1
|
Furukawa H, Kimura Y, Inaba H, Matsuura K. A supramolecular system mimicking the infection process of an enveloped virus through membrane fusion. Sci Rep 2023; 13:19934. [PMID: 37968508 PMCID: PMC10651892 DOI: 10.1038/s41598-023-47347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Membrane fusion is an essential step for the entry of enveloped viruses, such as human immunodeficiency virus and influenza virus, into the host cell, often triggered by the binding of membrane proteins on the viral envelope to host cell membrane. Recently, external stimuli was shown to trigger membrane fusion in an artificial system. Direct observation of artificial membrane fusion using a giant unilamellar vesicle (GUV), which is similar in size to a cell, is useful as a biological model system. However, there are no model systems for studying membrane fusion of enveloped viruses with host cells. Here, we report a supramolecular model system for viral entry into a GUV or cell through membrane fusion. The system was constructed by complexing a cationic lipid bilayer on an anionic artificial viral capsid, self-assembled from viral β-annulus peptides. We demonstrate that the cationic enveloped artificial viral capsid electrostatically interacts with the anionic GUV or cell, and the capsid enters the GUV or cell through membrane fusion. The model system established in this study will be important for analyzing membrane fusion during infection of a natural virus.
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Yuuna Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
| |
Collapse
|
2
|
Furukawa H, Inaba H, Sasaki Y, Akiyoshi K, Matsuura K. Embedding a membrane protein into an enveloped artificial viral replica. RSC Chem Biol 2022; 3:231-241. [PMID: 35360888 PMCID: PMC8827153 DOI: 10.1039/d1cb00166c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Natural enveloped viruses, in which nucleocapsids are covered with lipid bilayers, contain membrane proteins on the outer surface that are involved in diverse functions, such as adhesion and infection of host cells. Previously, we constructed an enveloped artificial viral capsid through the complexation of cationic lipid bilayers onto an anionic artificial viral capsid self-assembled from β-annulus peptides. Here we demonstrate the embedding of the membrane protein Connexin-43 (Cx43), on the enveloped artificial viral capsid using a cell-free expression system. The expression of Cx43 in the presence of the enveloped artificial viral capsid was confirmed by western blot analysis. The embedding of Cx43 on the envelope was evaluated by detection via the anti-Cx43 antibody, using fluorescence correlation spectroscopy (FCS) and transmission electron microscopy (TEM). Interestingly, many spherical structures connected to each other were observed in TEM images of the Cx43-embedded enveloped viral replica. In addition, it was shown that fluorescent dyes could be selectively transported from Cx43-embedded enveloped viral replicas into Cx43-expressing HepG2 cells. This study provides a proof of concept for the creation of multimolecular crowding complexes, that is, an enveloped artificial viral replica embedded with membrane proteins. We demonstrate the embedding membrane protein, Cx43, on the enveloped artificial viral capsid using a cell-free expression system. The embedding of Cx43 on the envelope was evaluated by detection with anti-Cx43 antibody using FCS and TEM.![]()
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| |
Collapse
|
3
|
Giraud T, Bouguet-Bonnet S, Marchal P, Pickaert G, Averlant-Petit MC, Stefan L. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids. NANOSCALE 2020; 12:19905-19917. [PMID: 32985645 DOI: 10.1039/d0nr03483e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peptide self-assemblies have attracted intense research interest over the last few decades thanks to their implications in key biological processes (e.g., amyloid formation) and their use in biotechnological and (bio)material fields. In particular, peptide-based hydrogels have been highly considered as high potential supramolecular materials in the biomedical domain and open new horizons in terms of applications. To further understand their self-assembly mechanisms and to optimize their properties, several strategies have been proposed with the modification of the constituting amino acid chains via, per se, the introduction of d-amino acids, halogenated amino acids, pseudopeptide bonds, or other chemical moieties. In this context, we report herein on the incorporation of DNA-nucleobases into their peptide nucleic acid (PNA) forms to develop a new series of hybrid nucleopeptides. Thus, depending on the nature of the nucleobase (i.e., thymine, cytosine, adenine or guanine), the physicochemical and mechanical properties of the resulting hydrogels can be significantly improved and fine-tuned with, for instance, drastic enhancements of both the gel stiffness (up to 70-fold) and the gel resistance to external stress (up to 40-fold), and the generation of both thermo-reversible and uncommon red-edge excitation shift (REES) properties. To decipher the actual role of each PNA moiety in the self-assembly processes, the induced modifications from the molecular to the macroscopic scales are studied thanks to the multiscale approach based on a large panel of analytical techniques (i.e., rheology, NMR relaxometry, TEM, thioflavin T assays, FTIR, CD, fluorescence, NMR chemical shift index). Thus, such a strategy provides new opportunities to adapt and fit hydrogel properties to the intended ones and pushes back the limits of supramolecular materials.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | | | | |
Collapse
|
4
|
Safaei M, Mobini GR, Abiri A, Shojaeian A. Synthetic biology in various cellular and molecular fields: applications, limitations, and perspective. Mol Biol Rep 2020; 47:6207-6216. [PMID: 32507922 DOI: 10.1007/s11033-020-05565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023]
Abstract
Synthetic biology breakthroughs have facilitated genetic circuit engineering to program cells through novel biological functions, dynamic gene expressions, as well as logic controls. SynBio can also participate in the rapid development of new treatments required for the human lifestyle. Moreover, these technologies are applied in the development of innovative therapeutic, diagnostic, as well as discovery-related methods within a wide range of cellular and molecular applications. In the present review study, SynBio applications in various cellular and molecular fields such as novel strategies for cancer therapy, biosensing, metabolic engineering, protein engineering, and tissue engineering were highlighted and summarized. The major safety and regulatory concerns about synthetic biology will be the environmental release, legal concerns, and risks of the engineered organisms. The final sections focused on limitations to SynBio.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Shojaeian
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
5
|
Furukawa H, Inaba H, Inoue F, Sasaki Y, Akiyoshi K, Matsuura K. Enveloped artificial viral capsids self-assembled from anionic β-annulus peptide and cationic lipid bilayer. Chem Commun (Camb) 2020; 56:7092-7095. [PMID: 32490862 DOI: 10.1039/d0cc02622k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anionic artificial viral capsids were self-assembled from β-annulus-EE peptide, then complexed with lipid-bilayer-containing cationic lipids via electrostatic interaction to form enveloped artificial viral capsids. The critical aggregation concentration of the enveloped artificial viral capsid was significantly lower than that of the uncomplexed artificial viral capsid, indicating that the lipid bilayer stabilised the capsid structure.
