1
|
Huang J, Ren X, Zhou Q, Zhou J, Xu Z. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles. ULTRASONICS 2023; 128:106865. [PMID: 36260963 DOI: 10.1016/j.ultras.2022.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Microfluidics is an emerging technology that is playing increasingly important roles in biomedical and pharmaceutical research and development. Surface acoustic waves (SAWs) have been combined with microfluidics technology to establish a SAW-based microfluidics technology that uses the unique interaction between the two techniques to manipulate substances effectively in fluids on the surface of a substrate. This paper reports a method to generate SAWs using conventional planar ultrasonic transducers and acoustic lenses. Additionally, this method is introduced to manipulate particles effectively on a substrate surface. It is demonstrated that the particle positions can be manipulated precisely in any direction on the substrate surface, thus enabling high-precision particle manipulation. We also proposed the generation of nonplanar SAWs via appropriate design of the acoustic lens and realized directional particle transport. In addition, structures to enhance forward-propagating acoustic beams are proposed. The proposed method has potential for use in microfluidics and biomedical applications, allowing tasks such as flexible cell manipulation on a chip to be performed without complex design or micromachining.
Collapse
Affiliation(s)
- Jie Huang
- Institute of Acoustics, Tongji University, Shanghai 200092, PR China
| | - Xuemei Ren
- Institute of Acoustics, Tongji University, Shanghai 200092, PR China
| | - Qinxin Zhou
- Institute of Acoustics, Tongji University, Shanghai 200092, PR China
| | - Junhe Zhou
- School of Electronic and Information Engineering, Tongji University, Shanghai 201804, PR China.
| | - Zheng Xu
- Institute of Acoustics, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Rizi FS, Talebi S, Manshadi MKD, Mohammadi M. Combination of the insulator‐based dielectrophoresis and hydrodynamic methods for separating bacteria smaller than 3 μm in bloodstream infection: Numerical simulation approach. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Mehdi Mohammadi
- Department of Biological Sciences University of Calgary Calgary Canada
- Department of Biomedical Engineering University of Calgary Calgary Canada
| |
Collapse
|
3
|
Richter F, Bindschedler S, Calonne-Salmon M, Declerck S, Junier P, Stanley CE. Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiol Rev 2022; 46:6674677. [PMID: 36001464 PMCID: PMC9779915 DOI: 10.1093/femsre/fuac039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes. More recently, fungi have been recognized as key components of the microbiome in other eukaryotes, such as humans, where they play a fundamental role not only in human pathogenesis, but also likely as commensals. In the food sector, fungi are used either directly or as fermenting agents and are often key players in the biotechnological industry, where they are responsible for the production of both bulk chemicals and antibiotics. Although the macroscopic fruiting bodies are immediately recognizable by most observers, the structure, function, and interactions of fungi with other microbes at the microscopic scale still remain largely hidden. Herein, we shed light on new advances in the emerging field of Fungi-on-a-Chip microfluidic technologies for single-cell studies on fungi. We discuss the development and application of microfluidic tools in the fields of medicine and biotechnology, as well as in-depth biological studies having significance for ecology and general natural processes. Finally, a future perspective is provided, highlighting new frontiers in which microfluidic technology can benefit this field.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Corresponding author: Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, United Kingdom. E-mail:
| |
Collapse
|
4
|
Iyer V, Yang Z, Ko J, Weissleder R, Issadore D. Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities. LAB ON A CHIP 2022; 22:3110-3121. [PMID: 35674283 PMCID: PMC9798730 DOI: 10.1039/d2lc00024e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microfluidic diagnostic (μDX) technologies miniaturize sensors and actuators to the length-scales that are relevant to biology: the micrometer scale to interact with cells and the nanometer scale to interrogate biology's molecular machinery. This miniaturization allows measurements of biomarkers of disease (cells, nanoscale vesicles, molecules) in clinical samples that are not detectable using conventional technologies. There has been steady progress in the field over the last three decades, and a recent burst of activity catalyzed by the COVID-19 pandemic. In this time, an impressive and ever-growing set of technologies have been successfully validated in their ability to measure biomarkers in clinical samples, such as blood and urine, with sensitivity and specificity not possible using conventional tests. Despite our field's many accomplishments to date, very few of these technologies have been successfully commercialized and brought to clinical use where they can fulfill their promise to improve medical care. In this paper, we identify three major technological trends in our field that we believe will allow the next generation of μDx to have a major impact on the practice of medicine, and which present major opportunities for those entering the field from outside disciplines: 1. the combination of next generation, highly multiplexed μDx technologies with machine learning to allow complex patterns of multiple biomarkers to be decoded to inform clinical decision points, for which conventional biomarkers do not necessarily exist. 2. The use of micro/nano devices to overcome the limits of binding affinity in complex backgrounds in both the detection of sparse soluble proteins and nucleic acids in blood and rare circulating extracellular vesicles. 3. A suite of recent technologies that obviate the manual pre-processing and post-processing of samples before they are measured on a μDX chip. Additionally, we discuss economic and regulatory challenges that have stymied μDx translation to the clinic, and highlight strategies for successfully navigating this challenging space.
Collapse
Affiliation(s)
- Vasant Iyer
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Zijian Yang
- Mechanical Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jina Ko
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts, USA
| | - David Issadore
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Wu H, Tang Z, You R, Pan S, Liu W, Zhang H, Li T, Yang Y, Sun C, Pang W, Duan X. Manipulations of micro/nanoparticles using gigahertz acoustic streaming tweezers. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0009954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets, making it universally applicable to almost all biological systems. Thin-film bulk acoustic wave (BAW) resonators operating at gigahertz (GHz) frequencies have been demonstrated to generate localized high-speed microvortices through acoustic streaming effects. Benefitting from the strong drag forces of the high-speed vortices, BAW-enabled GHz acoustic streaming tweezers (AST) have been applied to the trapping and enrichment of particles ranging in size from micrometers to less than 100 nm. However, the behavior of particles in such 3D microvortex systems is still largely unknown. In this work, the particle behavior (trapping, enrichment, and separation) in GHz AST is studied by theoretical analyses, 3D simulations, and microparticle tracking experiments. It is found that the particle motion in the vortices is determined mainly by the balance between the acoustic streaming drag force and the acoustic radiation force. This work can provide basic design principles for AST-based lab-on-a-chip systems for a variety of applications.
Collapse
Affiliation(s)
- Hang Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rui You
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Shuting Pan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wenpeng Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Hongxiang Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Bollu TK, Parimi DS, Bhatt CS, Suresh AK. Fish-scale waste to portable bioactive discs: a sustainable platform for sensitive and reliable blood group analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1946-1955. [PMID: 35506745 DOI: 10.1039/d2ay00128d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Blood group analysis has evolved from conventional "test-tube" to ingenious "lab-on-a-chip" micro/paper-fluidic devices for identifying blood phenotypes. Despite the rapid and economical fabrication of these devices, they require Whatman paper that is obtained by cutting down trees and plastic usage involving complex and sophisticated facilities, making scalable manufacturing laborious and expensive. Most importantly, deforestation and plastic incineration pose great threats to the biotic and abiotic environments. Here, we have developed a blood grouping strip utilizing fish-scale waste and household cardboard-waste generated origami as an affordable and sustainable strategy. The naturally inherited hydrophilicity of fish scale with a contact angle of 89° could succinctly auto-stabilize low-volume antisera without the aid of additives. Moreover, unlike paperfluidics, antisera absorption, as well as RBC-antisera agglutination upon blood introduction, happens on the spot with no capillary wicking. The merits of our technique are: it requires a low amount of blood (3 μL), eliminates additional image processing and assays, is equipment-free, and aids accurate blood typing as a visual hemagglutination readout. Additionally, a high tensile strength of ∼85 ± 5 MPa and the shelf-endurance of the bio-disc allowed us to use the simplest cardboard origami as a shield, obviating plastic and fiber generated fancy shields, making our device portable and simultaneously biodegradable. Our novel bio-disc blood analysis was tested with anonymous blood samples (n = 200), with an accuracy comparable to a standard blood group assay. This zero-cost paper, plastic-free eco-friendly blood group analyser derived from biodegradable food and cardboard waste as a resourceful technique has huge potential in various sensors and point-of-care diagnostics, especially in impoverished areas with limited or no lab facilities.
