and it was able to eliminate intracellular amastigotes, associated with nitric oxide (NO) production. OA did not eliminate amastigotes nor trigger NO. L. amazonensis infected BALB/c mice submitted to UA treatment presented lesser lesion size and parasitism compared to control. This study showed, for the first time, that UA eliminate promastigote forms through a mechanism associated with programed cell death, and importantly, was effective in vivo. Therefore, UA can be considered an interesting candidate for future tests as a prototype drug for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Bruno L S Campos
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Jéssica A Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Susan P Ribeiro
- Laboratory of Clinical Immunology and Allergy (LIM60), University of São Paulo, School of Medicine. Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, Brazil
- Department of Pathology, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, United States of America
| | - Esper G Kallás
- Laboratory of Clinical Immunology and Allergy (LIM60), University of São Paulo, School of Medicine. Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, Brazil
| | - Mariana Rafael-Fernandes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Marcelo S Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Deborah P Sessa
- Institute of Environmental, Chemical and Pharmaceutical Sciences - Federal University of São Paulo, Rua São Nicolau, 210, 09920-000, Diadema, SP, Brazil
| | - João H G Lago
- Institute of Environmental, Chemical and Pharmaceutical Sciences - Federal University of São Paulo, Rua São Nicolau, 210, 09920-000, Diadema, SP, Brazil
| | - Débora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo, School of Medicine. Av. Dr. Enéas de Carvalho Aguiar, 155. Cerqueira César, São Paulo, Brazil
| | - Luiz F D Passero
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| |
Collapse
|
17
|
Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite. J Biol Inorg Chem 2015; 20:771-9. [DOI: 10.1007/s00775-015-1264-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/14/2015] [Indexed: 02/05/2023]
|
18
|
Castro RAO, Silva-Barcellos NM, Licio CSA, Souza JB, Souza-Testasicca MC, Ferreira FM, Batista MA, Silveira-Lemos D, Moura SL, Frézard F, Rezende SA. Association of liposome-encapsulated trivalent antimonial with ascorbic acid: an effective and safe strategy in the treatment of experimental visceral leishmaniasis. PLoS One 2014; 9:e104055. [PMID: 25105501 PMCID: PMC4126701 DOI: 10.1371/journal.pone.0104055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/05/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a chronic debilitating disease endemic in tropical and subtropical areas, caused by protozoan parasites of the genus Leishmania. Annually, it is estimated the occurrence of 0.2 to 0.4 million new cases of the disease worldwide. Considering the lack of an effective vaccine the afflicted population must rely on both, an accurate diagnosis and successful treatment to combat the disease. Here we propose to evaluate the efficacy of trivalent antimonial encapsulated in conventional liposomes, in association with ascorbic acid, by monitoring its toxicity and efficacy in BALB/c mice infected with Leishmania infantum. METHODOLOGY/PRINCIPAL FINDINGS Infected mice were subjected to single-dose treatments consisting in the administration of either free or liposome-encapsulated trivalent antimony (SbIII), in association or not with ascorbic acid. Parasite burden was assessed in the liver, spleen and bone marrow using the serial limiting dilution technique. After treatment, tissue alterations were examined by histopathology of liver, heart and kidney and confirmed by serum levels of classic biomarkers. The phenotypic profile of splenocytes was also investigated by flow cytometry. Treatment with liposome-encapsulated SbIII significantly reduced the parasite burden in the liver, spleen and bone marrow. Co-administration of ascorbic acid, with either free SbIII or its liposomal form, did not interfere with its leishmanicidal activity and promoted reduced toxicity particularly to the kidney and liver tissues. CONCLUSIONS/SIGNIFICANCE Among the evaluated posological regimens treatment of L. infantum-infected mice with liposomal SbIII, in association with ascorbic acid, represented the best alternative as judged by its high leishmanicidal activity and absence of detectable toxic effects. Of particular importance, reduction of parasite burden in the bone marrow attested to the ability of SbIII-carrying liposomes to efficiently reach this body compartment.
