1
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Mortazavi M, Torkzadeh-Mahani M, Rahimi M, Maleki M, Lotfi S, Riahi-Madvar A. Effects of synonymous mutations on kinetic properties and structure of firefly luciferase: Molecular dynamics simulation, molecular docking, RNA folding, and experimental study. Int J Biol Macromol 2023; 235:123835. [PMID: 36870640 DOI: 10.1016/j.ijbiomac.2023.123835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Although synonymous mutations have long been thought to lack striking results, a growing body of research shows these mutations have highly variable effects. In this study, the impact of synonymous mutations in the development of thermostable luciferase was investigated using a combination of experimental and theoretical approaches. Using bioinformatics analysis, the codon usage features in the Lampyridae family's luciferases were studied and four synonymous mutations of Arg in luciferase were created. An exciting result was that the analysis of kinetic parameters showed a slight increase in the thermal stability of the mutant luciferase. AutoDock Vina, %MinMax algorithm, and UNAFold Server were used to perform molecular docking, folding rate, and RNA folding, respectively. Here, it was assumed that in the region (Arg337) with a moderate propensity for coil, synonymous mutation altered the rate of translation, which in turn may lead to a slight change in the structure of the enzyme. According to the molecular dynamics simulation data, local minor global flexibility is observed in the context of the protein conformation. A plausible explanation is that this flexibility may strengthen hydrophobic interactions due to its sensitivity to a molecular collision. Accordingly, thermostability originated mainly from hydrophobic interaction.
Collapse
Affiliation(s)
- Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran.
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Ali Riahi-Madvar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, Kosar University of Bojnord, Bojnord, Iran
| |
Collapse
|
3
|
Martínez-Pérez-Cejuela H, Gregucci D, Calabretta MM, Simó-Alfonso EF, Herrero-Martínez JM, Michelini E. Novel Nanozeolitic Imidazolate Framework (ZIF-8)-Luciferase Biocomposite for Nanosensing Applications. Anal Chem 2022; 95:2540-2547. [PMID: 36473148 PMCID: PMC9893222 DOI: 10.1021/acs.analchem.2c05001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The identification of new strategies to improve the stability of proteins is of utmost importance for a number of applications, from biosensing to biocatalysis. Metal-organic frameworks (MOFs) have been shown as a versatile host platform for the immobilization of proteins, with the potential to protect proteins in harsh conditions. In this work, a new thermostable luciferase mutant has been selected as a bioluminescent protein model to investigate the suitability of MOFs to improve its stability and prompt its applications in real-world applications, for example, ATP detection in portable systems. The luciferase has been immobilized onto zeolitic imidazolate framework-8 (ZIF-8) to obtain a bioluminescent biocomposite with enhanced performance. The biocomposite ZIF-8@luc has been characterized in harsh conditions (e.g., high temperature, non-native pH, etc.). Bioluminescence properties confirmed that MOF enhanced the luciferase stability at acidic pH, in the presence of organic solvents, and at -20 °C. To assess the feasibility of this approach, the recyclability, storage stability, precision, and Michaelis-Menten constants (Km) for ATP and d-luciferin have been also evaluated. As a proof of principle, the suitability for ATP detection was investigated and the biocomposite outperformed the free enzyme in the same experimental conditions, achieving a limit of detection for ATP down to 0.2 fmol.
Collapse
Affiliation(s)
- Héctor Martínez-Pérez-Cejuela
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy,Department
of Analytical Chemistry, University of Valencia, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Denise Gregucci
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy,Center
for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Maria Maddalena Calabretta
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy,Center
for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | | | | | - Elisa Michelini
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy,Center
for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy,Health
Sciences and Technologies Interdepartmental Center for Industrial
Research (HSTICIR), University of Bologna, 40126 Bologna, Italy,. Tel: +39 051 20 9 9533
| |
Collapse
|
4
|
Karimi E, Nikkhah M, Hosseinkhani S. Label-Free and Bioluminescence-Based Nano-Biosensor for ATP Detection. BIOSENSORS 2022; 12:918. [PMID: 36354427 PMCID: PMC9687858 DOI: 10.3390/bios12110918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
A bioluminescence-based assay for ATP can measure cell viability. Higher ATP concentration indicates a higher number of living cells. Thus, it is necessary to design an ATP sensor that is low-cost and easy to use. Gold nanoparticles provide excellent biocompatibility for enzyme immobilization. We investigated the effect of luciferase proximity with citrate-coated gold, silver, and gold-silver core-shell nanoparticles, gold nanorods, and BSA-Au nanoclusters. The effect of metal nanoparticles on the activity of luciferases was recorded by the luminescence assay, which was 3-5 times higher than free enzyme. The results showed that the signal stability in presence of nanoparticles improved and was reliable up to 6 h for analytes measurements. It has been suggested that energy is mutually transferred from luciferase bioluminescence spectra to metal nanoparticle surface plasmons. In addition, we herein report the 27-base DNA aptamer for adenosine-5'-triphosphate (ATP) as a suitable probe for the ATP biosensor based on firefly luciferase activity and AuNPs. Due to ATP application in the firefly luciferase reaction, the increase in luciferase activity and improved detection limits may indicate more stability or accessibility of ATP in the presence of nanoparticles. The bioluminescence intensity increased with the ATP concentration up to 600 µM with a detection limit of 5 µM for ATP.