Collapse
Affiliation(s)
- Tharun K Bollu
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati-522503, India.
| | - Divya S Parimi
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati-522503, India.
| | - Chandra S Bhatt
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati-522503, India.
- Department of Biotechnology, FS&H, SRMIST, Kattankulathur, Chennai-603203, India
| | - Anil K Suresh
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati-522503, India.
| |
Collapse
|
7
|
Mittmann E, Mickoleit F, Maier DS, Stäbler SY, Klein MA, Niemeyer CM, Rabe KS, Schüler D. A Magnetosome-Based Platform for Flow Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22138-22150. [PMID: 35508355 PMCID: PMC9121345 DOI: 10.1021/acsami.2c03337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Biocatalysis in flow reactor systems is of increasing importance for the transformation of the chemical industry. However, the necessary immobilization of biocatalysts remains a challenge. We here demonstrate that biogenic magnetic nanoparticles, so-called magnetosomes, represent an attractive alternative for the development of nanoscale particle formulations to enable high and stable conversion rates in biocatalytic flow processes. In addition to their intriguing material characteristics, such as high crystallinity, stable magnetic moments, and narrow particle size distribution, magnetosomes offer the unbeatable advantage over chemically synthesized nanoparticles that foreign protein "cargo" can be immobilized on the enveloping membrane via genetic engineering and thus, stably presented on the particle surface. To exploit these advantages, we develop a modular connector system in which abundant magnetosome membrane anchors are genetically fused with SpyCatcher coupling groups, allowing efficient covalent coupling with complementary SpyTag-functionalized proteins. The versatility of this approach is demonstrated by immobilizing a dimeric phenolic acid decarboxylase to SpyCatcher magnetosomes. The functionalized magnetosomes outperform similarly functionalized commercial particles by exhibiting stable substrate conversion during a 60 h period, with an average space-time yield of 49.2 mmol L-1 h-1. Overall, our results demonstrate that SpyCatcher magnetosomes significantly expand the genetic toolbox for particle surface functionalization and increase their application potential as nano-biocatalysts.
Collapse
Affiliation(s)
- Esther Mittmann
- Institute
for Biological Interfaces 1, Karlsruhe Institute
of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Mickoleit
- Department
of Microbiology, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Denis S. Maier
- Department
of Microbiology, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Sabrina Y. Stäbler
- Department
of Microbiology, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Marius A. Klein
- Department
of Microbiology, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Christof M. Niemeyer
- Institute
for Biological Interfaces 1, Karlsruhe Institute
of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Kersten S. Rabe
- Institute
for Biological Interfaces 1, Karlsruhe Institute
of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Dirk Schüler
- Department
of Microbiology, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| |
Collapse
|
8
|
Tjandra KC, Ram-Mohan N, Abe R, Hashemi MM, Lee JH, Chin SM, Roshardt MA, Liao JC, Wong PK, Yang S. Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics (Basel) 2022; 11:511. [PMID: 35453262 PMCID: PMC9029869 DOI: 10.3390/antibiotics11040511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bloodstream infections (BSI) are a leading cause of death worldwide. The lack of timely and reliable diagnostic practices is an ongoing issue for managing BSI. The current gold standard blood culture practice for pathogen identification and antibiotic susceptibility testing is time-consuming. Delayed diagnosis warrants the use of empirical antibiotics, which could lead to poor patient outcomes, and risks the development of antibiotic resistance. Hence, novel techniques that could offer accurate and timely diagnosis and susceptibility testing are urgently needed. This review focuses on BSI and highlights both the progress and shortcomings of its current diagnosis. We surveyed clinical workflows that employ recently approved technologies and showed that, while offering improved sensitivity and selectivity, these techniques are still unable to deliver a timely result. We then discuss a number of emerging technologies that have the potential to shorten the overall turnaround time of BSI diagnosis through direct testing from whole blood-while maintaining, if not improving-the current assay's sensitivity and pathogen coverage. We concluded by providing our assessment of potential future directions for accelerating BSI pathogen identification and the antibiotic susceptibility test. While engineering solutions have enabled faster assay turnaround, further progress is still needed to supplant blood culture practice and guide appropriate antibiotic administration for BSI patients.
Collapse
Affiliation(s)
- Kristel C. Tjandra
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Ryuichiro Abe
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Marjan M. Hashemi
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Jyong-Huei Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Siew Mei Chin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Manuel A. Roshardt
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| |
Collapse
|
9
|
Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics 2022; 14:pharmaceutics14030586. [PMID: 35335962 PMCID: PMC8950514 DOI: 10.3390/pharmaceutics14030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/04/2023] Open
Abstract
Antibiotic resistance has become a threat to microbial therapies nowadays. The conventional approaches possess several limitations to combat microbial infections. Therefore, to overcome such complications, novel drug delivery systems have gained pharmaceutical scientists’ interest. Significant findings have validated the effectiveness of novel drug delivery systems such as polymeric nanoparticles, liposomes, metallic nanoparticles, dendrimers, and lipid-based nanoparticles against severe microbial infections and combating antimicrobial resistance. This review article comprises the specific mechanism of antibiotic resistance development in bacteria. In addition, the manuscript incorporated the advanced nanotechnological approaches with their mechanisms, including interaction with the bacterial cell wall, inhibition of biofilm formations, activation of innate and adaptive host immune response, generation of reactive oxygen species, and induction of intracellular effect to fight against antibiotic resistance. A section of this article demonstrated the findings related to the development of delivery systems. Lastly, the role of microfluidics in fighting antimicrobial resistance has been discussed. Overall, this review article is an amalgamation of various strategies to study the role of novel approaches and their mechanism to fight against the resistance developed to the antimicrobial therapies.
Collapse
|
10
|
Tayebi M, Yang D, Collins DJ, Ai Y. Deterministic Sorting of Submicrometer Particles and Extracellular Vesicles Using a Combined Electric and Acoustic Field. NANO LETTERS 2021; 21:6835-6842. [PMID: 34355908 DOI: 10.1021/acs.nanolett.1c01827] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sorting of extracellular vesicles has important applications in early stage diagnostics. Current exosome isolation techniques, however, suffer from being costly, having long processing times, and producing low purities. Recent work has shown that active sorting via acoustic and electric fields are useful techniques for microscale separation activities, where combining these has the potential to take advantage of multiple force mechanisms simultaneously. In this work, we demonstrate an approach using both electrical and acoustic forces to manipulate bioparticles and submicrometer particles for deterministic sorting, where we find that the concurrent application of dielectrophoretic (DEP) and acoustophoretic forces decreases the critical diameter at which particles can be separated. We subsequently utilize this approach to sort subpopulations of extracellular vesicles, specifically exosomes (<200 nm) and microvesicles (>300 nm). Using our combined acoustic/electric approach, we demonstrate exosome purification with more than 95% purity and 81% recovery, well above comparable approaches.