Collapse
Affiliation(s)
- Renata A. O. Castro
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Neila M. Silva-Barcellos
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Carolina S. A. Licio
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Janine B. Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Míriam C. Souza-Testasicca
- Coordenadoria da Área de Ciências Biológicas, Instituto Federal de Minas Gerais - Campus Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Flávia M. Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Mauricio A. Batista
- Programa de Pós-Graduação em Ciências Biológicas – NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Denise Silveira-Lemos
- Programa de Pós-Graduação em Ciências Biológicas – NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Sandra L. Moura
- Programa de Pós-Graduação em Ciências Biológicas – NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Simone A. Rezende
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- * E-mail:
| |
Collapse
|
19
|
Characterization of the proliferating cell nuclear antigen of Leishmania donovani clinical isolates and its association with antimony resistance. Antimicrob Agents Chemother 2014; 58:2997-3007. [PMID: 24614385 DOI: 10.1128/aac.01847-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previously, through a proteomic analysis, proliferating cell nuclear antigen (PCNA) was found to be overexpressed in the sodium antimony gluconate (SAG)-resistant clinical isolate compared to that in the SAG-sensitive clinical isolate of Leishmania donovani. The present study was designed to explore the potential role of the PCNA protein in SAG resistance in L. donovani. For this purpose, the protein was cloned, overexpressed, purified, and modeled. Western blot (WB) and real-time PCR (RT-PCR) analyses confirmed that PCNA was overexpressed by ≥ 3-fold in the log phase, stationary phase, and peanut agglutinin isolated procyclic and metacyclic stages of the promastigote form and by ~5-fold in the amastigote form of the SAG-resistant isolate compared to that in the SAG-sensitive isolate. L. donovani PCNA (LdPCNA) was overexpressed as a green fluorescent protein (GFP) fusion protein in a SAG-sensitive clinical isolate of L. donovani, and modulation of the sensitivities of the transfectants to pentavalent antimonial (Sb(V)) and trivalent antimonial (Sb(III)) drugs was assessed in vitro against promastigotes and intracellular (J774A.1 cell line) amastigotes, respectively. Overexpression of LdPCNA in the SAG-sensitive isolate resulted in an increase in the 50% inhibitory concentrations (IC50) of Sb(V) (from 41.2 ± 0.6 μg/ml to 66.5 ± 3.9 μg/ml) and Sb(III) (from 24.0 ± 0.3 μg/ml to 43.4 ± 1.8 μg/ml). Moreover, PCNA-overexpressing promastigote transfectants exhibited less DNA fragmentation compared to that of wild-type SAG-sensitive parasites upon Sb(III) treatment. In addition, SAG-induced nitric oxide (NO) production was found to be significantly inhibited in the macrophages infected with the transfectants compared with that in wild-type SAG-sensitive parasites. Consequently, we infer that LdPCNA has a significant role in SAG resistance in L. donovani clinical isolates, which warrants detailed investigations regarding its mechanism.
Collapse
|
20
|
Lizarazo-Jaimes EH, Reis PG, Bezerra FM, Rodrigues BL, Monte-Neto RL, Melo MN, Frézard F, Demicheli C. Complexes of different nitrogen donor heterocyclic ligands with SbCl3 and PhSbCl2 as potential antileishmanial agents against SbIII-sensitive and -resistant parasites. J Inorg Biochem 2014; 132:30-6. [DOI: 10.1016/j.jinorgbio.2013.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 11/29/2022]
|
21
|
Frézard F, Monte-Neto R, Reis PG. Antimony transport mechanisms in resistant leishmania parasites. Biophys Rev 2014; 6:119-132. [PMID: 28509965 DOI: 10.1007/s12551-013-0134-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/05/2013] [Indexed: 11/26/2022] Open
Abstract
Antimonial compounds have been used for more than a century in the treatment of the parasitic disease leishmaniasis. Although pentavalent antimonials are still first-line drugs in several developing countries, this class of drugs is no longer recommended in the Indian sub-continent because of the emergence of drug resistance. The precise mechanisms involved in the resistance of leishmania parasites to antimony are still subject to debate. It is now well documented that drug resistance in leishmania parasites is a multifactorial phenomenon involving multiple genes whose expression pattern synergistically leads to the resistance phenotype. The reduction of intracellular antimony accumulation is a frequent change observed in resistant leishmania cells; however, no comprehensive transport model has been presented so far to explain this change and its contribution to Leishmania resistance. The present review firstly covers the actual knowledge on the metabolism of antimonial drugs, the mechanisms of their transmembrane transport and intracellular processing in Leishmania. It further describes both the functional and molecular changes associated with Sb resistance in this organism. Possible transport models based on the actual knowledge are then presented, as well as their functional implications. Biophysical and pharmacological strategies are finally proposed for the precise identification of the transport pathways.