Collapse
|
5
|
A Luciferase Mutant with Improved Brightness and Stability for Whole-Cell Bioluminescent Biosensors and In Vitro Biosensing. BIOSENSORS 2022; 12:bios12090742. [PMID: 36140127 PMCID: PMC9496056 DOI: 10.3390/bios12090742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
The availability of new bioluminescent proteins with tuned properties, both in terms of emission wavelength, kinetics and protein stability, is highly valuable in the bioanalytical field, with the potential to improve the sensitivity and analytical performance of the currently used methods for ATP detection, whole-cell biosensors, and viability assays among others. We present a new luciferase mutant, called BgLuc, suitable for developing whole-cell biosensors and in vitro biosensors characterized by a bioluminescence maximum of 548 nm, narrow emission bandwidth, favorable kinetic properties, and excellent pH- and thermo-stabilities at 37 and 45 °C and pH from 5.0 to 8.0. We assessed the suitability of this new luciferase for whole-cell biosensing with a cell-based bioreporter assay for Nuclear Factor-kappa B (NF-kB) signal transduction pathway using 2D and 3D human embryonic kidney (HEK293T) cells, and for ATP detection with the purified enzyme. In both cases the luciferase showed suitable for sensitive detection of the target analytes, with better or similar performance than the commercial counterparts.
Collapse
|
6
|
Al-Handawi MB, Polavaram S, Kurlevskaya A, Commins P, Schramm S, Carrasco-López C, Lui NM, Solntsev KM, Laptenok SP, Navizet I, Naumov P. Spectrochemistry of Firefly Bioluminescence. Chem Rev 2022; 122:13207-13234. [PMID: 35926147 DOI: 10.1021/acs.chemrev.1c01047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical reactions underlying the emission of light in fireflies and other bioluminescent beetles are some of the most thoroughly studied processes by scientists worldwide. Despite these remarkable efforts, fierce academic arguments continue around even some of the most fundamental aspects of the reaction mechanism behind the beetle bioluminescence. In an attempt to reach a consensus, we made an exhaustive search of the available literature and compiled the key discoveries on the fluorescence and chemiluminescence spectrochemistry of the emitting molecule, the firefly oxyluciferin, and its chemical analogues reported over the past 50+ years. The factors that affect the light emission, including intermolecular interactions, solvent polarity, and electronic effects, were analyzed in the context of both the reaction mechanism and the different colors of light emitted by different luciferases. The collective data points toward a combined emission of multiple coexistent forms of oxyluciferin as the most probable explanation for the variation in color of the emitted light. We also highlight realistic research directions to eventually address some of the remaining questions related to firefly bioluminescence. It is our hope that this extensive compilation of data and detailed analysis will not only consolidate the existing body of knowledge on this important phenomenon but will also aid in reaching a wider consensus on some of the mechanistic details of firefly bioluminescence.
Collapse
Affiliation(s)
- Marieh B Al-Handawi
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Srujana Polavaram
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Anastasiya Kurlevskaya
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Patrick Commins
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Schramm
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - César Carrasco-López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nathan M Lui
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyril M Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sergey P Laptenok
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Isabelle Navizet
- Univ. Gustave Eiffel, Univ. Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Panče Naumov
- Smart Materials Lab (SML), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
7
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Abbasi Kheirabadi M, Saffar B, Hemmati R, Mortazavi M. Thermally stable and acidic pH tolerant mutant phytases with high catalytic efficiency from Yersinia intermedia for potential application in feed industries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33713-33724. [PMID: 35029822 DOI: 10.1007/s11356-022-18578-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Heat- and pH-stable phytase efficiently hydrolyzes phytic acid. In this research, heat- and pH-stable mutant phytases, T83R, L287R, and T83R/L287R were generated by site-directed mutagenesis from Yersinia intermedia. After the induction and expression of recombinant wild-type and mutant phytases in E. coli BL21, the enzymes were purified using nickel sepharose affinity chromatography, and characterized kinetically and thermodynamically using spectroscopy methods. The mutants showed optimum activity at pH 5.15 and 55-61 °C. The catalytic efficiencies of T83R, L287R, T83R/L287R, and wild-type phytases were calculated to be 2941, 29346, 4906, and 6917 mmol/L-1s-1, respectively. Moreover, after the incubation of T83R, L287R, wild-type, and T83R/ L287R phytases at 100 °C for 1 h, the enzymes retained 22, 5, 4, and 2% of their initial activities, respectively. In addition, T83R, T83R/L287R, L287R, and wild-type phytases retained 82, 44, 16 as well as 11% of their initial activities after 1 h at pH 5.15, respectively. Among these mutants, T83R mutant showed 18% increase in thermal stability, 71% increase in pH stability, and +0.103 KJ/mole increase in ΔΔG, while the catalytic efficiency and ΔΔG value of L287R mutant increased by 4 times and +0.0903 KJ/mole, respectively. Thus, the mutants have the potential to be used in feed industries to increase the bioavailability of minerals while decreasing soil and water pollution.
Collapse
Affiliation(s)
| | - Behnaz Saffar
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, 88186-34141, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
9
|
Ohmuro-Matsuyama Y, Furuta T, Matsui H, Kanai M, Ueda H. Miniaturization of Bright Light-Emitting Luciferase ALuc: picALuc. ACS Chem Biol 2022; 17:864-872. [PMID: 35293729 DOI: 10.1021/acschembio.1c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Luciferases are widely used as sensitive reporters in various fields ranging from basic biology to medical diagnosis, public health, and food inspection. Scientists have isolated novel luciferases from bioluminescent organisms and concentrated on improving their brightness and thermostability. Recently, small bright luciferases such as artificial luciferase (ALuc) (21 kDa), NanoLuc (19 kDa), GLuc (18 kDa), and TurboLuc (16 kDa) have been reported. However, smaller, brighter, and more stable luciferases are desired for further applications. Here, we constructed the smallest and bright mutant of ALuc, named "picALuc" (13 kDa). picALuc retained the luminescence activity of the full-length ALuc; moreover, its brightness and thermostability were at the same levels as NanoLuc. Furthermore, we showed the advantage of picALuc for the bioluminescence resonance energy transfer-based assay due to its smallness. Our development has opened the door for wider and more practical applications of luciferases.