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Berckman EA, Hartzell EJ, Mitkas AA, Sun Q, Chen W. Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. Annu Rev Chem Biomol Eng 2020; 11:35-62. [PMID: 32155350 DOI: 10.1146/annurev-chembioeng-101519-121526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nature has evolved a wide range of strategies to create self-assembled protein nanostructures with structurally defined architectures that serve a myriad of highly specialized biological functions. With the advent of biological tools for site-specific protein modifications and de novo protein design, a wide range of customized protein nanocarriers have been created using both natural and synthetic biological building blocks to mimic these native designs for targeted biomedical applications. In this review, different design frameworks and synthetic decoration strategies for achieving these functional protein nanostructures are summarized. Key attributes of these designer protein nanostructures, their unique functions, and their impact on biosensing and therapeutic applications are discussed.
Collapse
Affiliation(s)
- Emily A Berckman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; .,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Alexander A Mitkas
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| |
Collapse
|
8
|
Matsuura K, Ota J, Fujita S, Shiomi Y, Inaba H. Construction of Ribonuclease-Decorated Artificial Virus-like Capsid by Peptide Self-assembly. J Org Chem 2020; 85:1668-1673. [PMID: 31875395 DOI: 10.1021/acs.joc.9b02295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Artificial virus-like capsids decorated with ribonuclease S (RNase S) on their exterior were constructed by the self-assembly of β-annulus-S-peptide and the interaction between S-peptide moiety and S-protein. The β-annulus-S-peptide was synthesized by native chemical ligation of β-annulus-SBz peptide with Cys-containing S-peptide that self-assembled into artificial virus-like capsids of approximately 47 nm in size. Reconstruction of RNase S on the artificial virus-like capsids afforded spherical assembly attached small spheres on the surface, which retained ribonuclease activity.
Collapse
|
9
|
Abstract
Capsid of tomato bushy stunt virus consists of an outer coat protein shell decorated on an internal skeleton comprising a β-annulus motif. We mimicked this capsid structure with our artificial viral capsid dressed up with protein. We synthesized the β-annulus peptide bearing a Cys at the C-terminal side and linked it with Cys34 of the human serum albumin (HSA) via a bismaleimide linker. The β-annulus peptide-HSA conjugate self-assembled into spherical structures of a 50-70 nm size range in the Tris-HCl buffer, with the ζ-potential of assemblies of such conjugate revealing that HSA proteins were displayed on the outer surface of the artificial viral capsid. Interestingly, the critical aggregation concentration (CAC) of the conjugate in the Tris-HCl buffer at 25 °C was approximately 0.01 μM, or 1/2500 lower than that of the unmodified β-annulus peptides, suggesting that the artificial viral capsids were stabilized via HSA modification. The present strategy of constructing protein nanocapsule by self-assembly of a β-annulus peptide-protein conjugate is simpler than that of previously reported protein nanocapsules.
Collapse
|
10
|
Abstract
![]()
Ordered
protein assemblies are attracting interest as next-generation
biomaterials with a remarkable range of structural and functional
properties, leading to potential applications in biocatalysis, materials
templating, drug delivery and vaccine development. This Review covers
ordered protein assemblies including protein nanowires/nanofibrils,
nanorings, nanotubes, designed two- and three-dimensional ordered
protein lattices and protein-like cages including polyhedral virus-like
cage structures. The main focus is on designed ordered protein assemblies,
in which the spatial organization of the proteins is controlled by
tailored noncovalent interactions (including metal ion binding interactions,
electrostatic interactions and ligand–receptor interactions
among others) or by careful design of modified (mutant) proteins or de novo constructs. The modification of natural protein
assemblies including bacterial S-layers and cage-like and rod-like
viruses to impart novel function, e.g. enzymatic activity, is also
considered. A diversity of structures have been created using distinct
approaches, and this Review provides a summary of the state-of-the-art
in the development of these systems, which have exceptional potential
as advanced bionanomaterials for a diversity of applications.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| |
Collapse
|
11
|
Li Z, Tyrpak DR, Lien CL, MacKay JA. Tunable assembly of protein-microdomains in living vertebrate embryos. ACTA ACUST UNITED AC 2018; 2. [PMID: 31840042 DOI: 10.1002/adbi.201800112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Subcellular events such as trafficking and signaling are regulated by self-assembled protein complexes inside the cell. The ability to rapidly and reversibly manipulate these protein complexes would likely enhance studies of their mechanisms and their roles in biological function and disease manifestation.[1, 2] This manuscript reports that thermally-responsive elastin-like polypeptides (ELPs) linked to fluorescent proteins can regulate the self-assembly and disassembly of protein microdomains within the individual cells of zebrafish embryos. By exploring a library of fluorescent ELP proteins, this reports demonstrates that ELPs can co-assemble different fluorescent proteins inside of embryos. By tuning ELP length and sequence, fluorescent protein microdomains can be assembled at different temperatures, in varying sizes, or for desired periods of time. For the first time in a multicellular living embryo, these studies demonstrate that temperature-mediated ELP assembly can reversibly manipulate assembly of subcellular protein complexes, which may have applications in the study and manipulation of in vivo biological functions.
