1
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Wylie L, Kéri M, Udvardy A, Hollóczki O, Kirchner B. On the Rich Chemistry of Pseudo-Protic Ionic Liquid Electrolytes. CHEMSUSCHEM 2023; 16:e202300535. [PMID: 37364035 DOI: 10.1002/cssc.202300535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
Mixing weak acids and bases can produce highly complicated binary mixtures, called pseudo-protic ionic liquids, in which a complex network of effects determines the physicochemical properties that are currently impossible to predict. In this joint computational-experimental study, we investigated 1-methylimidazole-acetic acid mixtures through the whole concentration range. Effects of the varying ionization and excess of either components on the properties, such as density, diffusion coefficients, and overall hydrogen bonding structure were uncovered. A special emphasis was put on understanding the multiple factors that govern the conductivity of the system. In the presence of an excess of acetic acid, the 1-methylimidazolium acetate ion pairs dissociate more efficiently, resulting in a higher concentration of independently moving, conducting ions. However, the conductivity measurements showed that higher concentrations of acetic acid improve the conductivity beyond this effect, suggesting in addition to standard dilution effects the occurrence of Grotthuss diffusion in high acid-to-base ratios. The results here will potentially help designing novel electrolytes and proton conducting systems, which can be exploited in a variety of applications.
Collapse
Affiliation(s)
- Luke Wylie
- University of Bonn, Clausius Institute of Physical and Theoretical Chemistry, Mulliken Center for Theoretical Chemistry, Beringstr. 4, 53115, Bonn, Germany
| | - Mónika Kéri
- University of Debrecen, Department of Physical Chemistry, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Antal Udvardy
- University of Debrecen, Department of Physical Chemistry, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Oldamur Hollóczki
- University of Debrecen, Department of Physical Chemistry, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Barbara Kirchner
- University of Bonn, Clausius Institute of Physical and Theoretical Chemistry, Mulliken Center for Theoretical Chemistry, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
3
|
Tahmasebi A, Habibi S, Collins JL, An R, Dehdashti E, Minerick AR. pH Gradients in Spatially Non-Uniform AC Electric Fields around the Charging Frequency; A Study of Two Different Geometries and Electrode Passivation. MICROMACHINES 2023; 14:1655. [PMID: 37763818 PMCID: PMC10534923 DOI: 10.3390/mi14091655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Dielectrophoresis (DEP), a precision nonlinear electrokinetic tool utilized within microfluidic devices, can induce bioparticle polarization that manifests as motion in the electric field; this phenomenon has been leveraged for phenotypic cellular and biomolecular detection, making DEP invaluable for diagnostic applications. As device operation times lengthen, reproducibility and precision decrease, which has been postulated to be caused by ion gradients within the supporting electrolyte medium. This research focuses on characterizing pH gradients above, at, and below the electrode charging frequency (0.2-1.4 times charging frequency) in an aqueous electrolyte solution in order to extend the parameter space for which microdevice-imposed artifacts on cells in clinical diagnostic devices have been characterized. The nonlinear alternating current (AC) electric fields (0.07 Vpp/μm) required for DEP were generated via planar T-shaped and star-shaped microelectrodes overlaid by a 70 μm high microfluidic chamber. The experiments were designed to quantify pH changes temporally and spatially in the two microelectrode geometries. In parallel, a 50 nm hafnium oxide (HfO2) thin film on the microelectrodes was tested to provide insights into the role of Faradaic surface reactions on the pH. Electric field simulations were conducted to provide insights into the gradient shape within the microelectrode geometries. Frequency dependence was also examined to ascertain ion electromigration effects above, at, and below the electrode charging frequency. The results revealed Faradaic reactions above, at, and below the electrode charging frequency. Comparison experiments further demonstrated that pH changes caused by Faradaic reactions increased inversely with frequency and were more pronounced in the star-shaped geometry. Finally, HfO2 films demonstrated frequency-dependent properties, impeding Faradaic reactions.
Collapse
Affiliation(s)
- Azade Tahmasebi
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Sanaz Habibi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeana L Collins
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Ran An
- Department of Chemical Engineering, University of Houston, Houston, TX 77204, USA
| | - Esmaeil Dehdashti
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Adrienne Robyn Minerick
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
4
|
Rashidi M, Benneker AM. pH-Tunable electrokinetic movement of droplets. SOFT MATTER 2023; 19:3136-3146. [PMID: 37039565 DOI: 10.1039/d3sm00385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Manipulation and control of droplet motion in an electric field is of interest in biological systems, microfluidics and electrokinetic (EK) separation techniques. In this work, we show that the electrokinetic motion of oil-in-water (O/W) emulsions stabilized by an amphoteric surfactant can be controlled by changing the pH. Amphoteric surfactants carry both positive and negative head groups and change charge under the influence of changing pH, which allows them to impact the surface charge of droplets as a function of pH, and in extension their direction of motion in an electric field. Using a microfluidic system, we evaluate the effect of pH, surfactant concentration and droplet size on the EK velocity of droplets, which is a combination of electrophoresis (EP) and electro-osmotic flow (EOF). We show that by changing the pH from acidic to alkali, the direction of droplet motion in an external electric field changes. The magnitude of the EK velocity at acidic and neutral pH is not significantly altered as a result of the competition of the EP and EOF in the system, which generally have opposite directions. Our results are in good agreement with theoretical predictions for the droplet EP mobility and can thus serve as a verification of the theoretical descriptions. In addition to the pH, the surfactant concentration affects droplet EK velocity, most specifically at pH of 7 which is close to the isoelectric point of the surfactant monomers. At this pH, changing the surfactant concentration changes the direction of droplet motion due the competing effect of the EP and EOF at different surfactant concentrations. By increasing the droplet size, the magnitude of the EK velocity increases because of the larger local ζ-potential of the larger droplets as well as the wall-enhanced effect in the system. The results from this work can be applied to design on-chip droplet separation strategies based on pH variations and are relevant for systems in which pH gradients naturally occur, such as the human body.