Collapse
Affiliation(s)
- Yuki Ohmuro-Matsuyama
- Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hayato Matsui
- Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan
| | - Masaki Kanai
- Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
10
|
Calabretta MM, Lopreside A, Montali L, Zangheri M, Evangelisti L, D'Elia M, Michelini E. Portable light detectors for bioluminescence biosensing applications: A comprehensive review from the analytical chemist's perspective. Anal Chim Acta 2022; 1200:339583. [DOI: 10.1016/j.aca.2022.339583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
|
11
|
Azad T, Singaravelu R, Fekete EE, Taha Z, Rezaei R, Arulanandam R, Boulton S, Diallo JS, Ilkow CS, Bell JC. SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosens Bioelectron 2021; 180:113122. [PMID: 33706157 PMCID: PMC7921772 DOI: 10.1016/j.bios.2021.113122] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 12/28/2022]
Abstract
As the COVID-19 pandemic continues, there is an imminent need for rapid diagnostic tools and effective antivirals targeting SARS-CoV-2. We have developed a novel bioluminescence-based biosensor to probe a key host-virus interaction during viral entry: the binding of SARS-CoV-2 viral spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2). Derived from Nanoluciferase binary technology (NanoBiT), the biosensor is composed of Nanoluciferase split into two complementary subunits, Large BiT and Small BiT, fused to the Spike S1 domain of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. The ACE2-S1 interaction results in reassembly of functional Nanoluciferase, which catalyzes a bioluminescent reaction that can be assayed in a highly sensitive and specific manner. We demonstrate the biosensor's large dynamic range, enhanced thermostability and pH tolerance. In addition, we show the biosensor's versatility towards the high-throughput screening of drugs which disrupt the ACE2-S1 interaction, as well as its ability to act as a surrogate virus neutralization assay. Results obtained with our biosensor correlate well with those obtained with a Spike-pseudotyped lentivirus assay. This rapid in vitro tool does not require infectious virus and should enable the timely development of antiviral modalities targeting SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Emily E.F. Fekete
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | - Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada,Corresponding author. Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
12
|
Carrasco-López C, Lui NM, Schramm S, Naumov P. The elusive relationship between structure and colour emission in beetle luciferases. Nat Rev Chem 2020; 5:4-20. [PMID: 37118106 DOI: 10.1038/s41570-020-00238-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
In beetles, luciferase enzymes catalyse the conversion of chemical energy into light through bioluminescence. The principles of this process have become a fundamental biotechnological tool that revolutionized biological research. Different beetle species can emit different colours of light, despite using the same substrate and highly homologous luciferases. The chemical reasons for these different colours are hotly debated yet remain unresolved. This Review summarizes the structural, biochemical and spectrochemical data on beetle bioluminescence reported over the past three decades. We identify the factors that govern what colour is emitted by wild-type and mutant luciferases. This topic is controversial, but, in general, we note that green emission requires cationic residues in a specific position near the benzothiazole fragment of the emitting molecule, oxyluciferin. The commonly emitted green-yellow light can be readily changed to red by introducing a variety of individual and multiple mutations. However, complete switching of the emitted light from red to green has not been accomplished and the synergistic effects of combined mutations remain unexplored. The minor colour shifts produced by most known mutations could be important in establishing a 'mutational catalogue' to fine-tune emission of beetle luciferases, thereby expanding the scope of their applications.
Collapse
|
13
|
Kargar F, Mortazavi M, Torkzadeh-Mahani M, Lotfi S, Shakeri S. Evaluation of Luciferase Thermal Stability by Arginine Saturation in the Flexible Loops. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164616666190320151005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The firefly luciferase enzyme is widely used in protein engineering and diverse
areas of biotechnology, but the main problem with this enzyme is low-temperature stability. Previous
reports indicated that surface areas of thermostable proteins are rich in arginine, which increased
their thermal stability. In this study, this aspect of thermophilic proteins evaluated by mutations of surface
residues to Arg. Here, we report the construction, purification, and studying of these mutated luciferases.
Methods:
For mutagenesis, the QuikChange site-directed mutagenesis was used and the I108R,
T156R, and N177R mutant luciferases were created. In the following, the expression and purification
of wild-type and mutant luciferases were conducted and their kinetic and structural properties were analyzed.
To analyze the role of these Arg in these loops, the 3D models of these mutants’ enzymes were
constructed in the I-TASSER server and the exact situation of these mutants was studied by the
SPDBV and PyMOL software.
Results:
Overall, the optimum temperature of these mutated enzymes was not changed. However, after
30 min incubation of these mutated enzymes at 30°C, the I108R, T156R, N177R, and wild-type kept the
80%, 50%, 20%, and 20% of their original activity, respectively. It should be noted that substitution of
these residues by Arg preserved the specific activity of firefly luciferase.
Conclusion:
Based on these results, it can be concluded that T156R and N177R mutants by compacting
local protein structure, increased the thermostability of luciferase. However, insertion of positively
charged residues in these positions create the new hydrogen bonds that associated with a series of
structural changes and confirmed by intrinsic and extrinsic fluorescence spectroscopy and homology
modeling studies.
