1
|
Saul P, Schröder L, Schmidt AB, Hövener JB. Nanomaterials for hyperpolarized nuclear magnetic resonance and magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1879. [PMID: 36781151 DOI: 10.1002/wnan.1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 02/15/2023]
Abstract
Nanomaterials play an important role in the development and application of hyperpolarized materials for magnetic resonance imaging (MRI). In this context they can not only act as hyperpolarized materials which are directly imaged but also play a role as carriers for hyperpolarized gases and catalysts for para-hydrogen induced polarization (PHIP) to generate hyperpolarized substrates for metabolic imaging. Those three application possibilities are discussed, focusing on carbon-based materials for the directly imaged particles. An overview over recent developments in all three fields is given, including the early developments in each field as well as important steps towards applications in MRI, such as making the initially developed methods more biocompatible and first imaging experiments with spatial resolution in either phantoms or in vivo studies. Focusing on the important features nanomaterials need to display to be applicable in the MRI context, a wide range of different approaches to that extent is covered, giving the reader a general idea of different possibilities as well as recent developments in those different fields of hyperpolarized magnetic resonance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Philip Saul
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Leif Schröder
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas B Schmidt
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Shchepin RV, Koptyug IV, Chekmenev EY. Heterogeneous 1 H and 13 C Parahydrogen-Induced Polarization of Acetate and Pyruvate Esters. Chemphyschem 2021; 22:1389-1396. [PMID: 33929077 PMCID: PMC8249325 DOI: 10.1002/cphc.202100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging of [1-13 C]hyperpolarized carboxylates (most notably, [1-13 C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of 1 H and 13 C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1-13 C-enriched forms with parahydrogen over Rh/TiO2 catalysts in methanol-d4 and in D2 O. The maximum obtained 1 H polarization was 0.6±0.2 % (for propyl acetate in CD3 OD), while the highest 13 C polarization was 0.10±0.03 % (for ethyl acetate in CD3 OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon-carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen-induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum 1 H and 13 C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Roman V Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, 57701, Rapid City, South Dakota, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, Michigan, United States
- Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
3
|
Pokochueva EV, Burueva DB, Salnikov OG, Koptyug IV. Heterogeneous Catalysis and Parahydrogen-Induced Polarization. Chemphyschem 2021; 22:1421-1440. [PMID: 33969590 DOI: 10.1002/cphc.202100153] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Indexed: 01/11/2023]
Abstract
Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described.
Collapse
Affiliation(s)
- Ekaterina V Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|
4
|
Burueva D, Stakheev A, Koptyug I. Pd-based bimetallic catalysts for parahydrogen-induced polarization in heterogeneous hydrogenations. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:93-103. [PMID: 37904757 PMCID: PMC10539775 DOI: 10.5194/mr-2-93-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/19/2021] [Indexed: 11/01/2023]
Abstract
Production of hyperpolarized catalyst-free gases and liquids by heterogeneous hydrogenation with parahydrogen can be useful for various technical as well as biomedical applications, including in vivo studies, investigations of mechanisms of industrially important catalytic processes, enrichment of nuclear spin isomers of polyatomic gases, and more. In this regard, the wide systematic search for heterogeneous catalysts effective in pairwise H 2 addition required for the observation of parahydrogen-induced polarization (PHIP) effects is crucial. Here in this work we demonstrate the competitive advantage of Pd-based bimetallic catalysts for PHIP in heterogeneous hydrogenations (HET-PHIP). The dilution of catalytically active Pd with less active Ag or In atoms provides the formation of atomically dispersed Pd 1 sites on the surface of Pd-based bimetallic catalysts, which are significantly more selective toward pairwise H 2 addition compared to the monometallic Pd. Furthermore, the choice of the dilution metal (Ag or In) has a pronounced effect on the efficiency of bimetallic catalysts in HET-PHIP, as revealed by comparing Pd-Ag and Pd-In bimetallic catalysts.
Collapse
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging, International
Tomography Center, SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging, International
Tomography Center, SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Bengs C, Dagys L, Levitt MH. Robust transformation of singlet order into heteronuclear magnetisation over an extended coupling range. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 321:106850. [PMID: 33190080 DOI: 10.1016/j.jmr.2020.106850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Several important NMR procedures involve the conversion of nuclear singlet order into heteronuclear magnetisation, including some experiments involving long-lived spin states and parahydrogen-induced hyperpolarisation. However most existing sequences suffer from a limited range of validity or a lack of robustness against experimental imperfections. We present a new radio-frequency scheme for the transformation of the singlet order of a chemically-equivalent homonuclear spin pair into the magnetisation of a heteronuclear coupling partner. The proposed radio-frequency (RF) scheme is called gS2hM (generalized singlet-to-heteronuclear magnetisation) and has good compensation for common experimental errors such as RF and static field inhomogeneities. The sequence retains its robustness for homonuclear spin pairs in the intermediate coupling regime, characterised by the in-pair coupling being of the same order of magnitude as the difference between the out-of-pair couplings. This is a substantial improvement to the validity range of existing sequences. Analytical solutions for the pulse sequence parameters are provided. Experimental results are shown for two test cases.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| | - Laurynas Dagys
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| | - Malcolm H Levitt
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| |
Collapse
|
6
|
Ariyasingha NM, Lindale JR, Eriksson SL, Clark GP, Theis T, Shchepin RV, Chukanov NV, Kovtunov KV, Koptyug IV, Warren WS, Chekmenev EY. Quasi-Resonance Fluorine-19 Signal Amplification by Reversible Exchange. J Phys Chem Lett 2019; 10:4229-4236. [PMID: 31291106 PMCID: PMC6675627 DOI: 10.1021/acs.jpclett.9b01505] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report on an extension of the quasi-resonance (QUASR) pulse sequence used for signal amplification by reversible exchange (SABRE), showing that we may target distantly J-coupled 19F-spins. Polarization transfer from the parahydrogen-derived hydrides to the 19F nucleus is accomplished via weak five-bond J-couplings using a shaped QUASR radio frequency pulse at a 0.05 T magnetic field. The net result is the direct generation of hyperpolarized 19F z-magnetization, derived from the parahydrogen singlet order. An accumulation of 19F polarization on the free ligand is achieved with subsequent repetition of this pulse sequence. The hyperpolarized 19F signal exhibits clear dependence on the pulse length, irradiation frequency, and delay time in a manner similar to that reported for 15N QUASR-SABRE. Moreover, the hyperpolarized 19F signals of 3-19F-14N-pyridine and 3-19F-15N-pyridine isotopologues are similar, suggesting that (i) polarization transfer via QUASR-SABRE is irrespective of the nitrogen isotopologue and (ii) the presence or absence of the spin-1/2 15N nucleus has no impact on the efficiency of QUASR-SABRE polarization transfer. Although optimization of polarization transfer efficiency to 19F (P19F ≈ 0.1%) was not the goal of this study, we show that high-field SABRE can be efficient and broadly applicable for direct hyperpolarization of 19F spins.