Collapse
Affiliation(s)
- Mansoureh Rashidi
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, AB, T2N 1N4, Canada.
| | - Anne M Benneker
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
5
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Abstract
Isotachophoresis (ITP) is a versatile electrophoretic technique that can be used for sample preconcentration, separation, purification, and mixing, and to control and accelerate chemical reactions. Although the basic technique is nearly a century old and widely used, there is a persistent need for an easily approachable, succinct, and rigorous review of ITP theory and analysis. This is important because the interest and adoption of the technique has grown over the last two decades, especially with its implementation in microfluidics and integration with on-chip chemical and biochemical assays. We here provide a review of ITP theory starting from physicochemical first-principles, including conservation of species, conservation of current, approximation of charge neutrality, pH equilibrium of weak electrolytes, and so-called regulating functions that govern transport dynamics, with a strong emphasis on steady and unsteady transport. We combine these generally applicable (to all types of ITP) theoretical discussions with applications of ITP in the field of microfluidic systems, particularly on-chip biochemical analyses. Our discussion includes principles that govern the ITP focusing of weak and strong electrolytes; ITP dynamics in peak and plateau modes; a review of simulation tools, experimental tools, and detection methods; applications of ITP for on-chip separations and trace analyte manipulation; and design considerations and challenges for microfluidic ITP systems. We conclude with remarks on possible future research directions. The intent of this review is to help make ITP analysis and design principles more accessible to the scientific and engineering communities and to provide a rigorous basis for the increased adoption of ITP in microfluidics.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department
of Aeronautics and Astronautics, Stanford
University, Stanford, California 94305, United States
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
An R, Minerick AR. Reaction-Free Concentration Gradient Generation in Spatially Nonuniform AC Electric Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5977-5986. [PMID: 35507010 DOI: 10.1021/acs.langmuir.2c00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability to generate stable, spatiotemporally controllable concentration gradients is critical for both electrokinetic and biological applications such as directional wetting and chemotaxis. Electrochemical techniques for generating solution and surface gradients display benefits such as simplicity, controllability, and compatibility with automation. Here, we present an exploratory study for generating microscale spatiotemporally controllable gradients using a reaction-free electrokinetic technique in a microfluidic environment. Methanol solutions with ionic fluorescein isothiocyanate (FITC) molecules were used as an illustrative electrolyte. Spatially nonuniform alternating current (AC) electric fields were applied using hafnium dioxide (HfO2)-coated Ti/Au electrode pairs. Results from spatial and temporal analyses along with control experiments suggest that the FITC ion concentration gradient in bulk fluid (over 50 μm from the electrode) was established due to spatial variation of electric field density, and was independent of electrochemical reactions at the electrode surface. The established ion concentration gradients depended on both amplitudes and frequencies of the oscillating AC electric field. Overall, this work reports a novel approach for generating stable and spatiotemporally tunable gradients in a microfluidic chamber using a reaction-free electrochemical methodology.
Collapse
Affiliation(s)
- Ran An
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Adrienne R Minerick
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
8
|
Habibi S, Lee HY, Moncada-Hernandez H, Minerick AR. Induction and suppression of cell lysis in an electrokinetic microfluidic system. Electrophoresis 2022; 43:1322-1336. [PMID: 35306692 DOI: 10.1002/elps.202100310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 01/26/2023]
Abstract
The ability to strategically induce or suppress cell lysis is critical for many cellular-level diagnostic and therapeutic applications conducted within electrokinetic microfluidic platforms. The chemical and structural integrity of sub-cellular components is important when inducing cell lysis. However, metal electrodes and electrolytes participate in undesirable electrochemical reactions that alter solution composition and potentially damage protein, RNA, and DNA integrity within device microenvironments. For many biomedical applications, cell viability must be maintained even when device-imposed cell-stressing stimuli (e.g., electrochemical reaction byproducts) are present. In this work, we explored a novel and tunable method to accurately induce or suppress device-imposed artifacts on human red blood cell (RBC) lysis in non-uniform AC electric fields. For precise tunability, a dielectric hafnium oxide (HfO2 ) layer was used to prevent electron transfer between the electrodes and the electric double layer and thus reduce harmful electrochemical reactions. Additionally, a low concentration of Triton X-100 surfactant was explored as a tool to stabilize cell membrane integrity. The extent of hemolysis was studied as a function of time, electrode configuration (T-shaped and star-shaped), cell position, applied non-uniform AC electric field, with uncoated and HfO2 coated electrodes (50 nm), and absence and presence of Triton X-100 (70 µM). Tangible outcomes include a parametric analysis relying upon literature and this work to design, tune, and operate electrokinetic microdevices to intentionally induce or suppress cellular lysis without altering intracellular components. Implications are that devices can be engineered to leverage or minimize device-imposed biological artefacts extending the versatility and utility of electrokinetic diagnostics.
Collapse
Affiliation(s)
- Sanaz Habibi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Hwi Yong Lee
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | | | - Adrienne R Minerick
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
9
|
Shim S. Diffusiophoresis, Diffusioosmosis, and Microfluidics: Surface-Flow-Driven Phenomena in the Presence of Flow. Chem Rev 2022; 122:6986-7009. [PMID: 35285634 DOI: 10.1021/acs.chemrev.1c00571] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diffusiophoresis is the spontaneous motion of particles under a concentration gradient of solutes. Since the first recognition by Derjaguin and colleagues in 1947 in the form of capillary osmosis, the phenomenon has been broadly investigated theoretically and experimentally. Early studies were mostly theoretical and were largely interested in surface coating applications, which considered the directional transport of coating particles. In the past decade, advances in microfluidics enabled controlled demonstrations of diffusiophoresis of micro- and nanoparticles. The electrokinetic nature and the typical scales of interest of the phenomenon motivated various experimental studies using simple microfluidic configurations. In this review, I will discuss studies that report diffusiophoresis in microfluidic systems, with the focus on the fundamental aspects of the reported results. In particular, parameters and influences of diffusiophoresis and diffusioosmosis in microfluidic systems and their combinations are highlighted.