Collapse
Affiliation(s)
- Farzane Kargar
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Shahryar Shakeri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
14
|
Bonakdar A, Sahebazzamani F, Rasaee MJ, Hosseinkhani S, Rahbarizadeh F, Mahboudi F, Ganjali MR. In silico design and in vitro characterization of a recombinant antigen for specific recognition of NMP22. Int J Biol Macromol 2019; 140:69-77. [PMID: 31404598 DOI: 10.1016/j.ijbiomac.2019.08.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023]
Abstract
Although urine cytology and cystoscopy are current gold standard methods in diagnosis and surveillance of Bladder cancer (BC), they have some limitations which necessitates novel diagnostic approaches to compensate their drawbacks. In this regard, Nuclear Matrix Protein 22 (NMP22) is introduced as a potential tumor biomarker for BC detection (FDA approved). NMP22 determination mainly occurs through immunoassay platforms, raising a proper antibody against its antigen. Hence, development of such immunoassays seems crucial. Various bioinformatic tools were harnessed to select a region with lowest variability, highest density for linear and conformational epitopes, lowest post translational modifications, highest antigenicity, best physicochemical properties and reliable transcriptional properties. Subsequently, E. coli BL21 (DE3) and P. pastoris GS115 were applied for exogenous expression. Ultimately, protein purification and quantification was followed by ELISA test for antibody analyses. Both host successfully expressed the antigen, while the E. coli expression was with higher yield. The commercial anti-NMP22 antibodies showed relatively equal detection results. However, the slight better detection for the antigen with P. pastoris origin could be deduced as better structural properties for P. pastoris. These results indicate higher expression yields and lower costs for over-expression of this eukaryotic antigen.
Collapse
Affiliation(s)
- Alireza Bonakdar
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sahebazzamani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology & Metabolism Molecular - Cellular Sciences Institute, Iran
| |
Collapse
|
15
|
Xu Q, Si M, Zhang Z, Li Z, Jiang L, Huang H. Rational Side-Chain Amino Acid Substitution in Firefly Luciferase for Improved Thermostability. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683819010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
16
|
Carrasco-López C, Ferreira JC, Lui NM, Schramm S, Berraud-Pache R, Navizet I, Panjikar S, Naumov P, Rabeh WM. Beetle luciferases with naturally red- and blue-shifted emission. Life Sci Alliance 2018; 1:e201800072. [PMID: 30456363 PMCID: PMC6238593 DOI: 10.26508/lsa.201800072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023] Open
Abstract
New crystal structures of red- and green blue–shifted beetle luciferases reveal that the color emission mechanism is dependent on the active site microenvironment affected by the conformation of loop regions. The different colors of light emitted by bioluminescent beetles that use an identical substrate and chemiexcitation reaction sequence to generate light remain a challenging and controversial mechanistic conundrum. The crystal structures of two beetle luciferases with red- and blue-shifted light relative to the green yellow light of the common firefly species provide direct insight into the molecular origin of the bioluminescence color. The structure of a blue-shifted green-emitting luciferase from the firefly Amydetes vivianii is monomeric with a structural fold similar to the previously reported firefly luciferases. The only known naturally red-emitting luciferase from the glow-worm Phrixothrix hirtus exists as tetramers and octamers. Structural and computational analyses reveal varying aperture between the two domains enclosing the active site. Mutagenesis analysis identified two conserved loops that contribute to the color of the emitted light. These results are expected to advance comparative computational studies into the conformational landscape of the luciferase reaction sequence.
Collapse
Affiliation(s)
| | | | - Nathan M Lui
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Schramm
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Romain Berraud-Pache
- Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, Marne-la-Vallée, France
| | - Isabelle Navizet
- Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, Marne-la-Vallée, France
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Panče Naumov
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wael M Rabeh
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Halliwell LM, Jathoul AP, Bate JP, Worthy HL, Anderson JC, Jones DD, Murray JAH. ΔFlucs: Brighter Photinus pyralis firefly luciferases identified by surveying consecutive single amino acid deletion mutations in a thermostable variant. Biotechnol Bioeng 2017; 115:50-59. [PMID: 28921549 DOI: 10.1002/bit.26451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/05/2022]
Abstract
The bright bioluminescence catalyzed by Photinus pyralis firefly luciferase (Fluc) enables a vast array of life science research such as bio imaging in live animals and sensitive in vitro diagnostics. The effectiveness of such applications is improved using engineered enzymes that to date have been constructed using amino acid substitutions. We describe ΔFlucs: consecutive single amino acid deletion mutants within six loop structures of the bright and thermostable ×11 Fluc. Deletion mutations are a promising avenue to explore new sequence and functional space and isolate novel mutant phenotypes. However, this method is often overlooked and to date there have been no surveys of the effects of consecutive single amino acid deletions in Fluc. We constructed a large semi-rational ΔFluc library and isolated significantly brighter enzymes after finding ×11 Fluc activity was largely tolerant to deletions. Targeting an "omega-loop" motif (T352-G360) significantly enhanced activity, altered kinetics, reduced Km for D-luciferin, altered emission colors, and altered substrate specificity for redshifted analog DL-infraluciferin. Experimental and in silico analyses suggested remodeling of the Ω-loop impacts on active site hydrophobicity to increase light yields. This work demonstrates the further potential of deletion mutations, which can generate useful Fluc mutants and broaden the palette of the biomedical and biotechnological bioluminescence enzyme toolbox.