Collapse
Affiliation(s)
- Mahnoush Tayebi
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Dahou Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Vitctoria 3010, Australia
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
11
|
Chong WH, Leong SS, Lim J. Design and operation of magnetophoretic systems at microscale: Device and particle approaches. Electrophoresis 2021; 42:2303-2328. [PMID: 34213767 DOI: 10.1002/elps.202100081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Combining both device and particle designs are the essential concepts to be considered in magnetophoretic system development. Researcher efforts are often dedicated to only one of these design aspects and neglecting the interplay between them. Herein, to bring out importance of the idea of integration between device and particle, we reviewed the working principle of magnetophoretic system (includes both device and particle design concepts). Since, the magnetophoretic force is influenced by both field gradient and magnetization volume, hence, accurate prediction of the magnetophoretic force is relying on the availability of information on both parameters. In device design, we focus on the different strategies used to create localized high-field gradient. For particle design, we emphasize on the scaling between hydrodynamic size and magnetization volume. Moreover, we also briefly discussed the importance of magnetoshape anisotropy related to particle design aspect of magnetophoretic systems. Next, we illustrated the need for integration between device and particle design using microscale applications of magnetophoretic systems, include magnetic tweezers and microfluidic systems, as our working example. On the basis of our discussion, we highlighted several promising examples of microscale magnetophoretic systems which greatly utilized the interplay between device and particle design. Further, we concluded the review with several factors that possibly resulted in the lack of research efforts related to device and particle design integration.
Collapse
Affiliation(s)
- Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Sim Siong Leong
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Penang, Malaysia.,Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Woo SO, Oh M, Nietfeld K, Boehler B, Choi Y. Molecular diffusion analysis of dynamic blood flow and plasma separation driven by self-powered microfluidic devices. BIOMICROFLUIDICS 2021; 15:034106. [PMID: 34084256 PMCID: PMC8140817 DOI: 10.1063/5.0051361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Integration of microfluidic devices with pressure-driven, self-powered fluid flow propulsion methods has provided a very effective solution for on-chip, droplet blood testing applications. However, precise understanding of the physical process governing fluid dynamics in polydimethylsiloxane (PDMS)-based microfluidic devices remains unclear. Here, we propose a pressure-driven diffusion model using Fick's law and the ideal gas law, the results of which agree well with the experimental fluid dynamics observed in our vacuum pocket-assisted, self-powered microfluidic devices. Notably, this model enables us to precisely tune the flow rate by adjusting two geometrical parameters of the vacuum pocket. By linking the self-powered fluid flow propulsion method to the sedimentation, we also show that direct plasma separation from a drop of whole blood can be achieved using only a simple construction without the need for external power sources, connectors, or a complex operational procedure. Finally, the potential of the vacuum pocket, along with a removable vacuum battery to be integrated with non-PDMS microfluidic devices to drive and control the fluid flow, is demonstrated.
Collapse
Affiliation(s)
- Sung Oh Woo
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Myungkeun Oh
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Kyle Nietfeld
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Bailey Boehler
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Yongki Choi
- Author to whom correspondence should be addressed:
| |
Collapse
|
13
|
Modha S, Castro C, Tsutsui H. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors. Biosens Bioelectron 2021; 178:113026. [PMID: 33545552 DOI: 10.1016/j.bios.2021.113026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
Over the last 10 years, researchers have shown that paper is a promising substrate for affordable biosensors. The field of paper-microfluidics has evolved rapidly in that time, with simple colorimetric assays giving way to more complex electrochemical devices that can handle multiple samples at a given time. As paper devices become more complex, the ability to precisely control different fluids simultaneously becomes a challenge. Specifically, automated flow control is a necessary attribute to make paper-based devices more useable in resource-limited settings. Flow control strategies on paper are typically developed experimentally through trial-and-error, with little focus on theory. This is because flow behavior in paper is not well understood and sometimes difficult to predict precisely. Additionally, popular theoretical models are too simplistic, making them unsuitable for complex device designs and application conditions. A better understanding of flow theory would allow devices conceived straight from theoretical models. This could save time and resources by reducing experimental work. In this review, we provide an overview of different theoretical models used to characterize imbibition in paper substrates and document the latest flow control strategies that have been applied to automated fluid control on paper. Additionally, we look at current efforts to commercialize paper-based devices along with challenges facing this industry.
Collapse
Affiliation(s)
- Sidharth Modha
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Carlos Castro
- Department of Mechanical Engineering, California State Polytechnic University, Pomona, Pomona, CA, 91768, USA
| | - Hideaki Tsutsui
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA; Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, 92521, USA; Stem Cell Center, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
14
|
Hirama H, Yoshii S, Komazaki Y, Kano S, Torii T, Mekaru H. Droplet Handling for Chemical Reactors Using a Digital Microfluidic Device. CHEM LETT 2021. [DOI: 10.1246/cl.200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirotada Hirama
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Satoshi Yoshii
- School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Komazaki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Shinya Kano
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Toru Torii
- Future Center Initiative, The University of Tokyo, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Harutaka Mekaru
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, Namiki, Tsukuba, Ibaraki 305-8564, Japan
| |
Collapse
|
15
|
Integrated strategy for the separation of endotoxins from biofluids. LPS capture on newly synthesized protein. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Chen X, Zhang YS, Zhang X, Liu C. Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioact Mater 2020; 6:1012-1027. [PMID: 33102943 PMCID: PMC7566214 DOI: 10.1016/j.bioactmat.2020.09.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine involves the use of engineered nanoscale materials in an extensive range of diagnostic and therapeutic applications and can be applied to the treatment of many diseases. Despite the rapid progress and tremendous potential of nanomedicine in the past decades, the clinical translational process is still quite slow, owing to the difficulty in understanding, evaluating, and predicting nanomaterial behaviors within the complex environment of human beings. Microfluidics-based organ-on-a-chip (Organ Chip) techniques offer a promising way to resolve these challenges. Sophisticatedly designed Organ Chip enable in vitro simulation of the in vivo microenvironments, thus providing robust platforms for evaluating nanomedicine. Herein, we review recent developments and achievements in Organ Chip models for nanomedicine evaluations, categorized into seven broad sections based on the target organ systems: respiratory, digestive, lymphatic, excretory, nervous, and vascular, as well as coverage on applications relating to cancer. We conclude by providing our perspectives on the challenges and potential future directions for applications of Organ Chip in nanomedicine. Microfluidics-based organ-on-a-chip (Organ Chip) techniques offer a promising way to understand, evaluate, and predict nanomedicine behaviors within the complex environment. Organ Chip models for nanomedicine evaluations are categorized into seven broad sections based on the targeted body systems. Limitations, challenges, and perspectives of Organ Chip for accelerating the assessment of nanomedicine are discussed, respectively.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, United States
| | - Xinping Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
17
|
Alnaimat F, Karam S, Mathew B, Mathew B. Magnetophoresis and Microfluidics: A Great Union. IEEE NANOTECHNOLOGY MAGAZINE 2020. [DOI: 10.1109/mnano.2020.2966029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Kang JH. Multiscale Biofluidic and Nanobiotechnology Approaches for Treating Sepsis in Extracorporeal Circuits. BIOCHIP JOURNAL 2020; 14:63-71. [PMID: 32218896 PMCID: PMC7095347 DOI: 10.1007/s13206-020-4106-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/01/2020] [Indexed: 12/29/2022]
Abstract
Infectious diseases and their pandemics periodically attract public interests due to difficulty in treating the patients and the consequent high mortality. Sepsis caused by an imbalanced systemic inflammatory response to infection often leads to organ failure and death. The current therapeutic intervention mainly includes “the sepsis bundles,” antibiotics (antibacterial, antiviral, and antifungal), intravenous fluids for resuscitation, and surgery, which have significantly improved the clinical outcomes in past decades; however, the patients with fulminant sepsis are still in desperate need of alternative therapeutic approaches. One of the potential supportive therapies, extracorporeal blood treatment, has emerged and been developed for improving the current therapeutic efficacy. Here, I overview how the treatment of infectious diseases has been assisted with the extracorporeal adjuvant therapy and the potential utility of various nanobiotechnology and microfluidic approaches for developing new auxiliary therapeutic methods.