Collapse
Affiliation(s)
- Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Rubens Monte-Neto
- Centre de Recherche en Infectiologie du Centre Hospitalier de l'Université Laval, 2705, Boulevard Laurier, RC-709, G1V 4G2, Québec, QC, Canada
| | - Priscila G Reis
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
22
|
Zhao L, Chen S, Jia L, Shu S, Zhu P, Liu Y. Selectivity of arsenite interaction with zinc finger proteins. Metallomics 2013; 4:988-94. [PMID: 22847370 DOI: 10.1039/c2mt20090b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Arsenic is a carcinogenic element also used for the treatment of acute promyelocytic leukemia. The reactivity of proteins to arsenic must be associated with the various biological functions of As. Here, we investigated the selectivity of arsenite to zinc finger proteins (ZFPs) with different zinc binding motifs (C2H2, C3H, and C4). Single ZFP domain proteins were used for the direct comparison of the reactivity of different ZFPs. The binding constants and the reaction rates have been studied quantitatively. Results show that both the binding affinity and reaction rates of single-domain ZFPs follow the trend of C4 > C3H ≫ C2H2. Compared with the C2H2 motif ZFPs, the binding affinities of C3H and C4 motif ZFPs are nearly two orders of magnitude higher and the reaction rates are approximately two-fold higher. The formation of multi-domain ZFPs significantly enhances the reactivity of C2H2 type ZFPs, but has negligible effects on C3H and C4 ZFPs. Consequently, the reactivities of the three types of multi-domain ZFPs are rather similar. The 2D NMR spectra indicate that the As(III)-bound ZFPs are also unfolded, suggesting that arsenic binding interferes with the function of ZFPs.
Collapse
Affiliation(s)
- Linhong Zhao
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui, 230026, China
| | | | | | | | | | | |
Collapse
|
23
|
Ali MI, Rauf MK, Badshah A, Kumar I, Forsyth CM, Junk PC, Kedzierski L, Andrews PC. Anti-leishmanial activity of heteroleptic organometallic Sb(v) compounds. Dalton Trans 2013; 42:16733-41. [DOI: 10.1039/c3dt51382c] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
In vitro anti-leishmania evaluation of nickel complexes with a triazolopyrimidine derivative against Leishmania infantum and Leishmania braziliensis. J Inorg Biochem 2012; 112:1-9. [PMID: 22542591 DOI: 10.1016/j.jinorgbio.2012.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 12/08/2011] [Accepted: 02/07/2012] [Indexed: 11/23/2022]
Abstract
Studies on the anti-proliferative activity in vitro of seven ternary nickel (II) complexes with a triazolopyrimidine derivative and different aliphatic or aromatic amines as auxiliary ligands against promastigote and amastigote forms of Leishmania infantum and Leishmania braziliensis have been carried out. These compounds are not toxic for the host cells and two of them are effective at lower concentrations than the reference drug used in the present study (Glucantime). In general, the in vitro growth rate of Leishmania spp. was reduced, its capacity to infect cells was negatively affected and the multiplication of the amastigotes decreased. Ultrastructural analysis and metabolism excretion studies were executed in order to propose a possible mechanism for the action of the assayed compounds. Our results show that the potential mechanism is at the level of organelles membranes, either by direct action on the microtubules or by their disorganization, leading to vacuolization, degradation and ultimately cell death.
Collapse
|
25
|
Frézard F, Silva H, Pimenta AMDC, Farrell N, Demicheli C. Greater binding affinity of trivalent antimony to a CCCH zinc finger domain compared to a CCHC domain of kinetoplastid proteins. Metallomics 2012; 4:433-40. [DOI: 10.1039/c2mt00176d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Wang Y, Zhu Y, Wang Y, Chen G. Structural analysis of zinc-finger (TTK) + [Cu(BPA)]2+ /[Cu(IDB)]2+ + DNA complexes: an investigation by molecular dynamics simulation. J Mol Recognit 2011; 24:981-94. [PMID: 22038805 DOI: 10.1002/jmr.1146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study, the molecular dynamics simulation technique is employed to investigate the hydrogen abstraction possibility from sugar of DNA in two designed complexes of copper-based chemical nuclease [Cu(BPA)](2+) bis(2-pyridylmethyl) amine (BPA) or [Cu(IDB)](2+) N,N-bis(2-benzimidazolylmethyl) amine (IDB) bound to the zinc finger protein Tramtrack (TTK). The simulated results show that each of the designed complexes can form a stable conformation within 30 ns of simulation time with the substrate OOH(-) and an 18-base pair (bp) DNA segment and is located in the major groove of the DNA segment. The active terminal O atom of the OOH(-) substrate is found in close proximity to the target C2'H, C3'H, C4'H or C5'H proton of the DNA in TTK + [Cu(BPA)OOH](+) + DNA or TTK + [Cu(IDB)OOH](+) + DNA complex, which is crucial to propose the hydrogen abstraction possibility that is responsible for the DNA cleavage. The positions of copper-based chemical nucleases bound to TTK may substantially influence the hydrogen abstraction possibility. The structures and sizes of ligands in copper-based nucleases are also found to have influence on the order of difficulty of the hydrogen abstraction from the sugars of DNA.