Collapse
Affiliation(s)
| | - Amit P Jathoul
- School of Biosciences, University of Cardiff, Cardiff, UK
| | - Jack P Bate
- School of Biosciences, University of Cardiff, Cardiff, UK
| | | | | | - D Dafydd Jones
- School of Biosciences, University of Cardiff, Cardiff, UK
| | | |
Collapse
|
18
|
Yousefi F, Ataei F, Mortazavi M, Hosseinkhani S. Bifunctional role of leucine 300 of firefly luciferase in structural rigidity. Int J Biol Macromol 2017; 101:67-74. [DOI: 10.1016/j.ijbiomac.2017.03.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/25/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022]
|
19
|
Rahban M, Salehi N, Saboury AA, Hosseinkhani S, Karimi-Jafari MH, Firouzi R, Rezaei-Ghaleh N, Moosavi-Movahedi AA. Histidine substitution in the most flexible fragments of firefly luciferase modifies its thermal stability. Arch Biochem Biophys 2017; 629:8-18. [PMID: 28711358 DOI: 10.1016/j.abb.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 11/26/2022]
Abstract
Molecular dynamics (MD) at two temperatures of 300 and 340 K identified two histidine residues, His461 and His489, in the most flexible regions of firefly luciferase, a light emitting enzyme. We therefore designed four protein mutants H461D, H489K, H489D and H489M to investigate their enzyme kinetic and thermodynamic stability changes. Substitution of His461 by aspartate (H461D) decreased ATP binding affinity, reduced the melting temperature of protein by around 25 °C and shifted its optimum temperature of activity to 10 °C. In line with the common feature of psychrophilic enzymes, the MD data showed that the overall flexibility of H461D was relatively high at low temperature, probably due to a decrease in the number of salt bridges around the mutation site. On the other hand, substitution of His489 by aspartate (H489D) introduced a new salt bridge between the C-terminal and N-terminal domains and increased protein rigidity but only slightly improved its thermal stability. Similar changes were observed for H489K and, to a lesser degree, H489M mutations. Based on our results we conclude that the MD simulation-based rational substitution of histidines by salt-bridge forming residues can modulate conformational dynamics in luciferase and shift its optimal temperature activity.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Najmeh Salehi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | | |
Collapse
|
20
|
Zhang J, Chai H, Yang G, Ma Z. Prediction of bioluminescent proteins by using sequence-derived features and lineage-specific scheme. BMC Bioinformatics 2017; 18:294. [PMID: 28583090 PMCID: PMC5460367 DOI: 10.1186/s12859-017-1709-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Bioluminescent proteins (BLPs) widely exist in many living organisms. As BLPs are featured by the capability of emitting lights, they can be served as biomarkers and easily detected in biomedical research, such as gene expression analysis and signal transduction pathways. Therefore, accurate identification of BLPs is important for disease diagnosis and biomedical engineering. In this paper, we propose a novel accurate sequence-based method named PredBLP (Prediction of BioLuminescent Proteins) to predict BLPs. Results We collect a series of sequence-derived features, which have been proved to be involved in the structure and function of BLPs. These features include amino acid composition, dipeptide composition, sequence motifs and physicochemical properties. We further prove that the combination of four types of features outperforms any other combinations or individual features. To remove potential irrelevant or redundant features, we also introduce Fisher Markov Selector together with Sequential Backward Selection strategy to select the optimal feature subsets. Additionally, we design a lineage-specific scheme, which is proved to be more effective than traditional universal approaches. Conclusion Experiment on benchmark datasets proves the robustness of PredBLP. We demonstrate that lineage-specific models significantly outperform universal ones. We also test the generalization capability of PredBLP based on independent testing datasets as well as newly deposited BLPs in UniProt. PredBLP is proved to be able to exceed many state-of-art methods. A web server named PredBLP, which implements the proposed method, is free available for academic use. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1709-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin Province, 130117, People's Republic of China.,School of Computer and Information Technology, Xinyang Normal University, Xinyang, Henan Province, 464000, People's Republic of China
| | - Haiting Chai
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin Province, 130117, People's Republic of China
| | - Guifu Yang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin Province, 130117, People's Republic of China
| | - Zhiqiang Ma
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin Province, 130117, People's Republic of China.
| |
Collapse
|
21
|
Hosseinkhani S, Emamgholi Zadeh E, Sahebazzamani F, Ataei F, Hemmati R. Luciferin-Regenerating Enzyme Crystal Structure Is Solved but its Function Is Still Unclear. Photochem Photobiol 2017; 93:429-435. [PMID: 28120440 DOI: 10.1111/php.12723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/24/2016] [Indexed: 01/12/2023]
Abstract
Contribution of luciferin-regenerating enzyme (LRE) for in vitro recycling of D-luciferin has been reported. According to crystal structure of LRE, it is a beta-propeller protein which is a type of all β-protein architecture. In this overview, reinvestigation of the luciferase-based LRE assays and its function is reported. Until now, sequence of LRE genes from four different species of firefly has been reported. In spite of previous reports, T-LRE (from Lampyris turkestanicus) was cloned and expressed in Escherichia coli as well as Pichia pastoris in a nonsoluble form as inclusion body. According to recent investigations, bioluminescent signal of soluble T-LRE-luciferase-coupled assay increased and then reached an equilibrium state in the presence of D-cysteine. In addition, the results revealed that both D- and L-cysteine in the absence of T-LRE caused a significant increase in bioluminescence intensity of luciferase over a long time. Based on activity measurements and spectroscopic results, D-cysteine increased the activity of luciferase due to its redox potential and induction of conformational changes in structure and kinetics properties. In conclusion, in spite of previous reports on the effect of LRE (at least T-LRE) on luciferase activity, most of the increase in luciferase activity is caused by direct effect of D-cysteine on structure and activity of firefly luciferase. Moreover, bioinformatics analysis cannot support the presence of LRE in peroxisome of photocytes in firefly lanterns.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Emamgholi Zadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sahebazzamani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
22
|
Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra. Enzyme Microb Technol 2017; 96:47-59. [DOI: 10.1016/j.enzmictec.2016.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
|
23
|
Si M, Xu Q, Jiang L, Huang H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One 2016; 11:e0162318. [PMID: 27658030 DOI: 10.1371/journal.pone.0162318.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/19/2016] [Indexed: 05/26/2023] Open
Abstract
SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes.