Collapse
Affiliation(s)
- Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919 Republic of Korea
| |
Collapse
|
19
|
Castillo-Torres KY, McLamore ES, Arnold DP. A High-Throughput Microfluidic Magnetic Separation (µFMS) Platform for Water Quality Monitoring. MICROMACHINES 2019; 11:E16. [PMID: 31877902 PMCID: PMC7019623 DOI: 10.3390/mi11010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
The long-term aim of this work is to develop a biosensing system that rapidly detects bacterial targets of interest, such as Escherichia coli, in drinking and recreational water quality monitoring. For these applications, a standard sample size is 100 mL, which is quite large for magnetic separation microfluidic analysis platforms that typically function with <20 µL/s throughput. Here, we report the use of 1.5-µm-diameter magnetic microdisc to selectively tag target bacteria, and a high-throughput microfluidic device that can potentially isolate the magnetically tagged bacteria from 100 mL water samples in less than 15 min. Simulations and experiments show ~90% capture efficiencies of magnetic particles at flow rates up to 120 µL/s. Also, the platform enables the magnetic microdiscs/bacteria conjugates to be directly imaged, providing a path for quantitative assay.
Collapse
Affiliation(s)
- Keisha Y. Castillo-Torres
- Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering; University of Florida, Gainesville, FL 32611, USA;
| | - Eric S. McLamore
- Institute of Food and Agricultural Sciences, Department of Agricultural and Biological Engineering; University of Florida, Gainesville, FL 32611, USA;
| | - David P. Arnold
- Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering; University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
20
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|
21
|
Karimi S, Mehrdel P, Farré-Lladós J, Casals-Terré J. A passive portable microfluidic blood-plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing. LAB ON A CHIP 2019; 19:3249-3260. [PMID: 31478036 DOI: 10.1039/c9lc00690g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The blood typing test is mandatory in any transfusion, organ transplant, and pregnancy situation. There is a lack of point-of-care (POC) blood typing that could perform both direct and indirect methods using a single droplet of whole blood. This study presents a new methodology combining a passive microfluidic blood-plasma separator (BPS) and a blood typing detector for the very first time, leading to a stand-alone microchip which is capable of determining the blood group from both direct and indirect methods simultaneously. The proposed design separates blood cells from plasma by applying hydrodynamic forces imposed on them, which overcomes the clogging issue and consequently maximizes the volume of the extracted plasma. An axial migration effect across the main channel is responsible for collecting the plasma in plasma collector channels. The BPS novel design approached 12% yield of plasma with 100% purity in approximately 10 minutes. The portable BPS was designed and fabricated to perform ABO/Rh blood tests based on the detection of agglutination in both antigens of RBCs (direct) and antibodies of plasma (indirect). The differences between agglutinated and non-agglutinated samples were distinguishable by the naked eye and also validated by particle analysis of microscopic pictures. The results of this passive BPS in ABO/Rh blood grouping verified the quality and quantity of the extracted plasma in practical applications.
Collapse
Affiliation(s)
- Shadi Karimi
- Mechanical Engineering Department - MicroTech Lab., Universitat Politècnica de Catalunya, Colom 7-11 08222, Terrassa, Barcelona, Spain.
| | - Pouya Mehrdel
- Mechanical Engineering Department - MicroTech Lab., Universitat Politècnica de Catalunya, Colom 7-11 08222, Terrassa, Barcelona, Spain.
| | - Josep Farré-Lladós
- Mechanical Engineering Department - MicroTech Lab., Universitat Politècnica de Catalunya, Colom 7-11 08222, Terrassa, Barcelona, Spain.
| | - Jasmina Casals-Terré
- Mechanical Engineering Department - MicroTech Lab., Universitat Politècnica de Catalunya, Colom 7-11 08222, Terrassa, Barcelona, Spain.
| |
Collapse
|
22
|
Alirezaie Alavijeh A, Barati M, Barati M, Abbasi Dehkordi H. The Potential of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer Based on Body Magnetic Field and Organ-on-the-Chip. Adv Pharm Bull 2019; 9:360-373. [PMID: 31592054 PMCID: PMC6773933 DOI: 10.15171/apb.2019.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is an abnormal cell growth which tends to proliferate in an uncontrolled way and, in some cases, leads to metastasis. If cancer is left untreated, it can immediately cause death. The use of magnetic nanoparticles (MNPs) as a drug delivery system will enable drugs to target tissues and cell types precisely. This study describes usual strategies and consideration for the synthesis of MNPs and incorporates payload drug on MNPs. They have advantages such as visual targeting and delivering which will be discussed in this review. In addition, we considered body magnetic field to make drug delivery process more effective and safer by the application of MNPs and tumor-on-chip.
Collapse
Affiliation(s)
- Ali Alirezaie Alavijeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad Barati
- Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hussein Abbasi Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
23
|
Liu G, He F, Li Y, Zhao H, Li X, Tang H, Li Z, Yang Z, Zhang Y. Effects of two surface acoustic wave sorting chips on particles multi-level sorting. Biomed Microdevices 2019; 21:59. [PMID: 31227912 DOI: 10.1007/s10544-019-0419-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Particle/cell sorting has great potential in medical diagnosis and chemical analysis. Two kinds of microfluidic sorting chips (sequential sorting chip and direct sorting chip) are designed, which combine hydraulic force and acoustic radiation force to achieve continuous sorting of multiple particles. Firstly, the optimal values of the angle (α) between the interdigital transducer (IDT) and the main channel, the peak-to-peak voltage (Vpp), the main flow velocity (Vmax) and the flow ratio (A) are determined by simulation and experiments, the related optimal parameters were obtained that the α = 15°, Vpp = 25 V, Vmax = 4 mm/s, flow ratio A1 = 0.2, and A2 = 0.5, respectively. Then, the corresponding sorting experiments were carried out using two kinds of sorting chips to sort the polystyrene (PS) particles with diameters of 1 μm, 5 μm, and 10 μm, and the sorting rate and purity of particles were calculated and analyzed. Experimental results show that the two kinds of sorting chips can achieve continuous sorting of multiple particles, and the sorting effect of sequential sorting chip (control flow ratio) is better than that of direct sorting chip. In addition, the sorting chips in our research have the advantages of simple structure, high sorting efficiency, and the ability to sort multiple particles, which can be applied in medical and chemical research fields, such as cell sorting and chemical analysis.
Collapse
Affiliation(s)
- Guojun Liu
- College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Fang He
- College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Yan Li
- Emergency Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Zhao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Xinbo Li
- College of Communication Engineering, Jilin University, Changchun, 130025, China
| | - Huajie Tang
- College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Zhiqiang Li
- College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Zhigang Yang
- College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Yanyan Zhang
- College of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| |
Collapse
|
24
|
Microfluidics-Based Organism Isolation from Whole Blood: An Emerging Tool for Bloodstream Infection Diagnosis. Ann Biomed Eng 2019; 47:1657-1674. [PMID: 30980291 DOI: 10.1007/s10439-019-02256-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Abstract
The diagnosis of bloodstream infections presents numerous challenges, in part, due to the low concentration of pathogens present in the peripheral bloodstream. As an alternative to existing time-consuming, culture-based diagnostic methods for organism identification, microfluidic devices have emerged as rapid, high-throughput and integrated platforms for bacterial and fungal enrichment, detection, and characterization. This focused review serves to highlight and compare the emerging microfluidic platforms designed for the isolation of sepsis-causing pathogens from blood and suggest important areas for future research.