Collapse
Affiliation(s)
- Nuwandi M. Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
| | - Jacob R. Lindale
- Duke University Department of Chemistry, Durham, North Carolina, 27708, United States
| | - Shannon L. Eriksson
- Duke University Department of Chemistry, Durham, North Carolina, 27708, United States
- Duke University School of Medicine, Durham, North Carolina, 27708, United States
| | - Grayson P. Clark
- Duke Department of Biomedical Engineering, Durham, North Carolina, 27708, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Roman V. Shchepin
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota, 57701, United States
| | - Nikita V. Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Warren S. Warren
- Duke University Departments of Physics, Chemistry, Biomedical Engineering, and Radiology Durham, North Carolina, 27708, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
7
|
Das T, Choi JG, Oh IH. Synthesis of Highly Effective α-Fe2O3 Catalyst for the Spin Conversion of Liquid Hydrogen. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2019. [DOI: 10.1007/s40010-019-00599-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Guan D, Godard C, Polas SM, Tooze RP, Whitwood AC, Duckett SB. Using para hydrogen induced polarization to study steps in the hydroformylation reaction. Dalton Trans 2019; 48:2664-2675. [PMID: 30702728 DOI: 10.1039/c8dt04723e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of iridium complexes, Ir(η3-C3H5)(CO)(PR2R')2 (1a-1e) [where 1a, PR2R' = PPh3, 1b P(p-tol)3, 1c PMePh2, 1d PMe2Ph and 1e PMe3] were synthesized and their reactivity as stoichiometric hydroformylation precursors studied. Para-hydrogen assisted NMR spectroscopy detected the following intermediates: Ir(H)2(η3-C3H5)(CO)(PR2R') (2a-e), Ir(H)2(η1-C3H5)(CO)(PR2R')2 (4d-e), Ir(H)2(η1-C3H5)(CO)2(PR2R') (10a-e), Ir(H)2(CO-C3H5)(CO)2(PR2R') (11a-c), Ir(H)2(CO-C3H7)(CO)2(PR2R') (12a-c) and Ir(H)2(CO-C3H5)(CO)(PR2R')2 (13d-e). Some of these species exist as two geometric isomers according to their multinuclear NMR characteristics. The NMR studies suggest a role for the following 16 electron species in these reactions: Ir(η3-C3H5)(CO)(PR2R'), Ir(η1-C3H5)(CO)(PR2R')2, Ir(η1-C3H5)(CO)2(PR2R'), Ir(CO-C3H5)(CO)2(PR2R'), Ir(CO-C3H7)(CO)2(PR2R') and Ir(CO-C3H5)(CO)(PR2R')2. Their role is linked to several 18 electron species in order to confirm the route by which hydroformylation and hydrogenation proceeds.
Collapse
Affiliation(s)
- Dexin Guan
- School of Innovation and Entrepreneurship, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Provence, China 310023
| | | | | | | | | | | |
Collapse
|
9
|
Pokochueva EV, Kovtunov KV, Salnikov OG, Gemeinhardt ME, Kovtunova LM, Bukhtiyarov VI, Chekmenev EY, Goodson BM, Koptyug IV. Heterogeneous hydrogenation of phenylalkynes with parahydrogen: hyperpolarization, reaction selectivity, and kinetics. Phys Chem Chem Phys 2019; 21:26477-26482. [DOI: 10.1039/c9cp02913c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Parahydrogen-induced polarization (PHIP) is a powerful technique for studying hydrogenation reactions in both gas and liquid phases.
Collapse
Affiliation(s)
- Ekaterina V. Pokochueva
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Oleg G. Salnikov
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry
- Southern Illinois University
- Carbondale
- USA
| | - Larisa M. Kovtunova
- Novosibirsk State University
- 630090 Novosibirsk
- Russia
- Boreskov Institute of Catalysis SB RAS
- 630090 Novosibirsk
| | | | - Eduard Y. Chekmenev
- Department of Chemistry
- Integrative Biosciences (Ibio)
- Wayne State University
- Karmanos Cancer Institute (KCI)
- Detroit
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry
- Southern Illinois University
- Carbondale
- USA
- Materials Technology Center
| | - Igor V. Koptyug
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|
10
|
Tokmic K, Greer RB, Zhu L, Fout AR. 13C NMR Signal Enhancement Using Parahydrogen-Induced Polarization Mediated by a Cobalt Hydrogenation Catalyst. J Am Chem Soc 2018; 140:14844-14850. [DOI: 10.1021/jacs.8b08614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kenan Tokmic
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Rianna B. Greer
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Hövener JB, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz-Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem Int Ed Engl 2018; 57:11140-11162. [PMID: 29484795 PMCID: PMC6105405 DOI: 10.1002/anie.201711842] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/14/2018] [Indexed: 12/22/2022]
Abstract
Magnetic resonance (MR) is one of the most versatile and useful physical effects used for human imaging, chemical analysis, and the elucidation of molecular structures. However, its full potential is rarely used, because only a small fraction of the nuclear spin ensemble is polarized, that is, aligned with the applied static magnetic field. Hyperpolarization methods seek other means to increase the polarization and thus the MR signal. A unique source of pure spin order is the entangled singlet spin state of dihydrogen, parahydrogen (pH2 ), which is inherently stable and long-lived. When brought into contact with another molecule, this "spin order on demand" allows the MR signal to be enhanced by several orders of magnitude. Considerable progress has been made in the past decade in the area of pH2 -based hyperpolarization techniques for biomedical applications. It is the goal of this Review to provide a selective overview of these developments, covering the areas of spin physics, catalysis, instrumentation, preparation of the contrast agents, and applications.