Collapse
Affiliation(s)
- Meng Si
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Jiang
- College of Food Sciences and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
24
|
Si M, Xu Q, Jiang L, Huang H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One 2016; 11:e0162318. [PMID: 27658030 PMCID: PMC5033358 DOI: 10.1371/journal.pone.0162318] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022] Open
Abstract
SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes.
Collapse
Affiliation(s)
- Meng Si
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Jiang
- College of Food Sciences and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- * E-mail: (LJ); (HH)
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
- * E-mail: (LJ); (HH)
| |
Collapse
|
25
|
Sobhani-Damavandifar Z, Hosseinkhani S, Sajedi RH. Proposed ionic bond between Arg300 and Glu270 and Glu271 are not involved in inactivation of a mutant firefly luciferase (LRR). Enzyme Microb Technol 2016; 86:17-24. [PMID: 26992788 DOI: 10.1016/j.enzmictec.2016.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
The weakness of firefly luciferase is its rapid inactivation. Many studies have been done to develop thermostable luciferases. One of these modifications was LRR mutant in which the Leu300 was substituted with Arg in the E(354)RR(356)Lampyris turkestanicus luciferase as template. LRR was more thermostable than the wild type but with only 0.02% activity. In this study, site-directed mutagenesis was used to change the proposed ionic bond between the Arg and two neighboring residues (Glu270 and Glu271), to understand if the induced interactions were responsible for inactivation in LRR. Our results showed that substitution of Glu270 and 271 with Ala removed the interactions but the activity of enzyme did not return. The E270A mutant was more active than LRR but the E271A and E270A/E271A mutants were inactive. Fluorescence and CD measurements showed that these mutations were accompanied by conformational changes. Extrinsic fluorescence measurement and obtained quenching data by KI and acrylamide also confirmed that the mutants were less compact than the LRR enzyme. In conclusion, in LRR, the interactions between Arg300 and Glu270 and Glu271 were not responsible for the enzyme inactivation and it is proposed that the enzyme inactivation is due to conformational changes of LRR mutant of firefly luciferase.
Collapse
Affiliation(s)
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
26
|
Abstract
Using structure and sequence based analysis we can engineer proteins to increase their thermal stability.
Collapse
Affiliation(s)
- H. Pezeshgi Modarres
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - M. R. Mofrad
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory
- Department of Mechanical and Manufacturing Engineering
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
27
|
Koksharov MI, Ugarova NN. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence. Photochem Photobiol Sci 2014; 12:2016-27. [PMID: 24057044 DOI: 10.1039/c3pp50242b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioluminescence spectra of firefly luciferases demonstrate highly pH-sensitive spectra changing the color from green to red light when pH is lowered from alkaline to acidic. This reflects a change of ratio of the green and red emitters in the bimodal spectra of bioluminescence. We show that the mutations strongly stabilizing green (Y35N) or red (H433Y) emission compensate each other leading to the WT color of firefly luciferase. We further used this compensating ability of Y35N to search for strong red-shifting mutations in the C-domain of firefly luciferase by random mutagenesis. The discovered mutation E457K substantially increased the contribution of the red emitter and caused a 12 nm red shift of the green emitter as well. E457 is highly conservative not only in beetle luciferases but also in a whole ANL superfamily of adenylating enzymes and forms a conservative structural hydrogen bond with V471. Our results suggest that the removal of this hydrogen bond only mildly affects luciferase properties and that most of the effect of E457K is caused by the introduction of positive charge. E457 forms a salt bridge with R534 in most ANL enzymes including pH-insensitive luciferases which is absent in pH-sensitive firefly luciferases. The mutant A534R shows that this salt bridge is not important for pH-sensitivity but considerably improves in vivo thermostability. Although E457 is located far from the oxyluciferin-binding site, the properties of the mutant E457K suggest that it affects color by influencing the AMP binding.
