1
|
Wang X, Mafukidze D, Zheng Y. Microalgae aggregation induced by thermoresponsive polymers. BIORESOURCE TECHNOLOGY 2024; 415:131650. [PMID: 39419406 DOI: 10.1016/j.biortech.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Algal biomass harvesting is one of key technical hurdles impeding the commercialization of algae-based biorefinery. The goal of this work is to develop an innovative technology for algae cell harvesting. Thermoresponsive polymers (TRPs) such as poly(N-isopropylacrylamide) (PNIPAM) and its derivatives were studied on their properties and potential applications for microalgae harvesting. Various PNIPAM was synthesized, and the effects of charge, molecular weight (MW), amine content, and polymer concentration on the polymer phase transition temperature, the degree of phase separation, and the harvesting of microalgae (Chlorella vulgaris) were investigated. The lower critical solution temperature (LCST) of PNIPAM decreased with the increase of polymer concentration, while the decline rate reduced under high MW. The amine content didn't significantly affect the LCST of TRPs. Approx. 92 % of algae cells were harvested by PNIPAM-300 kDa. Modified TRPs showed few benefits in enhancing algae harvesting. TRPs are a promising class of polymers for microalgae harvesting.
Collapse
Affiliation(s)
- Xuexue Wang
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Donovan Mafukidze
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Han W, Tian H, Qiang T, Wang H, Wang P. Fluorescence color change of supramolecular polymer networks controlled by crown ether-cation recognition. Chemistry 2024; 30:e202303569. [PMID: 38066712 DOI: 10.1002/chem.202303569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/12/2024]
Abstract
We report a fluorescent supramolecular polymer networks (SPNs) system based on crown ether-cation recognition. The polymer side chains bear ammonium cations, which can be recognized by host molecules with a B15C5 unit and a quinoline group at each end. The quinoline group makes the host molecule exhibit blue fluorescence. After the formation of SPNs, the recognition of the crown ether-cation transforms the blue fluorescence into yellow fluorescence. The accompanying fluorescence color change during the formation of SPNs makes it with potential applications in the fields of display, printing, information storage, and bioimaging.
Collapse
Affiliation(s)
- Weiwei Han
- College of Chemistry and Chemical Engineering, Shaanxi Engineering Research Center of Green Low-carbon Energy Materials and Processes, Xi'an Shiyou University, No.18, East Dianzi 2nd Road, Xi'an, Shaanxi, 710065, China
| | - Hailan Tian
- College of Chemistry and Chemical Engineering, Shaanxi Engineering Research Center of Green Low-carbon Energy Materials and Processes, Xi'an Shiyou University, No.18, East Dianzi 2nd Road, Xi'an, Shaanxi, 710065, China
| | - Taotao Qiang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hu Wang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas, 78712, United States
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| |
Collapse
|
4
|
Zhao Y, Hou X, He M, Wang Y, Yang S, Wang W, Bao M, Yu X. Visible-Light-Driven α-Substituted Amines Enabled by In Situ Formation of Amine Substrate Aggregates. Org Lett 2023; 25:7344-7348. [PMID: 37791683 DOI: 10.1021/acs.orglett.3c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A visible-light-driven, photocatalyst-free, air-promoted, α-substituted reaction of amines with varying nucleophiles is described. The amine substrate aggregates formed in situ through physical π-π stacking by H2O regulation in organic solvent can absorb visible light and then generate iminium ion intermediates, which undergo nucleophilic substitution reactions with varying nucleophiles to afford α-substituted amines. This reaction features catalyst-free, good functional group tolerance, simple operation procedure, and green reaction conditions.
Collapse
Affiliation(s)
- Yuqian Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Xiaoli Hou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Min He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Shilei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Wanhui Wang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
5
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022; 61:e202213429. [DOI: 10.1002/anie.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
6
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Lv X, Li Y, Cui B, Fang Y, Wang L. Electrochemiluminescent sensor based on an aggregation-induced emission probe for bioanalytical detection. Analyst 2022; 147:2338-2354. [PMID: 35510524 DOI: 10.1039/d2an00349j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, with the rapid development of electrochemiluminescence (ECL) sensors, more luminophores have been designed to achieve high-throughput and reliable analysis. Impressively, after the proposed fantastic concept of "aggregation-induced electrochemiluminescence (AIECL)" by Cola, the application of AIECL emitters provides more abundant choices for the further improvement of ECL sensors. In this review, we briefly report the phenomenon, principle and representative applications of aggregation-induced emission (AIE) and AIECL emitters. Moreover, it is noteworthy that the cases of AIECL sensors for bioanalytical detection are summarized in detail, from 2017 to now. Finally, inspired by the applications of AIECL emitters, relevant prospects and challenges for AIECL sensors are proposed, which is of great significance for exploring more advanced bioanalytical detection technology.