Collapse
Affiliation(s)
- Zhe Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA
| | - David R Tyrpak
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA
| | - Ching-Ling Lien
- The Saban Research Institute,Children's Hospital Los Angeles, Department of Surgery, Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA Los Angeles, CA 90027, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
12
|
Korpi A, Ma C, Liu K, Nonappa, Herrmann A, Ikkala O, Kostiainen MA. Self-Assembly of Electrostatic Cocrystals from Supercharged Fusion Peptides and Protein Cages. ACS Macro Lett 2018; 7:318-323. [PMID: 30271674 PMCID: PMC6156108 DOI: 10.1021/acsmacrolett.8b00023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Self-assembly is a convenient process to arrange complex biomolecules into large hierarchically ordered structures. Electrostatic attraction between the building blocks is a particularly interesting driving force for the assembly process, as it is easily tunable and reversible. Large biomolecules with high surface charge density, such as proteins and protein cages, are very promising building blocks due to their uniform size and shape. Assemblies of functional molecules with well-defined nanostructures have wide-ranging applications but are difficult to produce precisely by synthetic methods. Furthermore, obtaining highly ordered structures is an important prerequisite for X-ray structure analysis. Here we show how negatively charged ferritin and viral protein cages can adopt specific cocrystal structures with supercharged cationic polypeptides (SUPs, K72) and their recombinant fusions with green fluorescent protein (GFP-K72). The cage structures and recombinant proteins self-assemble in aqueous solution to large ordered structures, where the structure morphology and size are controlled by the ratio of oppositely charged building blocks and the electrolyte concentration. Both ferritin and viral cages form cocrystals with face centered cubic structure and lattice constants of 14.0 and 28.5 nm, respectively. The crystals are porous and the cationic recombinant proteins occupy the voids between the cages. Such systems resemble naturally occurring occlusion bodies and may serve as protecting agents as well as aid the structure determination of biomolecules by X-ray scattering.
Collapse
Affiliation(s)
- Antti Korpi
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
| | - Chao Ma
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kai Liu
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nonappa
- Molecular
Materials, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Andreas Herrmann
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Olli Ikkala
- Molecular
Materials, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
13
|
Chen RP, Blackstock D, Sun Q, Chen W. Dynamic protein assembly by programmable DNA strand displacement. Nat Chem 2018. [DOI: 10.1038/s41557-018-0016-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Sanchez-deAlcazar D, Mejias SH, Erazo K, Sot B, Cortajarena AL. Self-assembly of repeat proteins: Concepts and design of new interfaces. J Struct Biol 2018; 201:118-129. [DOI: 10.1016/j.jsb.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/09/2017] [Accepted: 09/02/2017] [Indexed: 11/25/2022]
|
15
|
Matsuura K, Nakamura T, Watanabe K, Noguchi T, Minamihata K, Kamiya N, Kimizuka N. Self-assembly of Ni-NTA-modified β-annulus peptides into artificial viral capsids and encapsulation of His-tagged proteins. Org Biomol Chem 2018; 14:7869-74. [PMID: 27386944 DOI: 10.1039/c6ob01227b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
β-Annulus peptides bearing Cys at the N-terminal from tomato bushy stunt virus were synthesised using a standard Fmoc-protected solid-phase method, and the peptide was modified with Ni-NTA at the N-terminal. The Ni-NTA-modified β-annulus peptide self-assembled into virus-like nanocapsules of approximately 40 nm in diameter. The critical aggregation concentration of these nanocapsules in 10 mM Tris-HCl buffer (pH 7.3) at 25 °C was 0.053 μM, which is 470 times lower than that of unmodified β-annulus peptides. Moreover, size exclusion chromatography of the peptide assembly indicated encapsulation of His-tagged green fluorescent protein in the Ni-NTA-modified artificial viral capsid.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| | - Tomohiro Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kenta Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Takanori Noguchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan and Division of Biotechnology, Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan and Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. NANO CONVERGENCE 2017; 4:9. [PMID: 28491487 PMCID: PMC5401866 DOI: 10.1186/s40580-017-0103-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 05/02/2023]
Abstract
Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.