Collapse
Affiliation(s)
- Mikhail I Koksharov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
28
|
Crystal structure of native and a mutant of Lampyris turkestanicus luciferase implicate in bioluminescence color shift. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2729-35. [DOI: 10.1016/j.bbapap.2013.09.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/18/2022]
|
29
|
Nazari M, Hosseinkhani S, Hassani L. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective. Photochem Photobiol Sci 2013; 12:298-308. [DOI: 10.1039/c2pp25140j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Noori AR, Hosseinkhani S, Ghiasi P, Heydari A, Akbari J. Water-miscible ionic liquids as novel effectors for the firefly luciferase reaction. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ali Reza Noori
- Department of Biochemistry; Faculty of Biological Sciences; Tarbiat Modares University; Tehran; Iran
| | - Saman Hosseinkhani
- Department of Biochemistry; Faculty of Biological Sciences; Tarbiat Modares University; Tehran; Iran
| | - Parisa Ghiasi
- Department of Biochemistry; Faculty of Biological Sciences; Tarbiat Modares University; Tehran; Iran
| | - Akbar Heydari
- Department of Chemistry; Faculty of Science; Tarbiat Modares University; Tehran; Iran
| | - Jafar Akbari
- Department of Chemistry; Faculty of Science; Tarbiat Modares University; Tehran; Iran
| |
Collapse
|
31
|
Karimzadeh S, Moradi M, Hosseinkhani S. Delicate balance of electrostatic interactions and disulfide bridges in thermostability of firefly luciferase. Int J Biol Macromol 2012; 51:837-44. [PMID: 22750581 DOI: 10.1016/j.ijbiomac.2012.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
The wild type Photinus pyralis luciferase does not have any disulfide bridge. Disulfide bridges are determinant in inherent stability of protein at moderate temperatures. Meanwhile, arginin is responsible for thermostability at higher temperatures. In this study, by concomitant introduction of disulfide bridge and a surface arginin in a mutant (A296C-A326C/I232R), the contribution of disulfide bridge introduction and surface hydrophilic residue on activity and global stability of P. pyralis luciferase is investigated. In addition to the mentioned mutant; I232R, A296C-A326C and wild type luciferases are characterized. Though addition of Arg caused stability against proteolysis but in combination with disulfide bridge resulted in decreased thermal stability compared to A296C-A326C mutant. In spite of long distance of two different mutations (A296C-A326C and I232R) from each other in the three-dimensional structure, combination of their effects on the stability of luciferase was not cumulative.
Collapse
Affiliation(s)
- Somayeh Karimzadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
32
|
Mortazavi M, Hosseinkhani S. Design of thermostable luciferases through arginine saturation in solvent-exposed loops. Protein Eng Des Sel 2011; 24:893-903. [PMID: 22068960 DOI: 10.1093/protein/gzr051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In most bioluminescence systems the oxidation of luciferin and production of light is catalyzed by luciferases. Protein engineering studies have shown that thermostable proteins from thermophilic organisms have a higher frequency of Arg, especially in exposed states. To further clarify the arginine saturation effect on thermostability of firefly luciferase, some of hydrophobic solvent-exposed residues in Lampyris turkestanicus luciferase are changed to arginine. All of these residues are located at the surface loops of L.turkestanicus luciferase. Starting with a luciferase mutant (E³⁵⁴Q/Arg³⁵⁶), single mutation (-Q³⁵R, -I¹⁸²R, -I²³²R and -L(300)R), double mutation (-Q³⁵R/I²³²R) and triple mutation (-Q³⁵R/I²³²R/I¹⁸²R) are added. Bioluminescence emission spectra indicate that substitution of Arg by these residues, do not effect on the maximum wavelength of emission spectrum. It should be noted, introduction of double mutation (-Q³⁵R/I²³²R) and triple mutation (-Q³⁵R/I²³²R/I¹⁸²R) were kept specific activity of firefly luciferase. By addition of positively charged residue, some specific mutations (-I²³²R, -Q³⁵R/I²³²R and -Q³⁵R/I²³²R/I¹⁸²R) showed that optimum temperature of activity was increased to 40°C which are 12 and 15°C higher than E³⁵⁴Q/Arg³⁵⁶ and wild-type luciferases, respectively. Also, after 40 min incubation of enzymes at 40°C, the relative remaining activity of wild type was only 5%, whereas for -I²³²R, -Q³⁵R/I²³²R and -Q³⁵R/I²³²R/I¹⁸²R was 60, 80 and 80% of original activity, respectively.
Collapse
Affiliation(s)
- Mojtaba Mortazavi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
33
|
Navizet I, Liu YJ, Ferré N, Roca-Sanjuán D, Lindh R. The chemistry of bioluminescence: an analysis of chemical functionalities. Chemphyschem 2011; 12:3064-76. [PMID: 21997887 DOI: 10.1002/cphc.201100504] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Indexed: 11/10/2022]
Abstract
Firefly luciferase is one of the most studied bioluminescent systems, both theoretically and experimentally. Herein we review the current understanding of the bioluminescent process from a chemical functionality perspective based on those investigations. Three key components are emphasized: the chemiluminophore, the electron-donating fragment, and how these are affected by the substrate-enzyme interaction. The understanding is based on details of how the peroxide -O-O- bond supports the production of electronically excited products and how the charge-transfer (CT) mechanism, with the aid of an electron-donating group, lowers the activation barrier to support a reaction occurs in living organisms. For the substrate-enzyme complex it is demonstrated that the enzyme can affect the hydrogen-bonding around the CT-controlling group, resulting in a mechanism for color modulation. Finally, we analyse other luciferin-luciferase systems and compare them to the key chemical functionalities of the fragments of the luciferin-luciferase complex with respect to similarities and differences.
Collapse
Affiliation(s)
- Isabelle Navizet
- Molecular Science Institute School of Chemistry, University of the Witwatersrand, PO Wits Johannesburg 2050, South Africa.
| | | | | | | | | |
Collapse
|
34
|
Koksharov MI, Ugarova NN. Thermostabilization of firefly luciferase by in vivo directed evolution. Protein Eng Des Sel 2011; 24:835-44. [PMID: 21900306 DOI: 10.1093/protein/gzr044] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Firefly luciferase is widely used in a number of areas of biotechnology and molecular biology. However, rapid inactivation of wild-type (WT) luciferases at elevated temperatures often hampers their application. A simple non-lethal in vivo screening scheme was used to identify thermostable mutants of luciferase in Escherichia coli colonies. This scheme allowed carrying out each cycle of mutagenesis in a rapid and efficient manner. Four rounds of directed evolution were conducted on a part of the gene coding for amino acid residues 130-390 of Luciola mingrelica luciferase. The resultant mutant designated 4TS had a half-life of 10 h at 42°C, which is 65-fold higher compared with the WT luciferase. Moreover, the mutant 4TS showed a 1.9-fold increase in specific activity, 5.7-fold reduction of K(m) for ATP and a higher-temperature optimum compared with the WT enzyme. 4TS contains eight mutations, four of which are suggested to be mainly responsible for the enhancement of thermostability: R211L, A217V, E356K and S364C. Thus, directed evolution with non-lethal colony screening for in vivo bioluminescence activity proved to be an effective and efficient approach for increasing thermal stability of luciferase while retaining high catalytic activity.