Collapse
Affiliation(s)
- Suin Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Electrochemically Enhanced Deposition of Scale from Chosen Formation Waters from the Norwegian Continental Shelf. ENERGIES 2022. [DOI: 10.3390/en15020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reservoir formation waters typically contain scaling ions which can precipitate and form mineral deposits. Such mineral deposition can be accelerated electrochemically, whereby the application of potential between two electrodes results in oxygen reduction and water electrolysis. Both processes change the local pH near the electrodes and affect the surface deposition of pH-sensitive minerals. In the context of the plugging and abandonment of wells, electrochemically enhanced deposition could offer a cost-effective alternative to the established methods that rely on setting cement plugs. In this paper, we tested the scale electro-deposition ability of six different formation waters from selected reservoirs along the Norwegian continental shelf using two experimental setups, one containing CO2 and one without CO2. As the electrochemical deposition of scaling minerals relies on local pH changes near the cathode, geochemical modelling was performed to predict oversaturation with respect to the different mineral phases at different pH values. In a CO2-free environment, the formation waters are mainly oversaturated with portlandite at pH > 12. When CO2 was introduced to the system, the formation waters were oversaturated with calcite. The presence of mineral phases was confirmed by powder X-ray diffraction (XRD) analyses of the mineral deposits obtained in the laboratory experiments. The geochemical-modelling results indicate several oversaturated Mg-bearing minerals (e.g., brucite, dolomite, aragonite) in the formation waters but these, according to XRD results, were absent in the deposits, which is likely due to the significant domination of calcium-scaling ions in the solution. The amount of deposit was found to be proportional to the concentration of calcium present in the formation waters. Formation waters with a high concentration of Ca ions and a high conductivity yielded more precipitate.
Collapse
|
11
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
12
|
Bender AT, Sullivan BP, Zhang JY, Juergens DC, Lillis L, Boyle DS, Posner JD. HIV detection from human serum with paper-based isotachophoretic RNA extraction and reverse transcription recombinase polymerase amplification. Analyst 2021; 146:2851-2861. [PMID: 33949378 PMCID: PMC9151496 DOI: 10.1039/d0an02483j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The number of people living with HIV continues to increase with the current total near 38 million, of which about 26 million are receiving antiretroviral therapy (ART). These treatment regimens are highly effective when properly managed, requiring routine viral load monitoring to assess successful viral suppression. Efforts to expand access by decentralizing HIV nucleic acid testing in low- and middle-income countries (LMICs) has been hampered by the cost and complexity of current tests. Sample preparation of blood samples has traditionally relied on cumbersome RNA extraction methods, and it continues to be a key bottleneck for developing low-cost POC nucleic acid tests. We present a microfluidic paper-based analytical device (μPAD) for extracting RNA and detecting HIV in serum, leveraging low-cost materials, simple buffers, and an electric field. We detect HIV virions and MS2 bacteriophage internal control in human serum using a novel lysis and RNase inactivation method, paper-based isotachophoresis (ITP) for RNA extraction, and duplexed reverse transcription recombinase polymerase amplification (RT-RPA) for nucleic acid amplification. We design a specialized ITP system to extract and concentrate RNA, while excluding harsh reagents used for lysis and RNase inactivation. We found the ITP μPAD can extract and purify 5000 HIV RNA copies per mL of serum. We then demonstrate detection of HIV virions and MS2 bacteriophage in human serum within 45-minutes.
Collapse
Affiliation(s)
- Andrew T Bender
- Department of Mechanical Engineering, University of Washington, Seattle, USA.
| | - Benjamin P Sullivan
- Department of Mechanical Engineering, University of Washington, Seattle, USA.
| | - Jane Y Zhang
- Department of Mechanical Engineering, University of Washington, Seattle, USA.
| | - David C Juergens
- Department of Chemical Engineering, University of Washington, Seattle, USA
| | | | | | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Seattle, USA. and Department of Chemical Engineering, University of Washington, Seattle, USA and Family Medicine, School of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
13
|
Spitzberg JD, van Kooten XF, Bercovici M, Meller A. Microfluidic device for coupling isotachophoretic sample focusing with nanopore single-molecule sensing. NANOSCALE 2020; 12:17805-17811. [PMID: 32820758 DOI: 10.1039/d0nr05000h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Solid-state nanopores (NPs) are label-free single-molecule sensors, capable of performing highly sensitive assays from a small number of biomolecule translocation events. However, single-molecule sensing is challenging at extremely low analyte concentrations due to the limited flux of analytes to the sensing volume. This leads to a low event rate and increases the overall assay time. In this work, we present a method to enhance the event rate at low analyte concentrations by using isotachophoresis (ITP) to focus and deliver analytes to a nanopore sensor. Central to this method is a device capable of performing ITP focusing directly on a solid-state NP chip, while preventing the focusing electric field from damaging the nanopore membrane. We discuss considerations and trade-offs related to the design of the focusing channel, the ITP electrolyte system and electrical decoupling between the focusing and sensing modes. Finally, we demonstrate an integrated device wherein the concentration enhancement due to ITP focusing leads to an increase in event rate of >300-fold in the ITP-NP device as compared to the NP-only case.
Collapse
Affiliation(s)
- Joshua D Spitzberg
- Department of Biomedical Engineering, The Technion - Israel Institute of Technology, Haifa, 32000 Israel.
| | | | | | | |
Collapse
|
14
|
Chau MK, Arega NG, Nhung Tran NA, Song J, Lee S, Kim J, Chung M, Kim D. Capacitively coupled contactless conductivity detection for microfluidic capillary isoelectric focusing. Anal Chim Acta 2020; 1124:60-70. [PMID: 32534676 DOI: 10.1016/j.aca.2020.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022]
Abstract
We report capacitively coupled contactless conductivity detection (C4D) of proteins separated by microfluidic capillary isoelectric focusing (μCIEF). To elucidate the evolution of negative conductivity peaks during focusing and seek IEF conditions for sensitive conductivity detection, numerical simulation was performed using a model protein GFP (green fluorescence protein) and hypothetical carrier ampholytes (CAs). C4D was successfully applied to the μCIEF by optimizing assay conditions using a simple and effective pressure-mobilization approach. The conductivity and fluorescence signals of a focused GFP band were co-detected, confirming that the obtained negative C4D peak could be attributed to the actual protein, not the non-uniform background conductivity profile of the focused CAs. GFP concentrations of 10 nM-30 μM was quantified with a detection limit of 10 nM. Finally, the resolving power was analyzed by separating a mixture of R-phycoerythrin (pI 5.01), GFP-F64L (pI 5.48), and RK-GFP (pI 6.02). The conductivities of the three separated fluorescence proteins were measured with average separation resolution of 2.06. We expect the newly developed label-free μCIEF-C4D technique to be widely adopted as a portable, electronics-only protein-analysis tool.