Collapse
Affiliation(s)
- Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Bryce Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Russell Bowers
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Stefan Glöggler
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Strasse 3A, 37075, Göttingen, Germany
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Markus Plaumann
- Department of Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kai Buckenmaier
- Magnetic resonance center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Sq. East, New York, NY, 10003, USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Thomas Theis
- Department of Chemistry & Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, 1161 21st Ave South, MCN AA-1105, Nashville, TN, 37027, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Niki M Zacharias
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eduard Y Chekmenev
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, Moscow, 119991, Russia
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
12
|
Hövener J, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz‐Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parawasserstoff‐basierte Hyperpolarisierung für die Biomedizin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711842] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan‐Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Andrey N. Pravdivtsev
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Bryce Kidd
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - C. Russell Bowers
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Stefan Glöggler
- Max Planck-Institut für Biophysikalische Chemie Am Fassberg 11 37077 Göttingen Deutschland
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Deutschland
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Markus Plaumann
- Institut für Biometrie und Medizinische Informatik Otto-von-Guericke-Universität Magdeburg Leipziger Straße 44 39120 Magdeburg Deutschland
| | - Rachel Katz‐Brull
- Department of Radiology Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Kai Buckenmaier
- Magnetresonanz-Zentrum Max Planck-Institut für biologische Kybernetik Tübingen Deutschland
| | - Alexej Jerschow
- Department of Chemistry New York University 100 Washington Sq. East New York NY 10003 USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences University of Torino via Nizza 52 Torino Italien
| | - Thomas Theis
- Department of Chemistry & Department of Physics Duke University Durham NC 27708 USA
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute Cedars Sinai Medical Center Los Angeles CA 90048 USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Niki M. Zacharias
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
| |
Collapse
|
13
|
Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin S, Kurzbach D, Vuichoud B, Jannin S, Chekmenev EY, Goodson BM, Barskiy DA, Koptyug IV. Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques. Chem Asian J 2018; 13:10.1002/asia.201800551. [PMID: 29790649 PMCID: PMC6251772 DOI: 10.1002/asia.201800551] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 11/10/2022]
Abstract
The intensity of NMR signals can be enhanced by several orders of magnitude by using various techniques for the hyperpolarization of different molecules. Such approaches can overcome the main sensitivity challenges facing modern NMR/magnetic resonance imaging (MRI) techniques, whilst hyperpolarized fluids can also be used in a variety of applications in material science and biomedicine. This Focus Review considers the fundamentals of the preparation of hyperpolarized liquids and gases by using dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques, such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP), in both heterogeneous and homogeneous processes. The various new aspects in the formation and utilization of hyperpolarized fluids, along with the possibility of observing NMR signal enhancement, are described.
Collapse
Affiliation(s)
- Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Ekaterina V. Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Oleg G. Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Samuel Cousin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Dennis Kurzbach
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Basile Vuichoud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Eduard Y. Chekmenev
- Department of Chemistry & Karmanos Cancer Center, Wayne State University, Detroit, 48202, MI, United States
- Russian Academy of Sciences, Moscow, 119991, Russia
| | - Boyd M. Goodson
- Southern Illinois University, Carbondale, IL 62901, United States
| | - Danila A. Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-3220, United States
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| |
Collapse
|
14
|
Wang W, Xu J, Zhao Y, Qi G, Wang Q, Wang C, Li J, Deng F. Facet dependent pairwise addition of hydrogen over Pd nanocrystal catalysts revealed via NMR using para-hydrogen-induced polarization. Phys Chem Chem Phys 2018; 19:9349-9353. [PMID: 28138682 DOI: 10.1039/c7cp00352h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We demonstrated the facet dependence of pairwise addition of hydrogen in heterogeneous catalysis over Pd nanocrystal catalysts via NMR using para-hydrogen-induced polarization.
Collapse
Affiliation(s)
- Weiyu Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yanxi Zhao
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jinlin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
15
|
Burueva DB, Kovtunov KV, Bukhtiyarov AV, Barskiy DA, Prosvirin IP, Mashkovsky IS, Baeva GN, Bukhtiyarov VI, Stakheev AY, Koptyug IV. Selective Single-Site Pd−In Hydrogenation Catalyst for Production of Enhanced Magnetic Resonance Signals using Parahydrogen. Chemistry 2018; 24:2547-2553. [DOI: 10.1002/chem.201705644] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center; SB RAS; 3A Institutskaya St. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogova St. 630090 Novosibirsk Russia
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center; SB RAS; 3A Institutskaya St. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogova St. 630090 Novosibirsk Russia
| | - Andrey V. Bukhtiyarov
- Boreskov Institute of Catalysis; SB RAS; 5 Acad. Lavrentiev Pr. 630090 Novosibirsk Russia
| | - Danila A. Barskiy
- Department of Chemistry; University of California at Berkeley; Berkeley CA 94720-3220 USA
| | - Igor P. Prosvirin
- Boreskov Institute of Catalysis; SB RAS; 5 Acad. Lavrentiev Pr. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogova St. 630090 Novosibirsk Russia