Collapse
|
25
|
Campaña AL, Florez SL, Noguera MJ, Fuentes OP, Ruiz Puentes P, Cruz JC, Osma JF. Enzyme-Based Electrochemical Biosensors for Microfluidic Platforms to Detect Pharmaceutical Residues in Wastewater. BIOSENSORS-BASEL 2019; 9:bios9010041. [PMID: 30875946 PMCID: PMC6468553 DOI: 10.3390/bios9010041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
Emerging water pollutants such as pharmaceutical contaminants are suspected to induce adverse effects to human health. These molecules became worrisome due to their increasingly high concentrations in surface waters. Despite this alarming situation, available data about actual concentrations in the environment is rather scarce, as it is not commonly monitored or regulated. This is aggravated even further by the absence of portable and reliable methods for their determination in the field. A promising way to tackle these issues is the use of enzyme-based and miniaturized biosensors for their electrochemical detection. Here, we present an overview of the latest developments in amperometric microfluidic biosensors that include, modeling and multiphysics simulation, design, manufacture, testing, and operation methods. Different types of biosensors are described, highlighting those based on oxidases/peroxidases and the integration with microfluidic platforms. Finally, issues regarding the stability of the biosensors and the enzyme molecules are discussed, as well as the most relevant approaches to address these obstacles.
Collapse
Affiliation(s)
- Ana Lucia Campaña
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Sergio Leonardo Florez
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Mabel Juliana Noguera
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Olga P Fuentes
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| | - Johann F Osma
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá, DC 111711, Colombia.
| |
Collapse
|
26
|
Oeschger T, McCloskey D, Kopparthy V, Singh A, Erickson D. Point of care technologies for sepsis diagnosis and treatment. LAB ON A CHIP 2019; 19:728-737. [PMID: 30724931 PMCID: PMC6392004 DOI: 10.1039/c8lc01102h] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sepsis is a rapidly progressing, life threatening immune response triggered by infection that affects millions worldwide each year. Current clinical diagnosis relies on broad physiological parameters and time consuming lab-based cell culture. If proper treatment is not provided, cases of sepsis can drastically increase in severity over the course of a few hours. Development of new point of care tools for sepsis has the potential to improve diagnostic speed and accuracy, leading to prompt administration of appropriate therapeutics, thereby reducing healthcare costs and improving patient outcomes. In this review we examine developing and commercially available technologies to assess the feasibility of rapid, accurate sepsis diagnosis, with emphasis on point of care.
Collapse
Affiliation(s)
- Taylor Oeschger
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Duncan McCloskey
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Varun Kopparthy
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Kamijo Y, Derda R. Freeze-Float Selection of Ice Nucleators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:359-364. [PMID: 30509075 DOI: 10.1021/acs.langmuir.8b02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this manuscript, we developed a screening system that employs the difference in density between liquid water and ice (0.9998 g/cm3 vs 0.9168 g/cm3 at 0 °C) to identify ice-nucleating agents (INAs) that are encapsulated into droplets of water suspended in silicone oil of intermediate density (0.939 g/cm3). Droplets of liquid water stably reside at the interface of the silicone oil and perfluoro oil (1.6658 g/cm3); freezing causes the aqueous droplets to float to the top of the silicone oil layer. We demonstrated the feasibility of this screening system by using droplets that contained well-defined ice-nucleator Snomax. The droplets with and without Snomax froze at different temperatures and separated into two groups in our system. We employed the screening system to test samples that have different ice-nucleating activities. Starting from known ice-nucleating active bacteria Pseudomonas syringae, we confirmed that droplets that contain an increasing amount of ice-nucleating bacteria per droplet exhibit a dose-dependent increase in ice nucleation. When droplets containing different amounts of P. syringae were separated using a freeze-float setup, we observed that the droplets that floated at higher temperature contained more ice-nucleating active bacteria. The outlined system, thus, permits simple power-free separation of droplets that contain effective INA from those that contain weak or no INA. Such a setup can be used as a starting point for the development of high-throughput approaches for the discovery of new INAs.
Collapse
Affiliation(s)
- Yuki Kamijo
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Ratmir Derda
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
28
|
Abstract
Microfluidics platforms can program small amounts of fluids to execute a bio-protocol, and thus, can automate the work of a technician and also integrate a large part of laboratory equipment. Although most microfluidic systems have considerably reduced the size of a laboratory, they are still benchtop units, of a size comparable to a desktop computer. In this paper, we argue that achieving true mobility in microfluidics would revolutionize the domain by making laboratory services accessible during traveling or even in daily situations, such as sport and outdoor activities. We review the existing efforts to achieve mobility in microfluidics, and we discuss the conditions mobile biochips need to satisfy. In particular, we show how we adapted an existing biochip for mobile use, and we present the results when using it during a train ride. Based on these results and our systematic discussion, we identify the challenges that need to be overcome at technical, usability and social levels. In analogy to the history of computing, we make some predictions on the future of mobile biochips. In our vision, mobile biochips will disrupt how people interact with a wide range of healthcare processes, including medical testing and synthesis of on-demand medicine.
Collapse
Affiliation(s)
- Mirela Alistar
- Atlas Institute and Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309-0320, USA.
| |
Collapse
|
29
|
Pilecky M, Schildberger A, Orth-Höller D, Weber V. Pathogen enrichment from human whole blood for the diagnosis of bloodstream infection: Prospects and limitations. Diagn Microbiol Infect Dis 2018; 94:7-14. [PMID: 30579657 DOI: 10.1016/j.diagmicrobio.2018.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
Blood culture represents the current reference method for the detection of bacteria or fungi in the circulation. To accelerate pathogen identification, molecular diagnostic methods, mainly based on polymerase chain reaction (PCR), have been introduced to ensure early and targeted antibiotic treatment of patients suffering from bloodstream infection. Still, these approaches suffer from a lack of sensitivity and from inhibition of PCR in a number of clinical samples, leading to false negative results. To overcome these limitations, various approaches aiming at the enrichment of pathogens from larger blood volumes prior to the extraction of pathogen DNA, thereby also depleting factors interfering with PCR, have been developed. Here, we provide an overview of current systems for diagnosing bloodstream infection, with a focus on approaches for pre-analytical pathogen enrichment, and highlight emerging applications of pathogen depletion for therapeutic purposes as a potential adjunctive treatment of sepsis patients.
Collapse
Affiliation(s)
- Matthias Pilecky
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria.
| | - Anita Schildberger
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria.
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, A-6020 Innsbruck, Austria.
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria; Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria.
| |
Collapse
|
30
|
Song Z, Li M, Li B, Yan Y, Song Y. Automatic detecting and counting magnetic beads-labeled target cells from a suspension in a microfluidic chip. Electrophoresis 2018; 40:897-905. [DOI: 10.1002/elps.201800345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Zhenyu Song
- Department of Radiotherapy; Jiaozhou Central Hospital; Qingdao P. R. China
| | - Mengqi Li
- Department of Mechanical and Mechatronics Engineering; University of Waterloo; Waterloo ON Canada
| | - Bao Li
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| | - Yimo Yan
- Department of Biomedical Engineering; School of Medicine; Tsinghua University; Beijing P. R. China
- Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
| | - Yongxin Song
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| |
Collapse
|
31
|
Tang W, Jiang D, Li Z, Zhu L, Shi J, Yang J, Xiang N. Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis 2018; 40:930-954. [DOI: 10.1002/elps.201800361] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering; Nanjing Forestry University; P. R. China
| | - Zongan Li
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Liya Zhu
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jianping Shi
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jiquan Yang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Nan Xiang
- School of Mechanical Engineering; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; P. R. China
| |
Collapse
|
32
|
Al-Ajrash SMN, Lafdi K, Vasquez ES, Chinesta F, Le Coustumer P. Experimental and Numerical Investigation of the Silicon Particle Distribution in Electrospun Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7147-7152. [PMID: 29800513 DOI: 10.1021/acs.langmuir.8b01167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The properties of ceramic materials are dependent on crystal sizes and their distribution. These parameters can be controlled using electrospinning of the two-phase mixed system. The preceramic solution consists of silicon nanoparticles and polyacrylonitrile (PAN) polymer mixture. Particle distribution during the electrospinning technique was characterized using transmission electron microscopy and modeled using the finite element method. The experimental and numerical results were in agreement. Large silicon particles were located in the skin and the smaller ones were located at the core. This was illustrated by the migration rate from the core, which was the fastest for large particles and diminished as the particles become smaller in size. The threshold for Stokes number was found to be around 2.2 × 10-4 with a critical particle size of 1.0 × 10-7 m in diameter. The current results are very promising, as it demonstrated a novel way for the fabrication of PAN/Si ceramic nanofibers with a gradient of particle size and properties from the skin to the core.