Collapse
Affiliation(s)
- Minh Khang Chau
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea
| | - Nebiyu Getachew Arega
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea
| | - Nguyen Anh Nhung Tran
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul, 04066, South Korea
| | - Jin Song
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea
| | - Sangmin Lee
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul, 04066, South Korea
| | - Jintae Kim
- Department of Electrical Engineering, Konkuk University, Gwangjin-gu, Seoul, 05029, South Korea
| | - Minsub Chung
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul, 04066, South Korea
| | - Dohyun Kim
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea; Natural Science Research Institute, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea.
| |
Collapse
|
15
|
Azmi AAB, Sankaran R, Show PL, Ling TC, Tao Y, Munawaroh HSH, Kong PS, Lee DJ, Chang JS. Current application of electrical pre-treatment for enhanced microalgal biomolecules extraction. BIORESOURCE TECHNOLOGY 2020; 302:122874. [PMID: 32007308 DOI: 10.1016/j.biortech.2020.122874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Pretreatment of microalgal biomass possessing rigid cell wall is a critical step for enhancing the efficiency of microalgal biorefinery. However, the conventional pretreatment processes suffer the drawbacks of complex processing steps, long processing time, low conversion efficiency and high processing costs. This significantly hinders the industrial applicability of microalgal biorefinery. The innovative electricity-aid pretreatment techniques serve as a promising processing tool to extensively enhance the release of intracellular substances from microalgae. In this review, application of electric field-based techniques and recent advances of using electrical pretreatments on microalgae cell focusing on pulsed electric field, electrolysis, high voltage electrical discharges and moderate electric field are reviewed. In addition, the emerging techniques integrating electrolysis with liquid biphasic flotation process as promising downstream approach is discussed. This review delivers broad knowledge of the present significance of the application of these methods focusing on the development of electric assisted biomolecules extraction from microalgae.
Collapse
Affiliation(s)
- Abdul Azim Bin Azmi
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Revathy Sankaran
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | - Pei San Kong
- Sime Darby Plantation Research Sdn. Bhd. (formerly known as Sime Darby Research Sdn. Bhd.) (Company No. 560590-X), R&D Centre, Lot 2664, Jalan Pulau Carey, 42960 Pulau Carey, Selangor Darul Ehsan, Malaysia
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
16
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
17
|
Suhadolnik L, Pohar A, Novak U, Likozar B, Mihelič A, Čeh M. Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: Batch, microreactor and scaled-up operation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Duarte-Junior GF, Lobo-Júnior EO, Medeiros Junior Í, da Silva JAF, do Lago CL, Coltro WKT. Separation of carbohydrates on electrophoresis microchips with controlled electrolysis. Electrophoresis 2019; 40:693-698. [DOI: 10.1002/elps.201800354] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Íris Medeiros Junior
- Petróleo Brasileiro S.A.; Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES); Rio de Janeiro/RJ Brasil
| | | | | | | |
Collapse
|
19
|
Guo D, Han Y, Huang J, Meng E, Ma L, Zhang H, Ding Y. Hydrophilic Poly(vinylidene Fluoride) Film with Enhanced Inner Channels for Both Water- and Ionic Liquid-Driven Ion-Exchange Polymer Metal Composite Actuators. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2386-2397. [PMID: 30604952 DOI: 10.1021/acsami.8b18098] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study presents a novel and facile strategy to fabricate a hydrophilic poly(vinylidene fluoride) (PVDF) electrolyte film with enhanced inner channels for a high-performance and cost-effective ion-exchange polymer metal composite (IPMC) actuator. The resultant PVDF composite film is composed of hierarchical micro/nanoscale structures: well-defined polymer grains with a diameter of ∼20 μm and much finer particles with a diameter of ∼390 nm, producing three-dimensional interconnected, hierarchical inner channels to facilitate ion migration of IPMC. Interestingly, the electrolyte matrix film has a high porosity of 15.8% and yields a high water uptake of 44.2% and an ionic liquid (IL, [EMIm]·[BF4]) uptake of 38.1% to make both water-driven and IL-driven IPMC actuators because of the introduction of polar polyvinyl pyrrolidone. Compared to the conventional PVDF/IL-based IPMC, both water-driven and IL-driven PVDF-based IPMCs exhibit high ion migration rates, thus effectively improving the actuation frequency and producing remarkably higher levels of actuation force and displacement. Specifically, the force outputs are increased by 13.4 and 3.0 folds, and the displacement outputs are increased by 2.2 and 1.9 folds. Using an identical electrolyte matrix, water-driven IPMC exhibits stronger electromechanical performance, benefiting to make IPMC actuator with high levels of force and power outputs, whereas IL-driven IPMC exhibits a more stable electromechanical performance, benefiting to make long lifetime IPMC actuator in air. Thus, the resultant IPMCs are promising in the design of artificial muscles with tunable electromechanical performance for flexible actuators or displacement/vibration sensors at low cost.
Collapse
Affiliation(s)
- Dongjie Guo
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Yubing Han
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Jianjian Huang
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Erchao Meng
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Li Ma
- State Laboratory of Surface & Interface , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China
| | - Yonghui Ding
- Department of Mechanical Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
20
|
Oyarzun DI, Hemmatifar A, Palko JW, Stadermann M, Santiago JG. Ion selectivity in capacitive deionization with functionalized electrode: Theory and experimental validation. WATER RESEARCH X 2018; 1:100008. [PMID: 31194024 PMCID: PMC6549908 DOI: 10.1016/j.wroa.2018.100008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 05/12/2023]
Abstract
Capacitive deionization (CDI) is a promising technique for salt removal and may have potential for highly selective removal of ion species. In this work, we take advantage of functional groups usually used with ionic exchange resins and apply these to CDI. To this end, we functionalize activated carbon with a quaternary amines surfactant and use this surface to selectively and passively (no applied field) trap nitrate ions. We then set the cell voltage to a constant value to regenerate these electrodes, resulting in an inverted capacitive deionization (i-CDI) operation. Unlike resins, we avoid use of concentrated chemicals for regeneration. We measure the selectivity of nitrate versus chloride ions as a function of regeneration voltage and initial chloride concentration. We experimentally demonstrate up to about 6.5-fold (observable) selectivity in a cycle with a regeneration voltage of 0.4 V. We also demonstrate a novel multi-pass, air-flush i-CDI operation to selectively enrich nitrate with high water recovery. We further present a dynamic, multi-species electrosorption and equilibrium solution-to-surface chemical reaction model and validate the model with detailed measurements. Our i-CDI system exhibits higher nitrate selectivity at lower voltages; making it possible to reduce NaNO3 concentrations from ∼170 ppm to below the limit of maximum allowed values for nitrate in drinking water of about 50 ppm NaNO3.