Collapse
Affiliation(s)
- Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol 2016; 120:1-14. [PMID: 27157411 PMCID: PMC5079805 DOI: 10.1016/j.bcp.2016.05.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Allergy and Immunology/history
- Allergy and Immunology/trends
- Animals
- Antigens/adverse effects
- Antigens/chemistry
- Antigens/immunology
- Antigens/therapeutic use
- Biopharmaceutics/history
- Biopharmaceutics/methods
- Biopharmaceutics/trends
- Chemistry, Pharmaceutical/history
- Chemistry, Pharmaceutical/trends
- Communicable Disease Control/history
- Communicable Disease Control/trends
- Communicable Diseases/immunology
- Communicable Diseases/veterinary
- Drug Delivery Systems/adverse effects
- Drug Delivery Systems/trends
- Drug Delivery Systems/veterinary
- Drug Design
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Nanoparticles/adverse effects
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Protein Engineering/trends
- Protein Engineering/veterinary
- Protein Folding
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Vaccines/adverse effects
- Vaccines/chemistry
- Vaccines/immunology
- Vaccines/therapeutic use
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Veterinary Drugs/adverse effects
- Veterinary Drugs/chemistry
- Veterinary Drugs/immunology
- Veterinary Drugs/therapeutic use
Collapse
Affiliation(s)
- Christopher P Karch
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States
| | - Peter Burkhard
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States; Department of Molecular and Cell Biology, 93 North Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
18
|
Abstract
The assembly of individual protein subunits into large-scale symmetrical structures is widespread in nature and confers new biological properties. Engineered protein assemblies have potential applications in nanotechnology and medicine; however, a major challenge in engineering assemblies de novo has been to design interactions between the protein subunits so that they specifically assemble into the desired structure. Here we demonstrate a simple, generalizable approach to assemble proteins into cage-like structures that uses short de novo designed coiled-coil domains to mediate assembly. We assembled eight copies of a C3-symmetric trimeric esterase into a well-defined octahedral protein cage by appending a C4-symmetric coiled-coil domain to the protein through a short, flexible linker sequence, with the approximate length of the linker sequence determined by computational modeling. The structure of the cage was verified using a combination of analytical ultracentrifugation, native electrospray mass spectrometry, and negative stain and cryoelectron microscopy. For the protein cage to assemble correctly, it was necessary to optimize the length of the linker sequence. This observation suggests that flexibility between the two protein domains is important to allow the protein subunits sufficient freedom to assemble into the geometry specified by the combination of C4 and C3 symmetry elements. Because this approach is inherently modular and places minimal requirements on the structural features of the protein building blocks, it could be extended to assemble a wide variety of proteins into structures with different symmetries.
Collapse
|
19
|
Valbuena A, Mateu MG. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating. NANOSCALE 2015; 7:14953-14964. [PMID: 26302823 DOI: 10.1039/c5nr04023j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics ("breathing") of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
20
|
Doll TAPF, Neef T, Duong N, Lanar DE, Ringler P, Müller SA, Burkhard P. Optimizing the design of protein nanoparticles as carriers for vaccine applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1705-13. [PMID: 26051652 PMCID: PMC4587294 DOI: 10.1016/j.nano.2015.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 01/19/2023]
Abstract
Successful vaccine development remains a huge challenge for infectious diseases such as malaria, HIV and influenza. As a novel way to present antigenic epitopes to the immune system, we have developed icosahedral self-assembling protein nanoparticles (SAPNs) to serve as a prototypical vaccine platform for infectious diseases. Here we examine some biophysical factors that affect the self-assembly of these nanoparticles, which have as basic building blocks coiled-coil oligomerization domains joined by a short linker region. Relying on in silico computer modeling predictions, we selected five different linker regions from the RCSB protein database that connect oligomerization domains, and then further studied the self-assembly and stability of in vitro produced nanoparticles through biophysical characterization of formed particles. One design in particular, T2i88, revealed excellent self-assembly and homogeneity thus paving the way toward a more optimized nanoparticle for vaccine applications. From the Clinical Editor Despite the widespread use of vaccines worldwide, successful development of vaccines against some diseases remains a challenge still. In this article, the authors investigated the physic-chemical and biological properties of icosahedral self-assembling protein nanoparticles (SAPNs), which mimic viral particles, in order to utilize this technology as potential platform for future design of vaccines.
Collapse
Affiliation(s)
- Tais A P F Doll
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Tobias Neef
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nha Duong
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - David E Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, MD, USA
| | - Philippe Ringler
- Center for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, Basel, Switzerland
| | - Shirley A Müller
- Center for Cellular Imaging and Nano Analytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, Basel, Switzerland
| | - Peter Burkhard
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
21
|
Chessher A, Breitling R, Takano E. Bacterial Microcompartments: Biomaterials for Synthetic Biology-Based Compartmentalization Strategies. ACS Biomater Sci Eng 2015; 1:345-351. [DOI: 10.1021/acsbiomaterials.5b00059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ashley Chessher
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
22
|
Giese M, Blusch LK, Khan MK, MacLachlan MJ. Functional Materials from Cellulose-Derived Liquid-Crystal Templates. Angew Chem Int Ed Engl 2014; 54:2888-910. [DOI: 10.1002/anie.201407141] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Indexed: 01/24/2023]
|
23
|
Giese M, Blusch LK, Khan MK, MacLachlan MJ. Funktionsmaterialien mit Cellulose-basierten Flüssigkristall-Templaten. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Inaba H, Kitagawa S, Ueno T. Protein Needles as Molecular Templates for Artificial Metalloenzymes. Isr J Chem 2014. [DOI: 10.1002/ijch.201400097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Mangan NM, Brenner MP. Systems analysis of the CO2 concentrating mechanism in cyanobacteria. eLife 2014; 3:e02043. [PMID: 24842993 PMCID: PMC4027813 DOI: 10.7554/elife.02043] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/12/2014] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO3- transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization.