| | - Igor S. Mashkovsky
- N.D. Zelinsky Institute of Organic Chemistry; RAS; 47 Leninsky Pr. 119991 Moscow Russia
| | - Galina N. Baeva
- N.D. Zelinsky Institute of Organic Chemistry; RAS; 47 Leninsky Pr. 119991 Moscow Russia
| | - Valerii I. Bukhtiyarov
- Boreskov Institute of Catalysis; SB RAS; 5 Acad. Lavrentiev Pr. 630090 Novosibirsk Russia
| | | | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center; SB RAS; 3A Institutskaya St. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogova St. 630090 Novosibirsk Russia
| |
Collapse
|
16
|
Rontu V, Selent A, Zhivonitko VV, Scotti G, Koptyug IV, Telkki VV, Franssila S. Efficient Catalytic Microreactors with Atomic-Layer-Deposited Platinum Nanoparticles on Oxide Support. Chemistry 2017; 23:16835-16842. [DOI: 10.1002/chem.201703391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Ville Rontu
- Department of Chemistry and Materials Science; Aalto University; P.O. Box 16200 00076 Aalto Finland
| | - Anne Selent
- NMR Research Unit; University of Oulu; P.O.Box 3000 90014 University of Oulu Finland
| | - Vladimir V. Zhivonitko
- NMR Research Unit; University of Oulu; P.O.Box 3000 90014 University of Oulu Finland
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center SB RAS; 3A Institutskaya St. Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova St. 2 Novosibirsk 630090 Russia
| | - Gianmario Scotti
- Department of Chemistry and Materials Science; Aalto University; P.O. Box 16200 00076 Aalto Finland
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center SB RAS; 3A Institutskaya St. Novosibirsk 630090 Russia
- Novosibirsk State University; Pirogova St. 2 Novosibirsk 630090 Russia
| | - Ville-Veikko Telkki
- NMR Research Unit; University of Oulu; P.O.Box 3000 90014 University of Oulu Finland
| | - Sami Franssila
- Department of Chemistry and Materials Science; Aalto University; P.O. Box 16200 00076 Aalto Finland
| |
Collapse
|
17
|
Tokmic K, Jackson BJ, Salazar A, Woods TJ, Fout AR. Cobalt-Catalyzed and Lewis Acid-Assisted Nitrile Hydrogenation to Primary Amines: A Combined Effort. J Am Chem Soc 2017; 139:13554-13561. [PMID: 28906106 DOI: 10.1021/jacs.7b07368] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The selective hydrogenation of nitriles to primary amines using a bench-stable cobalt precatalyst under 4 atm of H2 is reported herein. The catalyst precursor was reduced in situ using NaHBEt3, and the resulting Lewis acid formed, BEt3, was found to be integral to the observed catalysis. Mechanistic insights gleaned from para-hydrogen induced polarization (PHIP) transfer NMR studies revealed that the pairwise hydrogenation of nitriles proceeded through a Co(I/III) redox process.
Collapse
Affiliation(s)
- Kenan Tokmic
- School of Chemical Sciences, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Bailey J Jackson
- School of Chemical Sciences, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Andrea Salazar
- School of Chemical Sciences, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Alison R Fout
- School of Chemical Sciences, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Salnikov OG, Burueva DB, Gerasimov EY, Bukhtiyarov AV, Khudorozhkov AK, Prosvirin IP, Kovtunova LM, Barskiy DA, Bukhtiyarov VI, Kovtunov KV, Koptyug IV. The effect of oxidative and reductive treatments of titania-supported metal catalysts on the pairwise hydrogen addition to unsaturated hydrocarbons. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Zhao EW, Maligal‐Ganesh R, Xiao C, Goh T, Qi Z, Pei Y, Hagelin‐Weaver HE, Huang W, Bowers CR. Silica‐Encapsulated Pt‐Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogen‐Induced Polarization of Gases and Liquids. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701314] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Evan W. Zhao
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Raghu Maligal‐Ganesh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Chaoxian Xiao
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Tian‐Wei Goh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Zhiyuan Qi
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Yuchen Pei
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Helena E. Hagelin‐Weaver
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Clifford R. Bowers
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| |
Collapse
|
20
|
Zhao EW, Maligal‐Ganesh R, Xiao C, Goh T, Qi Z, Pei Y, Hagelin‐Weaver HE, Huang W, Bowers CR. Silica‐Encapsulated Pt‐Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogen‐Induced Polarization of Gases and Liquids. Angew Chem Int Ed Engl 2017; 56:3925-3929. [DOI: 10.1002/anie.201701314] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Evan W. Zhao
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Raghu Maligal‐Ganesh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Chaoxian Xiao
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Tian‐Wei Goh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Zhiyuan Qi
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Yuchen Pei
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Helena E. Hagelin‐Weaver
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Clifford R. Bowers
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| |
Collapse
|
21
|
Obenaus U, Althoff-Ospelt G, Lang S, Himmelmann R, Hunger M. Separation of Anti-Phase Signals Due to Parahydrogen Induced Polarization via 2D Nutation NMR Spectroscopy. Chemphyschem 2017; 18:455-458. [PMID: 28111867 DOI: 10.1002/cphc.201601227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Indexed: 11/06/2022]
Abstract
The present work introduces a novel method for the selective detection of 1 H NMR anti-phase signals caused by the pairwise incorporation of parahydrogen into olefins on noble-metal-containing catalysts. Via a two-dimensional (2D) nutation NMR experiment, the anti-phase signals of hyperpolarized 1 H nuclei are separated due to their double nutation frequency compared to that of thermally polarized 1 H nuclei. For demonstrating this approach, parahydrogen induced polarization (PHIP) was achieved via the hydrogenation of propene with parahydrogen on platinum-containing silica and investigated by in situ 1 H MAS NMR spectroscopy under continuous-flow conditions, that is, the hydrogenation reaction was performed inside the magnet of the NMR spectrometer. The 2D nutation NMR experiment described in the present work is useful for the separation of overlapping anti-phase and in-phase signals due to hyperpolarized and thermally polarized 1 H nuclei, respectively, which is important for research in the field of heterogeneous catalysis.