Collapse
Affiliation(s)
- Yaru Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | | | | | | |
Collapse
|
27
|
Demicheli C, Frézard F, Pereira FA, Santos DM, Mangrum JB, Farrell NP. Interaction of arsenite with a zinc finger CCHC peptide: evidence for formation of an As-Zn-peptide mixed complex. J Inorg Biochem 2011; 105:1753-8. [PMID: 22099473 DOI: 10.1016/j.jinorgbio.2011.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
Abstract
The interaction of arsenite with a Cys(3)His (CCHC) zinc finger model (34-51) HIV-1 nucleocapsid protein p7 (NCp7) peptide in the absence and presence of Zn(II) was studied using fluorescence spectroscopy, CD (circular dichroism) and ESI-MS (Electrospray Ionization Mass Spectrometry). We found that arsenic forms different complexes with the free peptide and the zinc finger peptide. In the former case the peptide conformation differed greatly from that of the zinc finger, whereas in the second case a mixed As-Zn-peptide complex was formed with partial preservation of zinc finger conformation. An apparent stability constant was estimated for the mixed As-Zn-peptide complex (K=2083 M(-1) and 442 M(-1) at 25°C and pHs 6 and 7, respectively). Our study also shows that the interaction of arsenic with the CCHC motif is facilitated by glutathione (GSH), through formation of a GS-As-peptide conjugate.
Collapse
Affiliation(s)
- Cynthia Demicheli
- Departamento de Química, Instituto de Ciências Exatas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
28
|
Leishmania antimony resistance: what we know what we can learn from the field. Parasitol Res 2011; 109:1225-32. [DOI: 10.1007/s00436-011-2555-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/12/2011] [Indexed: 01/15/2023]
|
29
|
Haldar AK, Sen P, Roy S. Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int 2011; 2011:571242. [PMID: 22091408 PMCID: PMC3196053 DOI: 10.4061/2011/571242] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/05/2011] [Indexed: 01/05/2023] Open
Abstract
In the recent past the standard treatment of kala-azar involved the use of pentavalent antimonials Sb(V). Because of progressive rise in treatment failure to Sb(V) was limited its use in the treatment program in the Indian subcontinent. Until now the mechanism of action of Sb(V) is not very clear. Recent studies indicated that both parasite and hosts contribute to the antimony efflux mechanism. Interestingly, antimonials show strong immunostimulatory abilities as evident from the upregulation of transplantation antigens and enhanced T cell stimulating ability of normal antigen presenting cells when treated with Sb(V) in vitro. Recently, it has been shown that some of the peroxovanadium compounds have Sb(V)-resistance modifying ability in experimental infection with Sb(V) resistant Leishmania donovani isolates in murine model. Thus, vanadium compounds may be used in combination with Sb(V) in the treatment of Sb(V) resistance cases of kala-azar.