Collapse
Affiliation(s)
- Saja M Nabat Al-Ajrash
- Department of Chemical and Materials Engineering , University of Dayton , 300 College Park , Dayton , Ohio 45469 , United States
| | - Khalid Lafdi
- Department of Chemical and Materials Engineering , University of Dayton , 300 College Park , Dayton , Ohio 45469 , United States
| | - Erick S Vasquez
- Department of Chemical and Materials Engineering , University of Dayton , 300 College Park , Dayton , Ohio 45469 , United States
| | - Francisco Chinesta
- Centrale Nantes , 1 rue de la Noe , BP 92101, 44321 Nantes Cedex 3 , France
| | - Philippe Le Coustumer
- University of Bordeaux , UF STE, B.18 Allée G. Saint-Hilaire , CS 50023, 33615 Pessac Cedex , France
| |
Collapse
|
33
|
Gómez-Pastora J, González-Fernández C, Real E, Iles A, Bringas E, Furlani EP, Ortiz I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. LAB ON A CHIP 2018; 18:1593-1606. [PMID: 29748668 DOI: 10.1039/c8lc00396c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic beads can be functionalized to capture and separate target pathogens from blood for extracorporeal detoxification. The beads can be magnetically separated from a blood stream and collected into a coflowing buffer solution using a two-phase liquid-liquid continuous-flow microfluidic device in the presence of an external field. However, device design and process optimization, i.e. high bead recovery with minimum blood loss or dilution remain a substantial technological challenge. We introduce a CFD-based Eulerian-Lagrangian computational model that enables the rational design and optimization of such systems. The model takes into account dominant magnetic and hydrodynamic forces on the beads as well as coupled bead-fluid interactions. Fluid flow (Navier-Stokes equations) and mass transfer (Fick's law) between the coflowing fluids are solved numerically, while the magnetic force on the beads is predicted using analytical methods. The model is demonstrated via application to a prototype device and used to predict key performance metrics; degree of bead separation, flow patterns, and mass transfer, i.e. blood diffusion to the buffer phase. The impact of different process variables and parameters - flow rates, bead and magnet dimensions and fluid viscosities - on both bead recovery and blood loss or dilution is quantified for the first time. The performance of the prototype device is characterized using fluorescence microscopy and the experimental results are found to match theoretical predictions within an absolute error of 15%. While the model is demonstrated here for analysis of a detoxification device, it can be readily adapted to a broad range of magnetically-enabled microfluidic applications, e.g. bioseparation, sorting and sensing.
Collapse
Affiliation(s)
- Jenifer Gómez-Pastora
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de los Castros s/n, 39005, Santander, Cantabria, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Dow P, Kotz K, Gruszka S, Holder J, Fiering J. Acoustic separation in plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage. LAB ON A CHIP 2018; 18:923-932. [PMID: 29445800 DOI: 10.1039/c7lc01180f] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A more effective treatment of bacteremia requires a diagnostic platform that is both sensitive, accurate and rapid. Currently, clinical laboratory techniques require growth of bacteria prior to diagnosis, take days to complete, and leave empiric therapy and broad spectrum antibiotics as the only option at the onset of treatment. In order to bypass this growth requirement, we engineered a system that purifies bacteria from blood to improve performance in a bacteriophage-based luminescence assay. To perform the purification, we used acoustophoresis in plastic microfluidic chips, enabling future development into a low cost point-of-care system. Acoustophoresis achieves differential separation on the basis of size differences between bacteria and blood cells. We show isolation of three known pathogen species, including members of both Gram-negative and positive-bacteria from blood, and show isolation at clinically relevant concentrations. Using the device as a preparation step prior to the bacteriophage-based luminescence assay, we demonstrate a 33-fold improvement in limit of detection, compared with the unpurified sample, achieving a limit of detection of 6 bacteria.
Collapse
Affiliation(s)
- P Dow
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
35
|
Bougas L, Langenegger LD, Mora CA, Zeltner M, Stark WJ, Wickenbrock A, Blanchard JW, Budker D. Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids. Sci Rep 2018; 8:3491. [PMID: 29472727 PMCID: PMC5823888 DOI: 10.1038/s41598-018-21802-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last decades, the use of magnetic nanoparticles in research and commercial applications has increased dramatically. However, direct detection of trace quantities remains a challenge in terms of equipment cost, operating conditions and data acquisition times, especially in flowing conditions within complex media. Here we present the in-line, non-destructive detection of magnetic nanoparticles using high performance atomic magnetometers at ambient conditions in flowing media. We achieve sub-picomolar sensitivities measuring ~30 nm ferromagnetic iron and cobalt nanoparticles that are suitable for biomedical and industrial applications, under flowing conditions in water and whole blood. Additionally, we demonstrate real-time surveillance of the magnetic separation of nanoparticles from water and whole blood. Overall our system has the merit of in-line direct measurement of trace quantities of ferromagnetic nanoparticles with so far unreached sensitivities and could be applied in the biomedical field (diagnostics and therapeutics) but also in the industrial sector.
Collapse
Affiliation(s)
| | - Lukas D Langenegger
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Carlos A Mora
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Martin Zeltner
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Wendelin J Stark
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | | | | | - Dmitry Budker
- Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
- Helmholtz-Institut Mainz, 55128, Mainz, Germany
- Department of Physics, University of California, Berkeley, CA, 94720-7300, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
36
|
Prasad M, Lambe UP, Brar B, Shah I, J M, Ranjan K, Rao R, Kumar S, Mahant S, Khurana SK, Iqbal HMN, Dhama K, Misri J, Prasad G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97:1521-1537. [PMID: 29793315 DOI: 10.1016/j.biopha.2017.11.026] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023] Open
Abstract
In recent years nanotechnology has revolutionized the healthcare strategies and envisioned to have a tremendous impact to offer better health facilities. In this context, medical nanotechnology involves design, fabrication, regulation, and application of therapeutic drugs and devices having a size in nano-range (1-100 nm). Owing to the revolutionary implications in drug delivery and gene therapy, nanotherapeutics has gained increasing research interest in the current medical sector of the modern world. The areas which anticipate benefits from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic problems. The development of nanotherapeutics with multi-functionalities has considerable potential to fill the lacunae existing in the present therapeutic domain. Nanomedicines in the field of cancer management have enhanced permeability and retention of drugs thereby effectively targeting the affected tissues. Polymeric conjugates of asparaginase, polymeric micelles of paclitaxel have been recmended for various types of cancer treatment .The advancement of nano therapeutics and diagnostics can provide the improved effectiveness of the drug with less or no toxicity concerns. Similarly, diagnostic imaging is having potential future applications with newer imaging elements at nano level. The newly emerging field of nanorobotics can provide new directions in the field of healthcare. In this article, an attempt has been made to highlight the novel nanotherapeutic potentialities of polymeric nanoparticles, nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, dendrimers, nanocapsules and nanosponges based approaches. The useful applications of these nano-medicines in the field of cancer, nutrition, and health have been discussed in details. Regulatory and safety concerns along with the commercial status of nanosystems have also been presented. In summary, a successful translation of emerging nanotherapeutics into commercial products may lead to an expansion of biomedical science. Towards the end of the review, future perspectives of this important field have been introduced briefly.