Collapse
Affiliation(s)
- Utz Obenaus
- Institute of Chemical Technology, University of Stuttgart, 70550, Stuttgart, Germany
| | - Gerhard Althoff-Ospelt
- Solid-State NMR Application, Bruker BioSpin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany
| | - Swen Lang
- Institute of Chemical Technology, University of Stuttgart, 70550, Stuttgart, Germany
| | - Robin Himmelmann
- Institute of Chemical Technology, University of Stuttgart, 70550, Stuttgart, Germany
| | - Michael Hunger
- Institute of Chemical Technology, University of Stuttgart, 70550, Stuttgart, Germany
| |
Collapse
|
22
|
Salnikov OG, Liu HJ, Fedorov A, Burueva DB, Kovtunov KV, Copéret C, Koptyug IV. Pairwise hydrogen addition in the selective semihydrogenation of alkynes on silica-supported Cu catalysts. Chem Sci 2017; 8:2426-2430. [PMID: 28451349 PMCID: PMC5369404 DOI: 10.1039/c6sc05276b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/18/2016] [Indexed: 12/21/2022] Open
Abstract
Mechanistic insight into the semihydrogenation of 1-butyne and 2-butyne on Cu nanoparticles supported on partially dehydroxylated silica (Cu/SiO2-700) was obtained using parahydrogen. Hydrogenation of 1-butyne over Cu/SiO2-700 yielded 1-butene with ≥97% selectivity. The surface modification of this catalyst with tricyclohexylphosphine (PCy3) increased the selectivity to 1-butene up to nearly 100%, although at the expense of reduced catalytic activity. Similar trends were observed in the hydrogenation of 2-butyne, where Cu/SiO2-700 provided a selectivity to 2-butene in the range of 72-100% depending on the reaction conditions, while the catalyst modified with PCy3 again demonstrated nearly 100% selectivity. Parahydrogen-induced polarization effects observed in hydrogenation reactions catalyzed by copper-based catalysts demonstrate the viability of pairwise hydrogen addition over these catalysts. Contribution of pairwise hydrogen addition to 1-butyne was estimated to be at least 0.2-0.6% for unmodified Cu/SiO2-700 and ≥2.7% for Cu/SiO2-700 modified with PCy3, highlighting the effect of surface modification with the tricyclohexylphosphine ligand.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center , SB RAS , 3A Institutskaya St. , 630090 Novosibirsk , Russia .
- Novosibirsk State University , 2 Pirogova St. , 630090 Novosibirsk , Russia
| | - Hsueh-Ju Liu
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Alexey Fedorov
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Dudari B Burueva
- International Tomography Center , SB RAS , 3A Institutskaya St. , 630090 Novosibirsk , Russia .
- Novosibirsk State University , 2 Pirogova St. , 630090 Novosibirsk , Russia
| | - Kirill V Kovtunov
- International Tomography Center , SB RAS , 3A Institutskaya St. , 630090 Novosibirsk , Russia .
- Novosibirsk State University , 2 Pirogova St. , 630090 Novosibirsk , Russia
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Igor V Koptyug
- International Tomography Center , SB RAS , 3A Institutskaya St. , 630090 Novosibirsk , Russia .
- Novosibirsk State University , 2 Pirogova St. , 630090 Novosibirsk , Russia
| |
Collapse
|
23
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
24
|
Guan D, Jonathan Holmes A, López-Serrano J, Duckett SB. Following palladium catalyzed methoxycarbonylation by hyperpolarized NMR spectroscopy: a parahydrogen based investigation. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00252a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When the reaction of Pd(OTf)2(bcope) with diphenylacetylene, carbon monoxide and parahydrogen is probed, hyperpolarised NMR signals (blue) are seen.
Collapse
Affiliation(s)
- Dexin Guan
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry
- Department of Chemistry
- University of York
- York
- UK
| | - A. Jonathan Holmes
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry
- Department of Chemistry
- University of York
- York
- UK
| | - Joaquín López-Serrano
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry
- Department of Chemistry
- University of York
- York
- UK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry
- Department of Chemistry
- University of York
- York
- UK
| |
Collapse
|
25
|
Delley MF, Silaghi MC, Nuñez-Zarur F, Kovtunov KV, Salnikov OG, Estes DP, Koptyug IV, Comas-Vives A, Copéret C. X–H Bond Activation on Cr(III),O Sites (X = R, H): Key Steps in Dehydrogenation and Hydrogenation Processes. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00744] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Murielle F. Delley
- ETH Zürich, Department of Chemistry and
Applied Biosciences, Vladimir-Prelog-Weg
1-5, CH-8093 Zürich, Switzerland
| | - Marius-C. Silaghi
- ETH Zürich, Department of Chemistry and
Applied Biosciences, Vladimir-Prelog-Weg
1-5, CH-8093 Zürich, Switzerland
| | - Francisco Nuñez-Zarur
- ETH Zürich, Department of Chemistry and
Applied Biosciences, Vladimir-Prelog-Weg
1-5, CH-8093 Zürich, Switzerland
- Instituto
de Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Kirill V. Kovtunov
- International Tomography Center, 3A
Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova
St. 2, 630090 Novosibirsk, Russia
| | - Oleg G. Salnikov
- International Tomography Center, 3A
Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova
St. 2, 630090 Novosibirsk, Russia
| | - Deven P. Estes
- ETH Zürich, Department of Chemistry and
Applied Biosciences, Vladimir-Prelog-Weg
1-5, CH-8093 Zürich, Switzerland
| | - Igor V. Koptyug
- International Tomography Center, 3A
Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova
St. 2, 630090 Novosibirsk, Russia
| | - Aleix Comas-Vives
- ETH Zürich, Department of Chemistry and
Applied Biosciences, Vladimir-Prelog-Weg
1-5, CH-8093 Zürich, Switzerland
| | - Christophe Copéret
- ETH Zürich, Department of Chemistry and
Applied Biosciences, Vladimir-Prelog-Weg
1-5, CH-8093 Zürich, Switzerland
| |
Collapse
|
26
|
Kovtunov KV, Barskiy DA, Shchepin RV, Salnikov OG, Prosvirin IP, Bukhtiyarov AV, Kovtunova LM, Bukhtiyarov VI, Koptyug IV, Chekmenev EY. Production of Pure Aqueous 13 C-Hyperpolarized Acetate by Heterogeneous Parahydrogen-Induced Polarization. Chemistry 2016; 22:16446-16449. [PMID: 27607402 PMCID: PMC5544125 DOI: 10.1002/chem.201603974] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 12/18/2022]
Abstract
A supported metal catalyst was designed, characterized, and tested for aqueous phase heterogeneous hydrogenation of vinyl acetate with parahydrogen to produce 13 C-hyperpolarized ethyl acetate for potential biomedical applications. The Rh/TiO2 catalyst with a metal loading of 23.2 wt % produced strongly hyperpolarized 13 C-enriched ethyl acetate-1-13 C detected at 9.4 T. An approximately 14-fold 13 C signal enhancement was detected using circa 50 % parahydrogen gas without taking into account relaxation losses before and after polarization transfer by magnetic field cycling from nascent parahydrogen-derived protons to 13 C nuclei. This first observation of 13 C PHIP-hyperpolarized products over a supported metal catalyst in an aqueous medium opens up new possibilities for production of catalyst-free aqueous solutions of nontoxic hyperpolarized contrast agents for a wide range of biomolecules amenable to the parahydrogen induced polarization by side arm hydrogenation (PHIP-SAH) approach.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee, 37232-2310, USA
| | - Roman V Shchepin
- Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee, 37232-2310, USA
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Igor P Prosvirin
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Andrey V Bukhtiyarov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Larisa M Kovtunova
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Valerii I Bukhtiyarov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee, 37232-2310, USA.