Collapse
Affiliation(s)
- Arun Kumar Haldar
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata West Bengal 700032, India
| | | | | |
Collapse
|
30
|
Yang B, Zhu Y, Wang Y, Chen G. Interaction identification of Zif268 and TATA(ZF) proteins with GC-/AT-rich DNA sequence: A theoretical study. J Comput Chem 2011; 32:416-28. [PMID: 20658568 DOI: 10.1002/jcc.21630] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular dynamics (MD) simulations for Zif268 (a zinc-finger-protein binding specifically to the GC-rich DNA)-d(A(1) G(2) C(3) G(4) T(5) G(6) G(7) G(8) C(9) A(10) C(11) )(2) and TATA(ZF) (a zinc-finger-protein recognizing the AT-rich DNA)-d(A(1) C(2) G(3) C(4) T(5) A(6) T(7) A(8) A(9) A(10) A(11) G(12) G(13) )(2) complexes have been performed for investigating the DNA binding affinities and specific recognitions of zinc fingers to GC-rich and AT-rich DNA sequences. The binding free energies for the two systems have been further analyzed by using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The calculations of the binding free energies reveal that the affinity energy of Zif268-DNA complex is larger than that of TATA(ZF) -DNA one. The affinity between the zinc-finger-protein and DNA is mainly driven by more favorable van-der-Waals and nonpolar/solvation interactions in both complexes. However, the affinity energy difference of the two binding systems is mainly caused by the difference of van-der-Waals interactions and entropy components. The decomposition analysis of MM-PBSA free energies on each residue of the proteins predicts that the interactions between the residues with the positive charges and DNA favor the binding process; while the interactions between the residues with the negative charges and DNA behave in the opposite way. The interhydrogen-bonds at the protein-DNA interface and the induced intrafinger hydrogen bonds between the residues of protein for the Zif268-DNA complex have been identified at some key contact sites. However, only the interhydrogen-bonds between the residues of protein and DNA for TATA(ZF) -DNA complex have been found. The interactions of hydrogen-bonds, electrostatistics and van-der-Waals type at some new contact sites have been identified. Moreover, the recognition characteristics of the two studied zinc-finger-proteins have also been discussed.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Quintal SM, dePaula QA, Farrell NP. Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 2011; 3:121-39. [PMID: 21253649 DOI: 10.1039/c0mt00070a] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc finger reactions with inorganic ions and coordination compounds are as diverse as the zinc fingers themselves. Use of metal ions such as Co(2+) and Cd(2+) has given structural, thermodynamic and kinetic information on zinc fingers and zinc-finger-DNA/RNA interactions. It is a general truism that alteration of the coordination sphere in the finger environment will disrupt the recognition with DNA/RNA and this has implications for mechanism of toxicity and carcinogenesis of metal ions. Structural zinc fingers are susceptible to electrophilic attack and the recognition that the coordination sphere of inorganic compounds may be modulated for control of electrophilic attack on zinc fingers raises the possibility of systematic studies of zinc fingers as drug targets using inorganic chemistry. Some inorganic compounds such as those of As(III) and Au(I) may exert their biological effects through inactivation of zinc fingers and novel approaches to specifically attack the zinc-bound ligands using Co(III)-Schiff bases and Platinum(II)-Nucleobase compounds have been proposed. The genomic importance of zinc fingers suggests that the "coordination chemistry" of zinc fingers themselves is ripe for exploration to design new targets for medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Susana M Quintal
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284-2006, USA
| | | | | |
Collapse
|
32
|
Yang N, Sun H. Biological Chemistry of Antimony and Bismuth. BIOLOGICAL CHEMISTRY OF ARSENIC, ANTIMONY AND BISMUTH 2010:53-81. [DOI: 10.1002/9780470975503.ch3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Anti-Leishmanial activity of homo- and heteroleptic bismuth(III) carboxylates. J Inorg Biochem 2010; 105:454-61. [PMID: 20851471 DOI: 10.1016/j.jinorgbio.2010.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 11/20/2022]
Abstract
Bismuth(III) complexes of NSAIDs (Non-Steroidal Anti Inflammatory Drugs) and substituted benzoic acids (o-methoxybenzoic acid, m-methoxybenzoic acid, o-nitrobenzoic acid, 3,5-diacetamidobenzoic acid, and 5-[(R/S)-2,3-dihydroxypropyl carbamoyl]-2-pyridine carboxylic acid) have been synthesised and fully characterised. Two new bis-carboxylato bismuth complexes have been characterised by single crystal X-ray diffraction, namely [PhBi(o-MeOC(6)H(4)CO(2))(2)(bipy)]·0.5EtOH (bipy=2,2'-bipyridine) and [PhBi(C(9)H(11)N(2)O(3)CO(2))(2)(H(2)O)]·6H(2)O. All compounds were tested against the parasite Leishmania major promastigotes for their anti-Leishmanial activity and were further assessed for their toxicity to mammalian cells. The NSAID free acids and their bismuth derivatives show negligible anti-Leishmanial activity at concentrations 1.95 to 250 μg/mL against the promastigotes of L. major whereas in the case of mammalian cells only bismuth complexes of naproxen and mefenamic acid have significant effect at concentration≥250 μg/mL. The bismuth(III) complexes of substituted benzoic acids show significant anti-Leishmanial activity against the promastigotes of L. major V121 at very low concentrations while their respective free carboxylic acids show no effective activity. However, the bismuth compounds inhibit the growth of the mammalian cells at all concentrations studied (1.95 to 500 μg/mL) following 48 h incubation. The comparatively low toxicity of BiCl(3) and Bi(NO(3))(3), suggests that overall toxicity of bismuth complexes towards the parasite is both ligand and metal dependent.