Collapse
Affiliation(s)
- Niall M Mangan
- School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, United States
| | - Michael P Brenner
- School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, United States
| |
Collapse
|
26
|
Howorka S, Hesse J. Microarrays and single molecules: an exciting combination. SOFT MATTER 2014; 10:931-41. [PMID: 24651891 DOI: 10.1039/c3sm52561a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biomolecules positioned at interfaces have spawned many applications in bioanalysis, biophysics, and cell biology. This Highlight describes recent developments in the research areas of protein and DNA arrays, and single-molecule sensing. We cover the ultrasensitive scanning of conventional microarrays as well as the generation of arrays composed of individual molecules. The combination of these tools has improved the detection limits and the dynamic range of microarray analysis, helped develop powerful single-molecule sequencing approaches, and offered biophysical examination with high throughput and molecular detail. The topic of this Highlight integrates several disciplines and is written for interested chemists, biophysicists and nanotechnologists.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London WC1H 0AJ, UK.
| | | |
Collapse
|
27
|
Patterson DP, Su M, Franzmann TM, Sciore A, Skiniotis G, Marsh ENG. Characterization of a highly flexible self-assembling protein system designed to form nanocages. Protein Sci 2013; 23:190-9. [PMID: 24318954 DOI: 10.1002/pro.2405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 11/06/2022]
Abstract
The design of proteins that self-assemble into well-defined, higher order structures is an important goal that has potential applications in synthetic biology, materials science, and medicine. We previously designed a two-component protein system, designated A-(+) and A-(-), in which self-assembly is mediated by complementary electrostatic interactions between two coiled-coil sequences appended to the C-terminus of a homotrimeric enzyme with C3 symmetry. The coiled-coil sequences are attached through a short, flexible spacer sequence providing the system with a high degree of conformational flexibility. Thus, the primary constraint guiding which structures the system may assemble into is the symmetry of the protein building block. We have now characterized the properties of the self-assembling system as a whole using native gel electrophoresis and analytical ultracentrifugation (AUC) and the properties of individual assemblies using cryo-electron microscopy (EM). We show that upon mixing, A-(+) and A-(-) form only six different complexes in significant concentrations. The three predominant complexes have hydrodynamic properties consistent with the formation of heterodimeric, tetrahedral, and octahedral protein cages. Cryo-EM of size-fractionated material shows that A-(+) and A-(-) form spherical particles with diameters appropriate for tetrahedral or octahedral protein cages. The particles varied in diameter in an almost continuous manner suggesting that their structures are extremely flexible.
Collapse
Affiliation(s)
- Dustin P Patterson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | | | | | | | |
Collapse
|
28
|
Shin SH, Comolli LR, Tscheliessnig R, Wang C, Nam KT, Hexemer A, Siegerist CE, De Yoreo JJ, Bertozzi CR. Self-assembly of "S-bilayers", a step toward expanding the dimensionality of S-layer assemblies. ACS NANO 2013; 7:4946-4953. [PMID: 23705800 DOI: 10.1021/nn400263j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein-based assemblies with ordered nanometer-scale features in three dimensions are of interest as functional nanomaterials but are difficult to generate. Here we report that a truncated S-layer protein assembles into stable bilayers, which we characterized using cryogenic-electron microscopy, tomography, and X-ray spectroscopy. We find that emergence of this supermolecular architecture is the outcome of hierarchical processes; the proteins condense in solution to form 2-D crystals, which then stack parallel to one another to create isotropic bilayered assemblies. Within this bilayered structure, registry between lattices in two layers was disclosed, whereas the intrinsic symmetry in each layer was altered. Comparison of these data to images of wild-type SbpA layers on intact cells gave insight into the interactions responsible for bilayer formation. These results establish a platform for engineering S-layer assemblies with 3-D architecture.
Collapse
Affiliation(s)
- Seong-Ho Shin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Howorka S. DNA nanoarchitectonics: assembled DNA at interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7344-7353. [PMID: 23373872 DOI: 10.1021/la3045785] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
DNA is a powerful biomaterial for creating rationally designed and functionally enhanced nanostructures. DNA nanoarchitectures positioned at substrate interfaces can offer unique advantages leading to improved surface properties relevant to biosensing, nanotechnology, materials science, and cell biology. This Perspective highlights the benefits and challenges of using assembled DNA as a nanoscale building block for interfacial layers and surveys their applications in three areas: homogeneous dense surface coatings, bottom-up nanopatterning, and 3D nanoparticle lattices. Possible future research developments are discussed at the end of the Perspective.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, England, United Kingdom.