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia.
| |
Collapse
|
27
|
Reduction of diphenylacetylene using Al powder in the presence of noble metal catalysts in water. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Gutmann T, Alkhagani S, Rothermel N, Limbach HH, Breitzke H, Buntkowsky G. 31P-Solid-State NMR Characterization and Catalytic Hydrogenation Tests of Novel heterogenized Iridium-Catalysts. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/zpch-2016-0837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The synthesis of novel robust and stable iridium-based immobilized catalysts on silica-polymer hybrid materials (Si-PB-Ir) is described. These catalysts are characterized by a combination of 1D 31P CP-MAS and 2D 31P-1H HETCOR and J-resolved multinuclear solid state NMR experiments. Different binding situations such as singly and multiply coordinated phosphines are identified. Density functional theory (DFT) calculations are performed to corroborate the interpretation of the experimental NMR data, in order to propose a structural model of the heterogenized catalysts. Finally, the catalytic activity of the Si-PB-Ir catalysts is investigated for the hydrogenation of styrene employing para-enriched hydrogen gas.
Collapse
Affiliation(s)
- Torsten Gutmann
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Safaa Alkhagani
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Niels Rothermel
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Hans-Heinrich Limbach
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Takustr. 3, D-14195 Berlin, Germany
| | - Hergen Breitzke
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Gerd Buntkowsky
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| |
Collapse
|
29
|
Srour M, Hadjiali S, Sauer G, Brunnengräber K, Breitzke H, Xu Y, Weidler H, Limbach HH, Gutmann T, Buntkowsky G. Synthesis and Solid-State NMR Characterization of a Robust, Pyridyl-Based Immobilized Wilkinson's Type Catalyst with High Catalytic Performance. ChemCatChem 2016. [DOI: 10.1002/cctc.201600882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mohamad Srour
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Sara Hadjiali
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Grit Sauer
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Kai Brunnengräber
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Hergen Breitzke
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Yeping Xu
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Heiko Weidler
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Hans-Heinrich Limbach
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustraße 3 17195 Berlin Germany
| | - Torsten Gutmann
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Gerd Buntkowsky
- Institute of Physical Chemistry; Technical University Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| |
Collapse
|
30
|
Abstract
Abstract
Generating parahydrogen-induced polarization (PHIP) of nuclear spins with immobilized transition metal complexes as hydrogenation catalysts allows one to produce pure hyperpolarized substances, which can open new revolutionary perspectives for PHIP applications. A major drawback of immobilized complexes is their low stability under reaction conditions. In the present work we studied an immobilized iridium complex, Ir/SiO2
P, synthesized by a covalent anchoring of Vaska’s complex on phospine-modified silica gel. This complex was used to obtain hyperpolarized gasses in the gas phase hydrogenation of propene, propyne and 1-butyne with parahydrogen in PASADENA and ALTADENA experiments. It was found that, in contrast to other immobilized complexes, Ir/SiO2
P is stable under reaction conditions at up to 140°C, and the reduction of iridium does not occur according to XPS analysis. Moreover, the application of Ir/SiO2
P catalyst allowed us to generate continuous flow of hyperpolarized propene and 1-butene with (300–500)-fold NMR signal enhancement which is significantly higher than commonly observed for most supported metal catalysts. The shape of polarized propene signals in PASADENA experiment has indicated that parahydrogen addition to propyne occurs non-stereospecifically, i.e. PHIP was observed for all protons of the vinyl fragment of propene. The analysis of the polarized signals has shown that syn pairwise addition dominates, which was confirmed by spectra simulations. It was found that storage of Ir/SiO2
P under Ar atmosphere leads to a decrease in PHIP amplitude and an increase in the activity of the catalyst. This observation is discussed in terms of the interaction of Ir/SiO2
P with trace amounts of oxygen in Ar, leading to partial oxidation of triphenylphosphine ligand to triphenylphosphine oxide accompanied by the activation of the immobilized complex. It was also found that the interaction of Ir/SiO2
P with alkenes likely leads to formation of stable monohydride complexes, decreasing the production of PHIP in hydrogenations. At the same time, stable substrate complexes are likely formed in alkyne hydrogenations, leading to a significant decrease in the monohydride complex formation and to an increased production of PHIP.
Collapse
|
31
|
Kovtunov KV, Salnikov OG, Zhivonitko VV, Skovpin IV, Bukhtiyarov VI, Koptyug IV. Catalysis and Nuclear Magnetic Resonance Signal Enhancement with Parahydrogen. Top Catal 2016. [DOI: 10.1007/s11244-016-0688-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Kovtunov KV, Barskiy DA, Salnikov OG, Shchepin RV, Coffey AM, Kovtunova LM, Bukhtiyarov VI, Koptyug IV, Chekmenev EY. Toward Production of Pure 13C Hyperpolarized Metabolites Using Heterogeneous Parahydrogen-Induced Polarization of Ethyl[1- 13C]acetate. RSC Adv 2016; 6:69728-69732. [PMID: 28042472 DOI: 10.1039/c6ra15808k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we report the production of 13C-hyperpolarized ethyl acetate via heterogeneously catalyzed pairwise addition of parahydrogen to vinyl acetate over TiO2-supported rhodium nanoparticles, followed by magnetic field cycling. Importantly, the hyperpolarization is demonstrated even at the natural abundance of 13C isotope (ca. 1.1%) along with the easiest separation of the catalyst from the hyperpolarized liquid.