Collapse
Affiliation(s)
- Diego I. Oyarzun
- Department of Mechanical Engineering, Stanford University Stanford, CA 94305, USA
| | - Ali Hemmatifar
- Department of Mechanical Engineering, Stanford University Stanford, CA 94305, USA
| | - James W. Palko
- Department of Mechanical Engineering, University of California, Merced, CA 95343, USA
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Juan G. Santiago
- Department of Mechanical Engineering, Stanford University Stanford, CA 94305, USA
| |
Collapse
|
21
|
Eid C, Santiago JG. Assay for Listeria monocytogenes cells in whole blood using isotachophoresis and recombinase polymerase amplification. Analyst 2018; 142:48-54. [PMID: 27904893 DOI: 10.1039/c6an02119k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present a new approach which enables lysis, extraction, and detection of inactivated Listeria monocytogenes cells from blood using isotachophoresis (ITP) and recombinase polymerase amplification (RPA). We use an ITP-compatible alkaline and proteinase K approach for rapid and effective lysis. We then perform ITP purification to separate bacterial DNA from whole blood contaminants using a microfluidic device that processes 25 μL sample volume. Lysis, mixing, dispensing, and on-chip ITP purification are completed in a total of less than 50 min. We transfer extracted DNA directly into RPA master mix for isothermal incubation and detection, an additional 25 min. We first validate our assay in the detection of purified genomic DNA spiked into whole blood, and demonstrate a limit of detection of 16.7 fg μL-1 genomic DNA, the equivalent of 5 × 103 cells per mL. We then show detection of chemically-inactivated L. monocytogenes cells spiked into whole blood, and demonstrate a limit of detection of 2 × 104 cells per mL. Lastly, we show preliminary experimental data demonstrating the feasibility of the integration of ITP purification with RPA detection on a microfluidic chip. Our results suggest that ITP purification is compatible with RPA detection, and has potential to extend the applicability of RPA to whole blood.
Collapse
Affiliation(s)
- Charbel Eid
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Bldg 530, room 225, Stanford, CA 94305, USA.
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Bldg 530, room 225, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Hemmatifar A, Oyarzun DI, Palko JW, Hawks SA, Stadermann M, Santiago JG. Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes. WATER RESEARCH 2017; 122:387-397. [PMID: 28622631 DOI: 10.1016/j.watres.2017.05.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 05/26/2023]
Abstract
Ion adsorption and equilibrium between electrolyte and microstructure of porous electrodes are at the heart of capacitive deionization (CDI) research. Surface functional groups are among the factors which fundamentally affect adsorption characteristics of the material and hence CDI system performance in general. Current CDI-based models for surface charge are mainly based on a fixed (constant) charge density, and do not treat acid-base equilibria of electrode microstructure including so-called micropores. We here expand current models by coupling the modified Donnan (mD) model with weak electrolyte acid-base equilibria theory. In our model, surface charge density can vary based on equilibrium constants (pK's) of individual surface groups as well as micropore and electrolyte pH environments. In this initial paper, we consider this equilibrium in the absence of Faradaic reactions. The model shows the preferential adsorption of cations versus anions to surfaces with respectively acidic or basic surface functional groups. We introduce a new parameter we term "chemical charge efficiency" to quantify efficiency of salt removal due to surface functional groups. We validate our model using well controlled titration experiments for an activated carbon cloth (ACC), and quantify initial and final pH of solution after adding the ACC sample. We also leverage inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) to quantify the final background concentrations of individual ionic species. Our results show a very good agreement between experiments and model. The model is extendable to a wide variety of porous electrode systems and CDI systems with applied potential.
Collapse
Affiliation(s)
- Ali Hemmatifar
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Diego I Oyarzun
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - James W Palko
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Steven A Hawks
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
23
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Affiliation(s)
- Charbel Eid
- Department
of Mechanical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Juan G. Santiago
- Department
of Mechanical
Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Persat A, Santiago JG. An Ohmic model for electrokinetic flows of binary asymmetric electrolytes. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Kaminski TS, Scheler O, Garstecki P. Droplet microfluidics for microbiology: techniques, applications and challenges. LAB ON A CHIP 2016; 16:2168-87. [PMID: 27212581 DOI: 10.1039/c6lc00367b] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Droplet microfluidics has rapidly emerged as one of the key technologies opening up new experimental possibilities in microbiology. The ability to generate, manipulate and monitor droplets carrying single cells or small populations of bacteria in a highly parallel and high throughput manner creates new approaches for solving problems in diagnostics and for research on bacterial evolution. This review presents applications of droplet microfluidics in various fields of microbiology: i) detection and identification of pathogens, ii) antibiotic susceptibility testing, iii) studies of microbial physiology and iv) biotechnological selection and improvement of strains. We also list the challenges in the dynamically developing field and new potential uses of droplets in microbiology.
Collapse
Affiliation(s)
- Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
27
|
Loessberg-Zahl J, Janssen KGH, McCallum C, Gillespie D, Pennathur S. (Almost) Stationary Isotachophoretic Concentration Boundary in a Nanofluidic Channel Using Charge Inversion. Anal Chem 2016; 88:6145-50. [DOI: 10.1021/acs.analchem.6b01701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Josh Loessberg-Zahl
- Department
of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kjeld G. H. Janssen
- Department
of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Christopher McCallum
- Department
of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Dirk Gillespie
- Department
of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Sumita Pennathur
- Department
of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Saucedo-Espinosa MA, Lapizco-Encinas BH. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions. BIOMICROFLUIDICS 2016; 10:033104. [PMID: 27375813 PMCID: PMC4902815 DOI: 10.1063/1.4953183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/22/2016] [Indexed: 05/12/2023]
Abstract
Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices.