Collapse
|
34
|
Zinc finger proteins as templates for metal ion exchange: Substitution effects on the C-finger of HIV nucleocapsid NCp7 using M(chelate) species (M=Pt, Pd, Au). J Inorg Biochem 2009; 103:1347-54. [PMID: 19692125 DOI: 10.1016/j.jinorgbio.2009.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 06/30/2009] [Accepted: 07/03/2009] [Indexed: 11/23/2022]
Abstract
The interactions of monofunctional [MCl(chelate)] compounds (M=Pt(II), Pd(II) or Au(III) and chelate=diethylenetriamine, dien or 2,2',2''-terpyridine, terpy) with the C-terminal finger of the HIV nucleocapsid NCp7 zinc finger (ZF) were studied by mass spectrometry and circular dichroism spectroscopy. In the case of [M(dien)] species, Pt(II) and Pd(II) behaved in a similar fashion with evidence of adducts caused by displacement of Pt-Cl or Pd-Cl by zinc-bound thiolate. Labilization, presumably under the influence of the strong trans influence of thiolate, resulted in loss of ligand (dien) as well as zinc ejection and formation of species with only Pd(II) or Pt(II) bound to the finger. For both Au(III) compounds the reactions were very fast and only "gold fingers" with no ancillary ligands were observed. For all terpyridine compounds ligand scrambling and metal exchange occurred with formation of [Zn(terpy)](2+). The results conform well to those proposed from the study of model Zn compounds such as N,N'-bis(2-mercapto-ethyl)-1,4-diazacycloheptanezinc(II), [Zn(bme-dach)](2). The possible structures of the adducts formed are discussed and, for Pt(II) and Pd(II), the evidence for possible expansion of the zinc coordination sphere from four- to five-coordinate is discussed. This observation reinforces the possibility of change in geometry for zinc in biology, even in common "structural" sites in metalloenzymes. The results further show that the extent and rate of zinc displacement by inorganic compounds can be modulated by the nature (metal, ligands) of the reacting compound.
Collapse
|
35
|
Frézard F, Demicheli C, Ribeiro RR. Pentavalent antimonials: new perspectives for old drugs. Molecules 2009; 14:2317-36. [PMID: 19633606 PMCID: PMC6254722 DOI: 10.3390/molecules14072317] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/15/2009] [Accepted: 06/22/2009] [Indexed: 12/26/2022] Open
Abstract
Pentavalent antimonials, including meglumine antimoniate and sodium stibogluconate, have been used for more than half a century in the therapy of the parasitic disease leishmaniasis. Even though antimonials are still the first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of antimonials, their metabolism and mechanism of action are still being investigated. Some recent studies suggest that pentavalent antimony acts as a prodrug that is converted to active and more toxic trivalent antimony. Other works support the direct involvement of pentavalent antimony. Recent data suggest that the biomolecules, thiols and ribonucleosides, may mediate the actions of these drugs. This review will summarize the progress to date on the chemistry and biochemistry of pentavalent antimony. It will also present the most recent works being done to improve antimonial chemotherapy. These works include the development of simple synthetic methods for pentavalent antimonials, liposome-based formulations for targeting the Leishmania parasites responsible for visceral leishmaniasis and cyclodextrin-based formulations to promote the oral delivery of antimony.
Collapse
Affiliation(s)
- Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil; E-mail: (R.R.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Cynthia Demicheli
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil; E-mail: (C.D.)
| | - Raul R. Ribeiro
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil; E-mail: (R.R.)
| |
Collapse
|
36
|
de Paula QA, Liu Q, Almaraz E, Denny JA, Mangrum JB, Bhuvanesh N, Darensbourg MY, Farrell NP. Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass spectrometry and X-ray diffraction: molecular identification of [Pd(bme-dach)], [Au(bme-dach]+ and [ZnCl(bme-dach)]2Pd. Dalton Trans 2009:10896-903. [DOI: 10.1039/b917748p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|