| |
Collapse
|
30
|
Cheng S, Fan C, Sinha S, Bobik TA. The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of Salmonella enterica. PLoS One 2012; 7:e47144. [PMID: 23077559 PMCID: PMC3471927 DOI: 10.1371/journal.pone.0047144] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/11/2012] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica uses a bacterial microcompartment (MCP) for coenzyme B(12)-dependent 1,2-propanediol (1,2-PD) utilization (Pdu). The Pdu MCP consists of a protein shell that encapsulates enzymes and cofactors required for metabolizing 1,2-PD as a carbon and energy source. Here we show that the PduQ protein of S. enterica is an iron-dependent alcohol dehydrogenase used for 1,2-PD catabolism. PduQ is also demonstrated to be a new component of the Pdu MCP. In addition, a series of in vivo and in vitro studies show that a primary function of PduQ is to recycle NADH to NAD(+) internally within the Pdu MCP in order to supply propionaldehyde dehydrogenase (PduP) with its required cofactor (NAD(+)). Genetic tests determined that a pduQ deletion mutant grew slower than wild-type Salmonella on 1,2-PD and that this phenotype was not complemented by a non-MCP associated Adh2 from Zymomonas that catalyzes the same reaction. This suggests that PduQ has a MCP-specific function. We also found that a pduQ deletion mutant had no growth defect in a genetic background having a second mutation that prevents MCP formation which further supports a MCP-specific role for PduQ. Moreover, studies with purified Pdu MCPs demonstrated that the PduQ enzyme can convert NADH to NAD(+) to supply the PduP reaction in vitro. Cumulatively, these studies show that the PduQ enzyme is used to recycle NADH to NAD(+) internally within the Pdu MCP. To our knowledge, this is the first report of internal recycling as a mechanism for cofactor homeostasis within a bacterial MCP.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chenguang Fan
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Sharmistha Sinha
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
31
|
Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc Natl Acad Sci U S A 2012; 109:14995-5000. [PMID: 22927404 DOI: 10.1073/pnas.1207516109] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial microcompartments (MCPs) are a widespread family of proteinaceous organelles that consist of metabolic enzymes encapsulated within a protein shell. For MCPs to function specific enzymes must be encapsulated. We recently reported that a short N-terminal targeting sequence of propionaldehyde dehydrogenase (PduP) is necessary and sufficient for the packaging of enzymes into a MCP that functions in 1,2-propanediol (1,2-PD) utilization (Pdu) by Salmonella enterica. Here we show that encapsulation is mediated by binding of the PduP targeting sequence to a short C-terminal helix of the PduA shell protein. In vitro studies indicated binding between PduP and PduA (and PduJ) but not other MCP shell proteins. Alanine scanning mutagenesis determined that the key residues involved in binding are E7, I10, and L14 of PduP and H81, V84, and L88 of PduA. In vivo targeting studies indicated that the binding between the N terminus of PduP and the C terminus of PduA is critical for encapsulation of PduP within the Pdu MCP. Structural models suggest that the N terminus of PduP and C terminus of PduA both form helical structures that bind one another via the key residues identified by mutagenesis. Cumulatively, these results show that the N-terminal targeting sequence of PduP promotes its encapsulation by binding to MCP shell proteins. This is a unique report determining the mechanism by which a MCP targeting sequence functions. We propose that specific interactions between the termini of shell proteins and lumen enzymes have general importance for guiding the assembly and the higher level organization of bacterial MCPs.
Collapse
|
32
|
Lilavivat S, Sardar D, Jana S, Thomas GC, Woycechowsky KJ. In Vivo Encapsulation of Nucleic Acids Using an Engineered Nonviral Protein Capsid. J Am Chem Soc 2012; 134:13152-5. [DOI: 10.1021/ja302743g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seth Lilavivat
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| | - Debosmita Sardar
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| | - Subrata Jana
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| | - Geoffrey C. Thomas
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| | - Kenneth J. Woycechowsky
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112,
United States
| |
Collapse
|
33
|
Chen HN, Woycechowsky KJ. Conversion of a dodecahedral protein capsid into pentamers via minimal point mutations. Biochemistry 2012; 51:4704-12. [PMID: 22606973 DOI: 10.1021/bi3003555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein self-assembly relies upon the formation of stabilizing noncovalent interactions across subunit interfaces. Identifying the determinants of self-assembly is crucial for understanding structure-function relationships in symmetric protein complexes and for engineering responsive nanoscale architectures for applications in medicine and biotechnology. Lumazine synthases (LS's) comprise a protein family that forms diverse quaternary structures, including pentamers and 60-subunit dodecahedral capsids. To improve our understanding of the basis for this difference in assembly, we attempted to convert the capsid-forming LS from Aquifex aeolicus (AaLS) into pentamers through a small number of rationally designed amino acid substitutions. Our mutations targeted side chains at ionic (R40), hydrogen bonding (H41), and hydrophobic (L121 and I125) interaction sites along the interfaces between pentamers. We found that substitutions at two or three of these positions could reliably generate pentameric variants of AaLS. Biophysical characterization indicates that this quaternary structure change is not accompanied by substantial changes in secondary or tertiary structure. Interestingly, previous homology-based studies of the assembly determinants in LS's had identified only one of these four positions. The ability to control assembly state in protein capsids such as AaLS could aid efforts in the development of new systems for drug delivery, biocatalysis, or materials synthesis.
Collapse
Affiliation(s)
- Hsiao-Nung Chen
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
34
|
Oldham P, Hall S, Burton G. Synthetic biology: mapping the scientific landscape. PLoS One 2012; 7:e34368. [PMID: 22539946 PMCID: PMC3335118 DOI: 10.1371/journal.pone.0034368] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/27/2012] [Indexed: 12/18/2022] Open
Abstract
This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves.