Collapse
Affiliation(s)
- Mario A Saucedo-Espinosa
- Microscale Bioseparations Laboratory, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology , Rochester, New York 14623, USA
| |
Collapse
|
29
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
30
|
Mchedlov-Petrossyan NO, Cheipesh TA, Shekhovtsov SV, Redko AN, Rybachenko VI, Omelchenko IV, Shishkin OV. Ionization and tautomerism of methyl fluorescein and related dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:151-161. [PMID: 26037500 DOI: 10.1016/j.saa.2015.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/27/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
The protolytic equilibrium of methyl ether of fluorescein is studied in water, aqueous ethanol, and in other solvents. The constants of the two-step dissociation are determined by spectrophotometry. In water, the fractions of the zwitterionic, quinonoid, and lactonic tautomes are correspondingly 11%, 6%, and 83%, as deduced from the UV-visible spectra. Corresponding study of the ionization of the methyl ether ester of fluorescein, fluorescein ethyl ester, and sulfonefluorescein allows testing the correction of the attribution of the microscopic dissociation constants of methoxy fluorescein. The results of nuclear magnetic resonance and infrared spectroscopy, as well as the X-ray analysis confirm the predomination of the lactonic structure of the molecular species in solid state and in DMSO. Contrary to it, the spectroscopic studies in both hydrogen-donor bond (HDB) and non-HBD solvents confirm that the presence of lactonic monoanion is atypical for the dye under study and, with high probability, also for the mother compound fluorescein.
Collapse
Affiliation(s)
| | - Tatyana A Cheipesh
- Department of Physical Chemistry, Kharkov V. Karazin National University, Kharkov 61022, Ukraine
| | - Sergey V Shekhovtsov
- Department of Physical Chemistry, Kharkov V. Karazin National University, Kharkov 61022, Ukraine
| | - Andrey N Redko
- Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Science of Ukraine, Donetsk 83114, Ukraine
| | - Vladimir I Rybachenko
- Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Science of Ukraine, Donetsk 83114, Ukraine
| | - Irina V Omelchenko
- Institute for Single Crystals, National Academy of Science of Ukraine, Kharkov 61072, Ukraine
| | - Oleg V Shishkin
- Institute for Single Crystals, National Academy of Science of Ukraine, Kharkov 61072, Ukraine
| |
Collapse
|
31
|
Liu J, Fu H, Yang T, Li S. Automatic sequential fluid handling with multilayer microfluidic sample isolated pumping. BIOMICROFLUIDICS 2015; 9:054118. [PMID: 26487904 PMCID: PMC4592428 DOI: 10.1063/1.4932303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions.
Collapse
Affiliation(s)
- Jixiao Liu
- Department of Fluid Control and Automation, Harbin Institute of Technology , Harbin 150001, China
| | - Hai Fu
- Department of Fluid Control and Automation, Harbin Institute of Technology , Harbin 150001, China
| | - Tianhang Yang
- Department of Fluid Control and Automation, Harbin Institute of Technology , Harbin 150001, China
| | - Songjing Li
- Department of Fluid Control and Automation, Harbin Institute of Technology , Harbin 150001, China
| |
Collapse
|
32
|
Zafir Mohamad Nasir M, Sofer Z, Pumera M. Effect of Electrolyte pH on the Inherent Electrochemistry of Layered Transition-Metal Dichalcogenides (MoS2, MoSe2, WS2, WSe2). ChemElectroChem 2015. [DOI: 10.1002/celc.201500259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Zafir Mohamad Nasir
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| | - Zdeněk Sofer
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague, Technicka 5; 166 28 Prague 6 Czech Republic
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| |
Collapse
|
33
|
Paustian JS, Angulo CD, Nery-Azevedo R, Shi N, Abdel-Fattah AI, Squires TM. Direct Measurements of Colloidal Solvophoresis under Imposed Solvent and Solute Gradients. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4402-4410. [PMID: 25821916 DOI: 10.1021/acs.langmuir.5b00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe a microfluidic system that enables direct visualization and measurement of diffusiophoretic migration of colloids in response to imposed solution gradients. Such measurements have proven difficult or impossible in macroscopic systems due to difficulties in establishing solution gradients that are sufficiently strong yet hydrodynamically stable. We validate the system with measurements of the concentration-dependent diffusiophoretic mobility of polystyrene colloids in NaCl gradients, confirming that diffusiophoretic migration velocities are proportional to gradients in the logarithm of electrolyte concentration. We then perform the first direct measurement of the concentration-dependent "solvophoretic" mobility of colloids in ethanol-water gradients, whose dependence on concentration and gradient strength was not known either theoretically or experimentally, but which our measurements reveal to be proportional to the gradient in the logarithm of ethanol mole fraction. Finally, we examine solvophoretic migration under a variety of qualitatively distinct chemical gradients, including solvents that are miscible or have finite solubility with water, an electrolyte for which diffusiophoresis proceeds down concentration gradients (unlike for most electrolytes), and a nonelectrolyte (sugar). Our technique enables the direct characterization of diffusiophoretic mobilities of various colloids under various solvent and solute gradients, analogous to the electrophoretic ζ-potential measurements that are routinely used to characterize suspensions. We anticipate that such measurements will provide the feedback required to test and develop theories for solvophoretic and diffusiophoretic migration and ultimately to the conceptual design and engineering of particles that respond in a desired way to their chemical environments.