Collapse
Affiliation(s)
- K V Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Institutskaya St. 3A, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - D A Barskiy
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA
| | - O G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Institutskaya St. 3A, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - R V Shchepin
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA
| | - A M Coffey
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA
| | - L M Kovtunova
- Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia; Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr., Novosibirsk, 630090 Russia
| | - V I Bukhtiyarov
- Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia; Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr., Novosibirsk, 630090 Russia
| | - I V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Institutskaya St. 3A, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - E Y Chekmenev
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA; Russian Academy of Sciences, Leninskiy Prospect 14, 119991 Moscow, Russia
| |
Collapse
|
33
|
Zhao EW, Zheng H, Ludden K, Xin Y, Hagelin-Weaver HE, Bowers CR. Strong Metal–Support Interactions Enhance the Pairwise Selectivity of Parahydrogen Addition over Ir/TiO2. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02632] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Yan Xin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | | | | |
Collapse
|
34
|
Salnikov OG, Kovtunov KV, Koptyug IV. Production of Catalyst-Free Hyperpolarised Ethanol Aqueous Solution via Heterogeneous Hydrogenation with Parahydrogen. Sci Rep 2015; 5:13930. [PMID: 26349543 PMCID: PMC4642547 DOI: 10.1038/srep13930] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/12/2015] [Indexed: 01/02/2023] Open
Abstract
An experimental approach for the production of catalyst-free hyperpolarised ethanol solution in water via heterogeneous hydrogenation of vinyl acetate with parahydrogen and the subsequent hydrolysis of ethyl acetate was demonstrated. For an efficient hydrogenation, liquid vinyl acetate was transferred to the gas phase by parahydrogen bubbling and almost completely converted to ethyl acetate with Rh/TiO2 catalyst. Subsequent dissolution of ethyl acetate gas in water containing OH(-) ions led to the formation of catalyst- and organic solvent-free hyperpolarised ethanol and sodium acetate. These results represent the first demonstration of catalyst- and organic solvent-free hyperpolarised ethanol production achieved by heterogeneous hydrogenation of vinyl acetate vapour with parahydrogen and the subsequent ethyl acetate hydrolysis.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova St. 2, Novosibirsk, 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova St. 2, Novosibirsk, 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova St. 2, Novosibirsk, 630090, Russia
| |
Collapse
|
35
|
Zhao EW, Zheng H, Zhou R, Hagelin-Weaver HE, Bowers CR. Shaped Ceria Nanocrystals Catalyze Efficient and Selective Para-Hydrogen-Enhanced Polarization. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Zhao EW, Zheng H, Zhou R, Hagelin‐Weaver HE, Bowers CR. Shaped Ceria Nanocrystals Catalyze Efficient and Selective Para‐Hydrogen‐Enhanced Polarization. Angew Chem Int Ed Engl 2015; 54:14270-5. [DOI: 10.1002/anie.201506045] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Evan W. Zhao
- Department of Chemistry, University of Florida, Gainesville, FL 32611 (USA)
| | - Haibin Zheng
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 (USA)
| | - Ronghui Zhou
- Department of Chemistry, University of Florida, Gainesville, FL 32611 (USA)
| | | | - Clifford R. Bowers
- Department of Chemistry, University of Florida, Gainesville, FL 32611 (USA)
| |
Collapse
|
37
|
Kovtunov KV, Barskiy DA, Salnikov OG, Burueva DB, Khudorozhkov AK, Bukhtiyarov AV, Prosvirin IP, Gerasimov EY, Bukhtiyarov VI, Koptyug IV. Strong Metal-Support Interactions for Palladium Supported on TiO2Catalysts in the Heterogeneous Hydrogenation with Parahydrogen. ChemCatChem 2015. [DOI: 10.1002/cctc.201500618] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Corma A, Salnikov OG, Barskiy DA, Kovtunov KV, Koptyug IV. Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization. Chemistry 2015; 21:7012-5. [PMID: 25754067 DOI: 10.1002/chem.201406664] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Indexed: 01/04/2023]
Abstract
A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3-butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed.
Collapse
Affiliation(s)
- Avelino Corma
- Instituto de Tecnologia Quimica UPV-CSIC, Avda. de los Naranjos, s/n, 46022 Valencia (Spain)
| | | | | | | | | |
Collapse
|
39
|
A Nanoparticle Catalyst for Heterogeneous Phase Para-Hydrogen-Induced Polarization in Water. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Glöggler S, Grunfeld AM, Ertas YN, McCormick J, Wagner S, Schleker PPM, Bouchard LS. A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water. Angew Chem Int Ed Engl 2015; 54:2452-6. [PMID: 25565403 DOI: 10.1002/anie.201409027] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/18/2014] [Indexed: 11/06/2022]
Abstract
Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water.
Collapse
Affiliation(s)
- Stefan Glöggler
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA 90095-1569 (USA)
| | | | | | | | | | | | | |
Collapse
|
41
|
Ananikov VP, Khemchyan LL, Ivanova YV, Bukhtiyarov VI, Sorokin AM, Prosvirin IP, Vatsadze SZ, Medved'ko AV, Nuriev VN, Dilman AD, Levin VV, Koptyug IV, Kovtunov KV, Zhivonitko VV, Likholobov VA, Romanenko AV, Simonov PA, Nenajdenko VG, Shmatova OI, Muzalevskiy VM, Nechaev MS, Asachenko AF, Morozov OS, Dzhevakov PB, Osipov SN, Vorobyeva DV, Topchiy MA, Zotova MA, Ponomarenko SA, Borshchev OV, Luponosov YN, Rempel AA, Valeeva AA, Stakheev AY, Turova OV, Mashkovsky IS, Sysolyatin SV, Malykhin VV, Bukhtiyarova GA, Terent'ev AO, Krylov IB. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v83n10abeh004471] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Buntkowsky G, Gutmann T, Petrova MV, Ivanov KL, Bommerich U, Plaumann M, Bernarding J. Dipolar induced para-hydrogen-induced polarization. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 63-64:20-29. [PMID: 25218522 DOI: 10.1016/j.ssnmr.2014.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
Analytical expressions for the signal enhancement in solid-state PHIP NMR spectroscopy mediated by homonuclear dipolar interactions and single pulse or spin-echo excitation are developed and simulated numerically. It is shown that an efficient enhancement of the proton NMR signal in solid-state NMR studies of chemisorbed hydrogen on surfaces is possible. Employing typical reaction efficacy, enhancement-factors of ca. 30-40 can be expected both under ALTADENA and under PASADENA conditions. This result has important consequences for the practical application of the method, since it potentially allows the design of an in-situ flow setup, where the para-hydrogen is adsorbed and desorbed from catalyst surfaces inside the NMR magnet.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany.