Collapse
Affiliation(s)
- Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Ikbal Shah
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Manimegalai J
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandip Kumar Khurana
- Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Jyoti Misri
- Division of Animal Health, Indian Council of Agriculture Research, New Delhi, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| |
Collapse
|
37
|
Hebert CG, Hart S, Leski TA, Terray A, Lu Q. Label-Free Detection of Bacillus anthracis Spore Uptake in Macrophage Cells Using Analytical Optical Force Measurements. Anal Chem 2017; 89:10296-10302. [PMID: 28876903 DOI: 10.1021/acs.analchem.7b01983] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Understanding the interaction between macrophage cells and Bacillus anthracis spores is of significant importance with respect to both anthrax disease progression, spore detection for biodefense, as well as understanding cell clearance in general. While most detection systems rely on specific molecules, such as nucleic acids or proteins and fluorescent labels to identify the target(s) of interest, label-free methods probe changes in intrinsic properties, such as size, refractive index, and morphology, for correlation with a particular biological event. Optical chromatography is a label free technique that uses the balance between optical and fluidic drag forces within a microfluidic channel to determine the optical force on cells or particles. Here we show an increase in the optical force experienced by RAW264.7 macrophage cells upon the uptake of both microparticles and B. anthracis Sterne 34F2 spores. In the case of spores, the exposure was detected in as little as 1 h without the use of antibodies or fluorescent labels of any kind. An increase in the optical force was also seen in macrophage cells treated with cytochalasin D, both with and without a subsequent exposure to spores, indicating that a portion of the increase in the optical force arises independent of phagocytosis. These results demonstrate the capability of optical chromatography to detect subtle biological differences in a rapid and sensitive manner and suggest future potential in a range of applications, including the detection of biological threat agents for biodefense and pathogens for the prevention of sepsis and other diseases.
Collapse
Affiliation(s)
- Colin G Hebert
- Naval Research Laboratory , Chemistry Division, Bio/Analytical Chemistry Section, Code 6112, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Sean Hart
- LumaCyte, LLC , 1145 River Road, Suite 16, Charlottesville, Virginia 22901, United States
| | - Tomasz A Leski
- Naval Research Laboratory , Center for Bio/Molecular Science and Engineering, Code 6910, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Alex Terray
- Naval Research Laboratory , Chemistry Division, Bio/Analytical Chemistry Section, Code 6112, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Qin Lu
- Naval Research Laboratory , Chemistry Division, Bio/Analytical Chemistry Section, Code 6112, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
38
|
Bell CS, Mejías R, Miller SE, Greer JM, McClain MS, Cover TL, Giorgio TD. Magnetic Extraction of Acinetobacter baumannii Using Colistin-Functionalized γ-Fe 2O 3/Au Core/Shell Composite Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26719-26730. [PMID: 28696672 DOI: 10.1021/acsami.7b07304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acinetobacter baumannii is a Gram-negative bacterium of increasing concern due to its virulence and persistence in combat and healthcare environments. The incidence of both community-acquired and nosocomial A. baumannii infections is on the rise in foreign and domestic healthcare facilities. Treatment options are limited due to the acquisition of multidrug resistance to the few effective antibiotics. Currently, the most effective pharmaceutically based treatment for multidrug-resistant A. baumannii infections is the antibiotic colistin (polymyxin E). To minimize side effects associated with administration of colistin or other toxic antimicrobial agents, we propose the development of a nanotechnology-mediated treatment strategy. In this design-based effort, colistin-functionalized multilayered, inorganic, magnetoplasmonic nanoconstructs were fabricated to bind to the surface of A. baumannii. This result, for the first time, demonstrates a robust, pharmaceutical-based motif for high affinity, composite nanoparticulates targeting the A. baumannii surface. The antibiotic-activated nanomaterials demonstrated cytocompatibility with human cells and no acute bacterial toxicity at nanoparticle to bacterial concentrations <10 000:1. The magnetomotive characteristics of the nanomaterial enabled magnetic extraction of the bacteria. In a macroscale environment, maximal separation efficiencies exceeding 38% were achieved. This result demonstrates the potential for implementation of this technology into micro- or mesofluidic-based separation environments to enhance extraction efficiencies. The future development of such a mesofluidic-based, nanotechnology-mediated platform is potentially suitable for adjuvant therapies to assist in the treatment of sepsis.
Collapse
Affiliation(s)
- Charleson S Bell
- Department of Biomedical Engineering, Vanderbilt University , VU Station B 351631, Nashville, Tennessee 37235-1631, United States
| | - Raquel Mejías
- Department of Biomedical Engineering, Vanderbilt University , VU Station B 351631, Nashville, Tennessee 37235-1631, United States
| | - Sinead E Miller
- Department of Biomedical Engineering, Vanderbilt University , VU Station B 351631, Nashville, Tennessee 37235-1631, United States
| | - Jasmine M Greer
- Department of Biomedical Engineering, Vanderbilt University , VU Station B 351631, Nashville, Tennessee 37235-1631, United States
| | - Mark S McClain
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | - Timothy L Cover
- Vanderbilt University Medical Center, Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
- Veterans Affairs Tennessee Valley Healthcare System , Nashville, Tennessee 37212, United States
| | - Todd D Giorgio
- Department of Biomedical Engineering, Vanderbilt University , VU Station B 351631, Nashville, Tennessee 37235-1631, United States
| |
Collapse
|
39
|
Antfolk M, Laurell T. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood – A review. Anal Chim Acta 2017; 965:9-35. [DOI: 10.1016/j.aca.2017.02.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
|
40
|
Faridi MA, Ramachandraiah H, Banerjee I, Ardabili S, Zelenin S, Russom A. Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics. J Nanobiotechnology 2017; 15:3. [PMID: 28052769 PMCID: PMC5210221 DOI: 10.1186/s12951-016-0235-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/03/2016] [Indexed: 01/31/2023] Open
Abstract
Background Bloodstream infections (BSI) remain a major challenge with high mortality rate, with an incidence that is increasing worldwide. Early treatment with appropriate therapy can reduce BSI-related morbidity and mortality. However, despite recent progress in molecular based assays, complex sample preparation steps have become critical roadblock for a greater expansion of molecular assays. Here, we report a size based, label-free, bacteria separation from whole blood using elasto-inertial microfluidics. Results In elasto-inertial microfluidics, the viscoelastic flow enables size based migration of blood cells into a non-Newtonian solution, while smaller bacteria remain in the streamline of the blood sample entrance and can be separated. We first optimized the flow conditions using particles, and show continuous separation of 5 μm particles from 2 μm at a yield of 95% for 5 µm particle and 93% for 2 µm particles at respective outlets. Next, bacteria were continuously separated at an efficiency of 76% from undiluted whole blood sample. Conclusion We demonstrate separation of bacteria from undiluted while blood using elasto-inertial microfluidics. The label-free, passive bacteria preparation method has a great potential for downstream phenotypic and molecular analysis of bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0235-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Asim Faridi
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Harisha Ramachandraiah
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Indradumna Banerjee
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Sahar Ardabili
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Sergey Zelenin
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Aman Russom
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden.
| |
Collapse
|
41
|
Iranmanesh M, Hulliger J. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry. Chem Soc Rev 2017; 46:5925-5934. [DOI: 10.1039/c7cs00230k] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The use of strong magnetic field gradients and high magnetic fields generated by permanent magnets or superconducting coils has found applications in many fields such as mining, solid state chemistry, biochemistry and medical research.