Collapse
Affiliation(s)
- Joel S Paustian
- †Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Craig D Angulo
- †Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Rodrigo Nery-Azevedo
- †Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Nan Shi
- †Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | - Todd M Squires
- †Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
34
|
Borysiak MD, Kimura KW, Posner JD. NAIL: Nucleic Acid detection using Isotachophoresis and Loop-mediated isothermal amplification. LAB ON A CHIP 2015; 15:1697-707. [PMID: 25666345 DOI: 10.1039/c4lc01479k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nucleic acid amplification tests are the gold standard for many infectious disease diagnoses due to high sensitivity and specificity, rapid operation, and low limits of detection. Despite the advantages of nucleic acid amplification tests, they currently offer limited point-of-care (POC) utility due to the need for complex instruments and laborious sample preparation. We report the development of the Nucleic Acid Isotachophoresis LAMP (NAIL) diagnostic device. NAIL uses isotachophoresis (ITP) and loop-mediated isothermal amplification (LAMP) to extract and amplify nucleic acids from complex matrices in less than one hour inside of an integrated chip. ITP is an electrokinetic separation technique that uses an electric field and two buffers to extract and purify nucleic acids in a single step. LAMP amplifies nucleic acids at constant temperature and produces large amounts of DNA that can be easily detected. A mobile phone images the amplification results to eliminate the need for laser fluorescent detection. The device requires minimal user intervention because capillary valves and heated air chambers act as passive valves and pumps for automated fluid actuation. In this paper, we describe NAIL device design and operation, and demonstrate the extraction and detection of pathogenic E. coli O157:H7 cells from whole milk samples. We use the Clinical and Laboratory Standards Institute (CLSI) limit of detection (LoD) definitions that take into account the variance from both positive and negative samples to determine the diagnostic LoD. According to the CLSI definition, the NAIL device has a limit of detection (LoD) of 1000 CFU mL(-1) for E. coli cells artificially inoculated into whole milk, which is two orders of magnitude improvement to standard tube-LAMP reactions with diluted milk samples and comparable to lab-based methods. The NAIL device potentially offers significant reductions in the complexity and cost of traditional nucleic acid diagnostics for POC applications.
Collapse
Affiliation(s)
- Mark D Borysiak
- Chemical Engineering Department, University of Washington, Seattle, WA 98195, USA. E-mail:
| | | | | |
Collapse
|
35
|
Choi E, Kwon K, Kim D, Park J. An electrokinetic study on tunable 3D nanochannel networks constructed by spatially controlled nanoparticle assembly. LAB ON A CHIP 2015; 15:512-523. [PMID: 25407418 DOI: 10.1039/c4lc00949e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper proposes a novel method to form ion-selective nanochannel networks between two microfluidic channels using geometrically controlled in situ self-assembled nanoparticles. We present a thorough experimental and theoretical analysis of nanoscale electrokinetics using the proposed microplatform. The nano-interstices between these assembled nanoparticles serve as the nanopores of ion-selective membranes with equivalent pore size. Its inherent characteristics (compared with the conventional one-dimensional nanochannels) are a high ionic flux and a low fluidic resistance because these nanopore clusters have a role as collective three-dimensional nanochannel networks, which result in a highly efficient performance beneficial for various applications. Another uniqueness of our system is that the electrical characteristics (such as ion transport through the nanochannel networks and the decrease in the limiting current region) can be tuned quantitatively or even optimized by changing the geometry of the microchannel and the pH condition of the working solution or by appropriately selecting the size and materials of the assembled nanoparticles. The correlation between these tuning parameters and nanoscale electrokinetics is deeply investigated with carefully designed experiments and their mechanism is thoroughly examined by a theoretical study. We expect that the presented system and methodology can contribute to opening new application fields, such as biomolecule separation/filtering/accumulation/analysis, bioelectronics, and energy generation.
Collapse
Affiliation(s)
- Eunpyo Choi
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 121-742, Korea.
| | | | | | | |
Collapse
|
36
|
Karsenty M, Rosenfeld T, Gommed K, Bercovici M. Current Monitoring in a Microchannel with Repeated Constrictions for Accurate Detection of Sample Location in Isotachophoresis. Anal Chem 2014; 87:388-93. [DOI: 10.1021/ac5036346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Merav Karsenty
- Faculty
of Mechanical Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Tally Rosenfeld
- Faculty
of Mechanical Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Khaled Gommed
- Faculty
of Mechanical Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Moran Bercovici
- Faculty
of Mechanical Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
37
|
An R, Massa K, Wipf DO, Minerick AR. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency. BIOMICROFLUIDICS 2014; 8:064126. [PMID: 25553200 PMCID: PMC4272385 DOI: 10.1063/1.4904059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/02/2014] [Indexed: 05/23/2023]
Abstract
AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc ), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc . In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H(+)] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc ). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H(+)] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position.
Collapse
Affiliation(s)
- Ran An
- Department of Chemical Engineering, Michigan Technological University , Houghton, Michigan 49931, USA
| | - Katherine Massa
- Department of Chemical Engineering, Michigan Technological University , Houghton, Michigan 49931, USA
| | - David O Wipf
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, USA
| | - Adrienne R Minerick
- Department of Chemical Engineering, Michigan Technological University , Houghton, Michigan 49931, USA
| |
Collapse
|
38
|
Gabrielsson EO, Janson P, Tybrandt K, Simon DT, Berggren M. A four-diode full-wave ionic current rectifier based on bipolar membranes: overcoming the limit of electrode capacity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5143-7. [PMID: 24863171 DOI: 10.1002/adma.201401258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/09/2014] [Indexed: 05/19/2023]
Abstract
Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions.
Collapse
Affiliation(s)
- Erik O Gabrielsson
- Laboratory of Organic Electronics, Linköping University, SE-601 74, Norrköping, Sweden
| | | | | | | | | |
Collapse
|
39
|
Dykstra JE, Biesheuvel PM, Bruning H, Ter Heijne A. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:013302. [PMID: 25122405 DOI: 10.1103/physreve.90.013302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Indexed: 06/03/2023]
Abstract
Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.