Collapse
Affiliation(s)
- Mikhail I Koksharov
- Division of Chemical Enzymology, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | | |
Collapse
|
35
|
Effects of Sucrose and Trehalose on Stability, Kinetic Properties, and Thermal Aggregation of Firefly Luciferase. Appl Biochem Biotechnol 2011; 165:572-82. [DOI: 10.1007/s12010-011-9276-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
|
36
|
Hosseinkhani S. Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell Mol Life Sci 2011; 68:1167-82. [PMID: 21188462 PMCID: PMC11114832 DOI: 10.1007/s00018-010-0607-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/26/2022]
Abstract
Firefly luciferase-catalyzed reaction proceeds via the initial formation of an enzyme-bound luciferyl adenylate intermediate. The chemical origin of the color modulation in firefly bioluminescence has not been understood until recently. The presence of the same luciferin molecule, in combination with various mutated forms of luciferase, can emit light at slightly different wavelengths, ranging from red to yellow to green. A historical perspective of development in understanding of color emission mechanism is presented. To explain the variation in the color of the bioluminescence, different factors have been discussed and five hypotheses proposed for firefly bioluminescence color. On the basis of recent results, light-color modulation mechanism of firefly luciferase propose that the light emitter is the excited singlet state of OL(-) [(1)(OL(-))*], and light emission from (1)(OL(-))* is modulated by the polarity of the active-site environment at the phenol/phenolate terminal of the benzothiazole fragment in oxyluciferin.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, 14115-175, Tehran, Iran.
| |
Collapse
|
37
|
Khalifeh K, Ranjbar B, Alipour BS, Hosseinkhani S. The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase. BMB Rep 2011; 44:102-6. [DOI: 10.5483/bmbrep.2011.44.2.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Nazari M, Hosseinkhani S. Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase. Photochem Photobiol Sci 2011; 10:1203-15. [DOI: 10.1039/c1pp05012e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Leitão JM, Esteves da Silva JC. Firefly luciferase inhibition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:1-8. [DOI: 10.1016/j.jphotobiol.2010.06.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/09/2010] [Accepted: 06/29/2010] [Indexed: 01/25/2023]
|
40
|
Navizet I, Liu YJ, Ferré N, Xiao HY, Fang WH, Lindh R. Color-tuning mechanism of firefly investigated by multi-configurational perturbation method. J Am Chem Soc 2010; 132:706-12. [PMID: 20014859 DOI: 10.1021/ja908051h] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This is the first report on a multiconfigurational reference second-order perturbation theory-molecular mechanics study of the color modulation of the observed bioluminescence of the oxyluciferin-luciferase complex of the Japanese genji-botaru firefly using structures according to recent X-ray data. Our theoretical results do not support the experimentally deduced conclusion that the color modulation of the emitted light primarily depends on the size of the compact luciferase protein cavity embedding the excited oxyluciferin molecule. Rather, we find, in agreement with recent experimental observations, that the wavelength of the emitted light depends on the polarity of the microenvironment at the phenol/phenolate terminal of the benzothiazole fragment in oxyluciferin.
Collapse
Affiliation(s)
- Isabelle Navizet
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | |
Collapse
|
41
|
Maghami P, Ranjbar B, Hosseinkhani S, Ghasemi A, Moradi A, Gill P. Relationship between stability and bioluminescence color of firefly luciferase. Photochem Photobiol Sci 2010; 9:376-83. [PMID: 20221465 DOI: 10.1039/b9pp00161a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Firefly luciferase catalyzes the oxidation of luciferin in the presence of ATP, Mg(2+) and molecular oxygen. The bioluminescence color of firefly luciferases is identified by the luciferase structure and assay conditions. Amongst different types of beetles, luciferase from Phrixotrix railroad worm (PhRE) with a unique additional residue (Arg353) naturally emits red bioluminescence color. By insertion of Arg356 in luciferase of Lampyris turkestanicus, corresponding to Arg353 in Phrixotrix hirtus, the color of the emitted light was changed to red. To understand the effect of this position on the bioluminescence color shift, four residues with similar sizes but different charges (Arg, Lys, Glu, and Gln) were inserted into Photinus pyralis luciferase. Comparison of mutants with native luciferase shows that mutation brought an increase in the content of secondary structure and globular compactness of (P. pylalis) luciferase. Comparative study of chemical denaturation of native and mutant luciferases by activity measurement, intrinsic and extrinsic fluorescence, circular dichroism, and DSC techniques revealed that insertion of positively charged residues (Arg, Lys) in the flexible loop (352-358) plays a significant role on the stability of (P. pyralis) luciferase and changes the light color to red.
Collapse
Affiliation(s)
- Parvaneh Maghami
- Department of Biochemistry and Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
42
|
Imani M, Hosseinkhani S, Ahmadian S, Nazari M. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity. Photochem Photobiol Sci 2010; 9:1167-77. [DOI: 10.1039/c0pp00105h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|