| | - Torsten Gutmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Marina V Petrova
- International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Ute Bommerich
- Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Markus Plaumann
- Dept. of Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Johannes Bernarding
- Dept. of Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
43
|
Kovtunov KV, Barskiy DA, Coffey AM, Truong ML, Salnikov OG, Khudorozhkov AK, Inozemtseva EA, Prosvirin IP, Bukhtiyarov VI, Waddell KW, Chekmenev EY, Koptyug IV. High-resolution 3D proton MRI of hyperpolarized gas enabled by parahydrogen and Rh/TiO2 heterogeneous catalyst. Chemistry 2014; 20:11636-9. [PMID: 24961814 DOI: 10.1002/chem.201403604] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 11/11/2022]
Abstract
Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D (1) H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625×625×625 μm(3) ) and large imaging matrix (128×128×32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia) and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia).
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Salnikov OG, Kovtunov KV, Barskiy DA, Khudorozhkov AK, Inozemtseva EA, Prosvirin IP, Bukhtiyarov VI, Koptyug IV. Evaluation of the Mechanism of Heterogeneous Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Pairwise Hydrogen Addition. ACS Catal 2014. [DOI: 10.1021/cs500426a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Danila A. Barskiy
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Alexander K. Khudorozhkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis, SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Elizaveta A. Inozemtseva
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis, SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Igor P. Prosvirin
- Boreskov Institute of Catalysis, SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valery I. Bukhtiyarov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis, SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
45
|
Kovtunov KV, Barskiy DA, Salnikov OG, Khudorozhkov AK, Bukhtiyarov VI, Prosvirin IP, Koptyug IV. Parahydrogen-induced polarization (PHIP) in heterogeneous hydrogenation over bulk metals and metal oxides. Chem Commun (Camb) 2014; 50:875-8. [DOI: 10.1039/c3cc44939d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Abdulhussain S, Breitzke H, Ratajczyk T, Grünberg A, Srour M, Arnaut D, Weidler H, Kunz U, Kleebe HJ, Bommerich U, Bernarding J, Gutmann T, Buntkowsky G. Synthesis, Solid-State NMR Characterization, and Application for Hydrogenation Reactions of a Novel Wilkinson’s-Type Immobilized Catalyst. Chemistry 2013; 20:1159-66. [DOI: 10.1002/chem.201303020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Indexed: 11/07/2022]
|
47
|
Glöggler S, Colell J, Appelt S. Para-hydrogen perspectives in hyperpolarized NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 235:130-142. [PMID: 23932399 DOI: 10.1016/j.jmr.2013.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
The first instance of para-hydrogen induced polarization (PHIP) in an NMR experiment was serendipitously observed in the 1980s while investigating a hydrogenation reaction (Seldler et al., 1983; Bowers and Weitekamp, 1986, 1987; Eisenschmid et al., 1987) [1-4]. Remarkably a theoretical investigation of the applicability of para-hydrogen as a hyperpolarization agent was being performed in the 1980's thereby quickly providing a theoretical basis for the PHIP-effect (Bowers and Weitekamp, 1986) [2]. The discovery of signal amplification by a non-hydrogenating interaction with para-hydrogen has recently extended the interest to exploit the PHIP effect, as it enables investigation of compounds without structural alteration while retaining the advantages of spectroscopy with hyperpolarized compounds [5]. In this article we will place more emphasis of the future applications of the method while only briefly discussing the efforts that have been made in the understanding of the phenomenon and the development of the method so far.
Collapse
Affiliation(s)
- Stefan Glöggler
- Department of Chemistry and Biochemistry, University of California, 607 Charles E Young Drive East, Young Hall 2056, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
48
|
Highly efficient and recyclable ruthenium nanoparticle catalyst for semihydrogenation of alkynes. CATAL COMMUN 2013. [DOI: 10.1016/j.catcom.2013.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
49
|
Zhivonitko VV, Telkki VV, Leppäniemi J, Scotti G, Franssila S, Koptyug IV. Remote detection NMR imaging of gas phase hydrogenation in microfluidic chips. LAB ON A CHIP 2013; 13:1554-1561. [PMID: 23435499 DOI: 10.1039/c3lc41309h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The heterogeneous hydrogenation reaction of propene into propane in microreactors is studied by remote detection (RD) nuclear magnetic resonance (NMR). The reactors consist of 36 parallel microchannels (50 × 50 μm(2) cross sections) coated with a platinum catalyst. We show that RD NMR is capable of monitoring reactions with sub-millimeter spatial resolution over a field-of-view of 30 × 8 mm(2) with a steady-state time-of-flight time resolution in the tens of milliseconds range. The method enables the visualization of active zones in the reactors, and time-of-flight is used to image the flow velocity variations inside the reactor. The overall reaction yields determined by NMR varied from 10% to 50%, depending on the flow rate, temperature and length of the reaction channels. The reaction yield was highest for the channels with the lowest flow velocity. Propane T1 relaxation time in the channels, estimated by means of RD NMR images, was 270 ± 18 ms. No parahydrogen-induced polarization (PHIP) was observed in experiments carried out using parahydrogen-enriched H2, indicating fast spreading of the hydrogen atoms on the sputtered Pt surface. In spite of the low concentration of gases, RD NMR made imaging of gas phase hydrogenation of propene in microreactors feasible, and it is a highly versatile method for characterizing on-chip chemical reactions.
Collapse
Affiliation(s)
- Vladimir V Zhivonitko
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia.
| | | | | | | | | | | |
Collapse
|
50
|
Green RA, Adams RW, Duckett SB, Mewis RE, Williamson DC, Green GGR. The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 67:1-48. [PMID: 23101588 DOI: 10.1016/j.pnmrs.2012.03.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/05/2012] [Indexed: 05/03/2023]
Affiliation(s)
- Richard A Green
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | | | | | | | | |
Collapse
|