Collapse
Affiliation(s)
- Paul Oldham
- ESRC Centre for Economic and Social Aspects of Genomics, Lancaster University, Lancaster, United Kingdom.
| | | | | |
Collapse
|
35
|
Choudhary S, Quin MB, Sanders MA, Johnson ET, Schmidt-Dannert C. Engineered protein nano-compartments for targeted enzyme localization. PLoS One 2012; 7:e33342. [PMID: 22428024 PMCID: PMC3299773 DOI: 10.1371/journal.pone.0033342] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/14/2012] [Indexed: 01/28/2023] Open
Abstract
Compartmentalized co-localization of enzymes and their substrates represents an attractive approach for multi-enzymatic synthesis in engineered cells and biocatalysis. Sequestration of enzymes and substrates would greatly increase reaction efficiency while also protecting engineered host cells from potentially toxic reaction intermediates. Several bacteria form protein-based polyhedral microcompartments which sequester functionally related enzymes and regulate their access to substrates and other small metabolites. Such bacterial microcompartments may be engineered into protein-based nano-bioreactors, provided that they can be assembled in a non-native host cell, and that heterologous enzymes and substrates can be targeted into the engineered compartments. Here, we report that recombinant expression of Salmonella enterica ethanolamine utilization (eut) bacterial microcompartment shell proteins in E. coli results in the formation of polyhedral protein shells. Purified recombinant shells are morphologically similar to the native Eut microcompartments purified from S. enterica. Surprisingly, recombinant expression of only one of the shell proteins (EutS) is sufficient and necessary for creating properly delimited compartments. Co-expression with EutS also facilitates the encapsulation of EGFP fused with a putative Eut shell-targeting signal sequence. We also demonstrate the functional localization of a heterologous enzyme (β-galactosidase) targeted to the recombinant shells. Together our results provide proof-of-concept for the engineering of protein nano-compartments for biosynthesis and biocatalysis.
Collapse
Affiliation(s)
- Swati Choudhary
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Maureen B. Quin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Mark A. Sanders
- University Imaging Centers, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ethan T. Johnson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
36
|
The PduM protein is a structural component of the microcompartments involved in coenzyme B(12)-dependent 1,2-propanediol degradation by Salmonella enterica. J Bacteriol 2012; 194:1912-8. [PMID: 22343294 DOI: 10.1128/jb.06529-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Diverse bacteria use proteinaceous microcompartments (MCPs) to optimize metabolic pathways that have toxic or volatile intermediates. MCPs consist of metabolic enzymes encased within a protein shell that provides a defined environment. In Salmonella enterica, a MCP is involved in B(12)-dependent 1,2-propanediol utilization (Pdu MCP). In this report, we show that the protein PduM is required for the assembly and function of the Pdu MCP. The results of tandem mass spectrometry and Western blot analyses show that PduM is a component of the Pdu MCP. Electron microscopy shows that a pduM deletion mutant forms MCPs with abnormal morphology. Growth tests and metabolite measurements establish that a pduM deletion mutant is unable to form functional MCPs. PduM is unrelated in sequence to proteins of known function and hence may represent a new class of MCP structural proteins. We also report a modified protocol for the purification of Pdu MCP from Salmonella which allows isolation of milligram amounts of MCPs in about 4 h. We believe that this protocol can be extended or modified for the purification of MCPs from diverse bacteria.
Collapse
|
37
|
Patterson DP, Desai AM, Holl MMB, Marsh ENG. Evaluation of a symmetry-based strategy for assembling protein complexes. RSC Adv 2011; 1:1004-1012. [PMID: 23293744 PMCID: PMC3536532 DOI: 10.1039/c1ra00282a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We evaluate a strategy for assembling proteins into large cage-like structures, based on the symmetry associated with the native protein's quaternary structure. Using a trimeric protein, KDPG aldolase, as a building block, two fusion proteins were designed that could assemble together upon mixing. The fusion proteins, designated A-(+) and A-(-), comprise the aldolase domain, a short, flexible spacer sequence, and a sequence designed to form a heterodimeric antiparallel coiled-coil between A-(+) and A-(-). The flexible spacer is included to minimize constraints on the ability of the fusion proteins to assemble into larger structures. On incubating together, A-(+) and A-(-) assembled into a mixture of complexes that were analyzed by size exclusion chromatography coupled to multi-angle laser light scattering, analytical ultracentrifugation, transmission electron microscopy and atomic force microscopy. Our analysis indicates that, despite the inherent flexibility of the assembly strategy, the proteins assemble into a limited number of globular structures. Dimeric and tetrameric complexes of A-(+) and A-(-) predominate, with some evidence for the formation of larger assemblies; e.g. octameric A-(+): A-(-) complexes.
Collapse
Affiliation(s)
| | - Ankur M. Desai
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Pérez R, Castellanos M, Rodríguez-Huete A, Mateu MG. Molecular Determinants of Self-Association and Rearrangement of a Trimeric Intermediate during the Assembly of a Parvovirus Capsid. J Mol Biol 2011; 413:32-40. [DOI: 10.1016/j.jmb.2011.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/26/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
|
39
|
The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment. J Bacteriol 2011; 193:5623-8. [PMID: 21821773 DOI: 10.1128/jb.05661-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica produces a proteinaceous microcompartment for B(12)-dependent 1,2-propanediol utilization (Pdu MCP). The Pdu MCP consists of catabolic enzymes encased within a protein shell, and its function is to sequester propionaldehyde, a toxic intermediate of 1,2-propanediol degradation. We report here that a short N-terminal region of the medium subunit (PduD) is required for packaging the coenzyme B(12)-dependent diol dehydratase (PduCDE) into the lumen of the Pdu MCP. Analysis of soluble cell extracts and purified MCPs by Western blotting showed that the PduD subunit mediated packaging of itself and other subunits of diol dehydratase (PduC and PduE) into the Pdu MCP. Deletion of 35 amino acids from the N terminus of PduD significantly impaired the packaging of PduCDE with minimal effects on its enzyme activity. Western blotting showed that fusing the 18 N-terminal amino acids of PduD to green fluorescent protein or glutathione S-transferase resulted in the association of these fusion proteins with the MCP. Immunoprecipitation tests indicated that the fusion proteins were encapsulated inside the MCP shell.