Collapse
Affiliation(s)
- M. Iranmanesh
- Department of Chemistry & Biochemistry
- University of Bern
- CH-3012 Bern
- Switzerland
| | - J. Hulliger
- Department of Chemistry & Biochemistry
- University of Bern
- CH-3012 Bern
- Switzerland
| |
Collapse
|
42
|
Alazzam A, Mathew B, Khashan S. Microfluidic Platforms for Bio-applications. ADVANCED MECHATRONICS AND MEMS DEVICES II 2017. [DOI: 10.1007/978-3-319-32180-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Frodsham G, Pankhurst QA. Biomedical applications of high gradient magnetic separation: progress towards therapeutic haeomofiltration. ACTA ACUST UNITED AC 2016; 60:393-404. [PMID: 26439594 DOI: 10.1515/bmt-2015-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/08/2015] [Indexed: 11/15/2022]
Abstract
High gradient magnetic separation is a well-established technology in the mineral processing industry, and has been used for decades in the bioprocessing industry. Less well known is the increasing role that high gradient magnetic separation is playing in biomedical applications, for both diagnostic and therapeutic purposes. We review here the state of the art in this emerging field, with a focus on therapeutic haemofiltration, the key enabling technologies relating to the functionalisation of magnetic nanoparticles with target-specific binding agents, and the development of extra-corporeal circuits to enable the in situ filtering of human blood.
Collapse
|
44
|
Choi JH, Lee J, Shin W, Choi JW, Kim HJ. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system. NANO CONVERGENCE 2016; 3:24. [PMID: 28191434 PMCID: PMC5271165 DOI: 10.1186/s40580-016-0084-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/13/2016] [Indexed: 05/17/2023]
Abstract
Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jaewon Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107 Republic of Korea
- Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107 Republic of Korea
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
- School of Medicine, Pusan National University, Yangsan, 50612 Republic of Korea
| |
Collapse
|
45
|
Deformability-Based Electrokinetic Particle Separation. MICROMACHINES 2016; 7:mi7090170. [PMID: 30404343 PMCID: PMC6189855 DOI: 10.3390/mi7090170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/12/2023]
Abstract
Deformability is an effective property that can be used in the separation of colloidal particles and cells. In this study, a microfluidic device is proposed and tested numerically for the sorting of deformable particles of various degrees. The separation process is numerically investigated by a direct numerical simulation of the fluid–particle–electric field interactions with an arbitrary Lagrangian–Eulerian finite-element method. The separation performance is investigated with the shear modulus of particles, the strength of the applied electric field, and the design of the contracted microfluidic devices as the main parameters. The results show that the particles with different shear moduli take different shapes and trajectories when passing through a microchannel contraction, enabling the separation of particles based on their difference in deformability.
Collapse
|
46
|
Zhu L, Patel SH, Johnson M, Kale A, Raval Y, Tzeng TR, Xuan X. Enhanced Throughput for Electrokinetic Manipulation of Particles and Cells in a Stacked Microfluidic Device. MICROMACHINES 2016; 7:mi7090156. [PMID: 30404325 PMCID: PMC6190188 DOI: 10.3390/mi7090156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023]
Abstract
Electrokinetic manipulation refers to the control of particle and cell motions using an electric field. It is an efficient technique for microfluidic applications with the ease of operation and integration. It, however, suffers from an intrinsic drawback of low throughput due to the linear dependence of the typically very low fluid permittivity. We demonstrate in this work a significantly enhanced throughput for electrokinetic manipulation of particles and cells by the use of multiple parallel microchannels in a two-layer stacked microfluidic device. The fabrication of this device is simple without the need of a precise alignment of the two layers. The number of layers and the number of microchannels in each layer can thus be further increased for a potentially high throughput electrokinetic particle and cell manipulations.
Collapse
Affiliation(s)
- Lin Zhu
- School of Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Saurin H Patel
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| | - Mark Johnson
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| | - Akshay Kale
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| | - Yash Raval
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA.
| | - Tzuen-Rong Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA.
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
47
|
Lopes ALK, Cardoso J, Dos Santos FRCC, Silva ACG, Stets MI, Zanchin NIT, Soares MJ, Krieger MA. Development of a magnetic separation method to capture sepsis associated bacteria in blood. J Microbiol Methods 2016; 128:96-101. [PMID: 27432342 DOI: 10.1016/j.mimet.2016.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
Bloodstream infections are important public health problems, associated with high mortality due to the inability to detect the pathogen quickly in the early stages of infection. Such inability has led to a growing interest in the development of a rapid, sensitive, and specific assay to detect these pathogens. In an effort to improve diagnostic efficiency, we present here a magnetic separation method for bacteria that is based on mutated lysozyme (LysE35A) to capture S. aureus from whole blood. LysE35A-coated beads were able to bind different MSSA and MRSA isolates in the blood and also other six Gram-positive and two Gram-negative species in whole blood. This system was capable to bind bacteria at low concentrations (10CFU/ml) in spiked blood. Samples captured with the mutated lysozyme showed more responsive amplification of the 16S gene than whole blood at concentrations of 10(3)-10(5)CFU. These data demonstrate detection of S. aureus directly in blood samples, without in vitro cultivation. Our results show that capture with LysE35A-coated beads can be useful to develop a point of care diagnostic system for rapid and sensitive detection of pathogens in clinical settings.
Collapse
Affiliation(s)
- Ana Luisa Kalb Lopes
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, Prof. Algacyr Munhoz Mader Street 3775, 81350-010 Curitiba, PR, Brazil.
| | - Josiane Cardoso
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, Prof. Algacyr Munhoz Mader Street 3775, 81350-010 Curitiba, PR, Brazil
| | | | - Ana Claudia Graziani Silva
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, Prof. Algacyr Munhoz Mader Street 3775, 81350-010 Curitiba, PR, Brazil
| | - Maria Isabel Stets
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, Prof. Algacyr Munhoz Mader Street 3775, 81350-010 Curitiba, PR, Brazil
| | - Nilson Ivo Tonin Zanchin
- Laboratory of Proteomic and Protein Engineering, Carlos Chagas Institute, Fiocruz, Prof. Algacyr Munhoz Mader Street 3775, 81350-010 Curitiba, PR, Brazil
| | - Maurilio José Soares
- Laboratory of Cell Biology, Carlos Chagas Institute, Fiocruz, Prof. Algacyr Munhoz Mader Street 3775, 81350-010 Curitiba, PR, Brazil
| | - Marco Aurélio Krieger
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, Prof. Algacyr Munhoz Mader Street 3775, 81350-010 Curitiba, PR, Brazil
| |
Collapse
|
48
|
Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells. Sci Rep 2016; 6:29407. [PMID: 27388549 PMCID: PMC4937384 DOI: 10.1038/srep29407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023] Open
Abstract
In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples.
Collapse
|
49
|
Tay A, Pavesi A, Yazdi SR, Lim CT, Warkiani ME. Advances in microfluidics in combating infectious diseases. Biotechnol Adv 2016; 34:404-421. [PMID: 26854743 PMCID: PMC7125941 DOI: 10.1016/j.biotechadv.2016.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/11/2022]
Abstract
One of the important pursuits in science and engineering research today is to develop low-cost and user-friendly technologies to improve the health of people. Over the past decade, research efforts in microfluidics have been made to develop methods that can facilitate low-cost diagnosis of infectious diseases, especially in resource-poor settings. Here, we provide an overview of the recent advances in microfluidic devices for point-of-care (POC) diagnostics for infectious diseases and emphasis is placed on malaria, sepsis and AIDS/HIV. Other infectious diseases such as SARS, tuberculosis, and dengue are also briefly discussed. These infectious diseases are chosen as they contribute the most to disability-adjusted life-years (DALYs) lost according to the World Health Organization (WHO). The current state of research in this area is evaluated and projection toward future applications and accompanying challenges are also discussed.
Collapse
Affiliation(s)
- Andy Tay
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore; Department of Bioengineering, University of California Los Angeles, CA 90025, United States
| | - Andrea Pavesi
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore
| | - Saeed Rismani Yazdi
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; Polytechnic University of Milan, Milan 20133, Italy
| | - Chwee Teck Lim
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
50
|
Karle M, Vashist SK, Zengerle R, von Stetten F. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review. Anal Chim Acta 2016; 929:1-22. [DOI: 10.1016/j.aca.2016.04.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 01/25/2023]
|