Collapse
Affiliation(s)
- J E Dykstra
- Sub-department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands and Wetsus, centre of excellence for sustainable water technology, Oostergoweg 7, 8911 MA Leeuwarden, The Netherlands
| | - P M Biesheuvel
- Wetsus, centre of excellence for sustainable water technology, Oostergoweg 7, 8911 MA Leeuwarden, The Netherlands and Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - H Bruning
- Sub-department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - A Ter Heijne
- Sub-department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
40
|
Contento NM, Bohn PW. Tunable electrochemical pH modulation in a microchannel monitored via the proton-coupled electro-oxidation of hydroquinone. BIOMICROFLUIDICS 2014; 8:044120. [PMID: 25379105 PMCID: PMC4189302 DOI: 10.1063/1.4894275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/19/2014] [Indexed: 05/30/2023]
Abstract
Electrochemistry is a promising tool for microfluidic systems because it is relatively inexpensive, structures are simple to fabricate, and it is straight-forward to interface electronically. While most widely used in microfluidics for chemical detection or as the transduction mechanism for molecular probes, electrochemical methods can also be used to efficiently alter the chemical composition of small (typically <100 nl) microfluidic volumes in a manner that improves or enables subsequent measurements and sample processing steps. Here, solvent (H2O) electrolysis is performed quantitatively at a microchannel Pt band electrode to increase microchannel pH. The change in microchannel pH is simultaneously tracked at a downstream electrode by monitoring changes in the i-V characteristics of the proton-coupled electro-oxidation of hydroquinone, thus providing real-time measurement of the protonated forms of hydroquinone from which the pH can be determined in a straightforward manner. Relative peak heights for protonated and deprotonated hydroquinone forms are in good agreement with expected pH changes by measured electrolysis rates, demonstrating that solvent electrolysis can be used to provide tunable, quantitative pH control within a microchannel.
Collapse
Affiliation(s)
- Nicholas M Contento
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
41
|
Bîrzu A, Coleman J, Kiss IZ. Highly disparate activity regions due to non-uniform potential distribution in microfluidic devices: Simulations and experiments. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Purification of nucleic acids using isotachophoresis. J Chromatogr A 2014; 1335:105-20. [DOI: 10.1016/j.chroma.2013.12.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 12/30/2022]
|
43
|
Marshall LA, Rogacs A, Meinhart CD, Santiago JG. An injection molded microchip for nucleic acid purification from 25 microliter samples using isotachophoresis. J Chromatogr A 2014; 1331:139-42. [PMID: 24485540 DOI: 10.1016/j.chroma.2014.01.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 11/24/2022]
Abstract
We present a novel microchip device for purification of nucleic acids from 25μL biological samples using isotachophoresis (ITP). The device design incorporates a custom capillary barrier structure to facilitate robust sample loading. The chip uses a 2mm channel width and 0.15mm depth to reduce processing time, mitigate Joule heating, and achieve high extraction efficiency. To reduce pH changes in the device due to electrolysis, we incorporated a buffering reservoir physically separated from the sample output reservoir. To reduce dispersion of the ITP-focused zone, we used optimized turn geometries. The chip was fabricated by injection molding PMMA and COC plastics through a commercial microfluidic foundry. The extraction efficiency of nucleic acids from the device was measured using fluorescent quantification, and an average recovery efficiency of 81% was achieved for nucleic acid masses between 250pg and 250ng. The devices were also used to purify DNA from whole blood, and the extracted DNA was amplified using qPCR to show the PCR compatibility of the purified sample.
Collapse
Affiliation(s)
- L A Marshall
- Department of Chemical Engineering, Stanford University, USA
| | - A Rogacs
- Department of Mechanical Engineering, Stanford University, USA
| | - C D Meinhart
- Department of Mechanical Engineering, UC Santa Barbara, USA
| | - J G Santiago
- Department of Mechanical Engineering, Stanford University, USA.
| |
Collapse
|
44
|
Mayur M, Amiroudine S, Lasseux D, Chakraborty S. Effect of interfacial Maxwell stress on time periodic electro-osmotic flow in a thin liquid film with a flat interface. Electrophoresis 2013; 35:670-80. [DOI: 10.1002/elps.201300236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/27/2013] [Accepted: 08/11/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Manik Mayur
- Université Bordeaux 1; Institut de Mécanique et d'Ingénierie - I2M; Pessac France
| | - Sakir Amiroudine
- Université Bordeaux 1; Institut de Mécanique et d'Ingénierie - I2M; Pessac France
| | - Didier Lasseux
- Université Bordeaux 1; Institut de Mécanique et d'Ingénierie - I2M; Pessac France
| | - Suman Chakraborty
- Department of Mechanical Engineering; Indian Institute of Technology; Kharagpur India
| |
Collapse
|
45
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis 2013; 35:69-95. [PMID: 24255019 DOI: 10.1002/elps.201300331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
The review presents a comprehensive survey of recent developments and applications of capillary and microchip electroseparation methods (zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography) for analysis, isolation, purification, and physicochemical and biochemical characterization of peptides. Advances in the investigation of electromigration properties of peptides, in the methodology of their analysis, including sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, as well as in detection of peptides, are presented. New developments in particular CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
46
|
Agostino FJ, Cherney LT, Galievsky V, Krylov SN. Steady-State Continuous-Flow Purification by Electrophoresis. Angew Chem Int Ed Engl 2013; 52:7256-60. [DOI: 10.1002/anie.201300104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/25/2013] [Indexed: 11/07/2022]
|
47
|
Agostino FJ, Cherney LT, Galievsky V, Krylov SN. Steady-State Continuous-Flow Purification by Electrophoresis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Smejkal P, Bottenus D, Breadmore MC, Guijt RM, Ivory CF, Foret F, Macka M. Microfluidic isotachophoresis: A review. Electrophoresis 2013; 34:1493-509. [DOI: 10.1002/elps.201300021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Petr Smejkal
- ACROSS and School of Chemistry; University of Tasmania; Hobart; Australia
| | - Danny Bottenus
- Voiland School of Chemical Engineering and Bioengineering; Washington State University; Pullman; WA; USA
| | | | - Rosanne M. Guijt
- ACROSS and School of Pharmacy; University of Tasmania; Hobart; Australia
| | - Cornelius F. Ivory
- Voiland School of Chemical Engineering and Bioengineering; Washington State University; Pullman; WA; USA
| | - František Foret
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; v.v.i., Brno; Czech Republic
| | - Mirek Macka
- ACROSS and School of Chemistry; University of Tasmania; Hobart; Australia
| |
Collapse
|
49
|
Affiliation(s)
- Anita Rogacs
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United
States
| | - Juan G. Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United
States
| |
Collapse
|
50
|
|