Collapse
|
40
|
Norville JE, Kelly DF, Knight TF, Belcher AM, Walz T. Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications. Biotechnol J 2011; 6:807-11. [PMID: 21681963 DOI: 10.1002/biot.201100024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/19/2011] [Accepted: 05/24/2011] [Indexed: 12/24/2022]
Abstract
A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally on the cell surface of Lysinibacillus sphaericus, but also as the purified protein in solution upon the addition of divalent cations. The high propensity of SbpA to form crystalline arrays, which can be simply controlled by divalent cations, and the possibility to genetically alter the protein, make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type and modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA.
Collapse
Affiliation(s)
- Julie E Norville
- Synthetic Biology Working Group, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | |
Collapse
|
41
|
Howorka S. Rationally engineering natural protein assemblies in nanobiotechnology. Curr Opin Biotechnol 2011; 22:485-91. [PMID: 21664809 DOI: 10.1016/j.copbio.2011.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 01/07/2023]
Abstract
Multimeric protein assemblies are essential components in viruses, bacteria, eukaryotic cells, and organisms where they act as cytoskeletal scaffold, storage containers, or for directional transport. The bottom-up structures can be exploited in nanobiotechnology by harnessing their built-in properties and combining them with new functional modules. This review summarizes the design principles of natural protein assemblies, highlights recent progress in their structural elucidation, and shows how rational engineering can create new biomaterials for applications in vaccine development, biocatalysis, materials science, and synthetic biology.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Chemistry, University College London, London WC1H 0AJ, UK.
| |
Collapse
|
42
|
Matsuura K, Watanabe K, Matsuzaki T, Sakurai K, Kimizuka N. Self-assembled synthetic viral capsids from a 24-mer viral peptide fragment. Angew Chem Int Ed Engl 2011; 49:9662-5. [PMID: 21077072 DOI: 10.1002/anie.201004606] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | | | |
Collapse
|
43
|
Puigmartí-Luis J, Rubio-Martínez M, Hartfelder U, Imaz I, Maspoch D, Dittrich PS. Coordination Polymer Nanofibers Generated by Microfluidic Synthesis. J Am Chem Soc 2011; 133:4216-9. [DOI: 10.1021/ja110834j] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Josep Puigmartí-Luis
- Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Marta Rubio-Martínez
- CIN2(ICN-CSIC), Catalan Institute of Nanotechnology, Esfera UAB, 08193 Bellaterra, Spain
| | - Urs Hartfelder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Inhar Imaz
- CIN2(ICN-CSIC), Catalan Institute of Nanotechnology, Esfera UAB, 08193 Bellaterra, Spain
| | - Daniel Maspoch
- CIN2(ICN-CSIC), Catalan Institute of Nanotechnology, Esfera UAB, 08193 Bellaterra, Spain
| | - Petra S. Dittrich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| |
Collapse
|
44
|
Abstract
Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.
Collapse
|
45
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Matsuura K, Watanabe K, Matsuzaki T, Sakurai K, Kimizuka N. Self-Assembled Synthetic Viral Capsids from a 24-mer Viral Peptide Fragment. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Giraldo R. Amyloid Assemblies: Protein Legos at a Crossroads in Bottom-Up Synthetic Biology. Chembiochem 2010; 11:2347-57. [DOI: 10.1002/cbic.201000412] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Ostrov N, Gazit E. Genetic engineering of biomolecular scaffolds for the fabrication of organic and metallic nanowires. Angew Chem Int Ed Engl 2010; 49:3018-21. [PMID: 20349481 DOI: 10.1002/anie.200906831] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nili Ostrov
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
49
|
Fluorescence energy transfer in the bi-fluorescent S-layer tandem fusion protein ECFP-SgsE-YFP. J Struct Biol 2010; 172:276-83. [PMID: 20650318 DOI: 10.1016/j.jsb.2010.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/21/2022]
Abstract
This work reports for the first time on the fabrication of a bi-functional S-layer tandem fusion protein which is able to self-assemble on solid supports without losing its functionality. Two variants of the green fluorescent protein (GFP) were genetically combined with a self-assembly system having the remarkable opportunity to interact with each other and act as functional nanopatterning biocoating. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the cyan ECFP donor protein at the SgsE N-terminus and with the yellow YFP acceptor protein at the C-terminus. The fluorescence energy transfer was studied with spectrofluorimetry, confocal microscopy and flow cytometry, whilst protein self-assembly (on silicon dioxide particles) and structural investigations were carried out with atomic force microscopy (AFM). The fluorescence resonance energy transfer efficiency of reassembled SgsE tandem protein was 20.0 ± 6.1% which is almost the same transfer efficiency shown in solution (19.6 ± 0.1%). This work shows that bi-fluorescent S-layer fusion proteins self-assemble on silica particles retaining their fluorescent properties.
Collapse
|
50
|
Joshi KB, Vijaya Krishna K, Verma S. Self-Assembled Morphologies from C2- and C3-Symmetric Biotin Conjugates. J Org Chem 2010; 75:4280-3. [DOI: 10.1021/jo100881r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. B. Joshi
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur-208016 (UP), India
| | - K. Vijaya Krishna
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur-208016 (UP), India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur-208016 (UP), India
| |
Collapse
|