Collapse
Affiliation(s)
- Xiaoyi Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yanping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
8
|
Multi-stimuli responsive poly(N-isopropyl-co-tetraphenylethene) acrylamide copolymer mediating AIEgens by controllable tannic acid. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Triphenylethylene benzimidazole derivatives with aggregation-induced emission (AIE) characteristics: An effect of the aryl linker and application in cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ma C, Han T, Niu N, Al-Shok L, Efstathiou S, Lester D, Huband S, Haddleton D. Well-defined polyacrylamides with AIE properties via rapid Cu-mediated living radical polymerization in aqueous solution: thermoresponsive nanoparticles for bioimaging. Polym Chem 2022. [DOI: 10.1039/d1py01432c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a requirement for the development of methods for the preparation of well-controlled polymers with aggregation-induced emission (AIE) properties.
Collapse
Affiliation(s)
- Congkai Ma
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Niu Niu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucas Al-Shok
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick, Coventry, CV4 7AL, UK
| | - Steven Huband
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - David Haddleton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
11
|
He L, Wang RD, Wang S, Zhu RR, Li Z, Wu YY, Ma J, Du L, Zhao QH. An AIE material with time-dependent luminescence conversion obtained by 2D coordination polymer modification via covalent post-synthetic modification. Dalton Trans 2021; 50:16685-16693. [PMID: 34758054 DOI: 10.1039/d1dt03044b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we reported the covalent post-synthetic modification (PSM) of a luminescent complex to achieve aggregation-induced emission (AIE), prepared using the Schiff base reaction of TPE-CHO and HLC-NH2, denoted by HLC-NH2-TPE. HLC-NH2 formed a 2D luminescent complex which was constructed using 4,4'-diamino-[1,1'-biphenyl]-2,2'-dicarboxylic acid and zinc ions via a solvothermal reaction. HLC-NH2-TPE inherited the luminescence properties of HLC-NH2 and exhibited noticeable AIE properties in response to environmental viscosities and temperature changes. Interestingly, HLC-NH2-TPE displayed a time-dependent luminescence conversion phenomenon in a mixed solution of DMF/H2O (v : v/1 : 9).
Collapse
Affiliation(s)
- Liancheng He
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Shuyu Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Rong-Rong Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Zhihao Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yuan-Yuan Wu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Jie Ma
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, People's Republic of China
| | - Lin Du
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China. .,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China. .,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
12
|
Zalmi GA, Bhosale SV. Aggregation induced emission (AIE) molecules for measurement of intracellular temperature, pH, and viscosity sensing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 184:11-60. [PMID: 34749971 DOI: 10.1016/bs.pmbts.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This book chapter presents insightful growth and progress in the field of sensing especially, temperature, pH, and viscosity sensing. We focus more on aggregation-induced emission (AIE)-active materials for measuring intracellular pH, viscosity, and temperature by means of fluorescence and absorption study. A special emphasis is given on AIE active fluorescent molecules, molecular rotors, polymeric nanomaterials which are considered as the important aspects of sense. It also gives the fundamental and brief understanding between these different AIE active material and its application in biological systems.
Collapse
Affiliation(s)
- Geeta A Zalmi
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| | | |
Collapse
|
13
|
Huo Z, Zhuang L, Shi G, He Y, Cui Z, Fu P, Liu M, Qiao X, Pang X. Preparation of highly colloidal stable Yolk-Shell nanocomposite and its multi-stimuli responsive based on surface aggregation-induced emission (S-AIE). J Colloid Interface Sci 2021; 600:421-429. [PMID: 34023703 DOI: 10.1016/j.jcis.2021.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/12/2023]
Abstract
Multi-stimuli responsive fluorescence probe could pave the way for monitoring more complex environmental changes. Here we prepared multifunctional nanoparticle Fe3O4@SiO2@P(DMAEMA-co-TPEE), which displayed yolk-shell morphology with well-defined polymer brush. With superparamagnetic Fe3O4 component and pH/temperature dual sensitive PDMAEMA polymer brush, the as prepared nanoparticles (YS-NPs) exhibited as multi-stimuli responsive fluorescence probe for real-time visual monitoring of environmental changes such as magnetic field, temperature and pH. Such YS-NPs could also be applied as a sensitive detector for CO2 in aqueous solution. Notably, the solution of YS-NPs showed high colloidal stability during the environmental changes, and surface aggregation-induced emission (S-AIE) was proposed for the aggregation of TPE residue on the surface of YS-NPs.
Collapse
Affiliation(s)
- Ziyu Huo
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Luoxin Zhuang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, China.
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Wang M, Wang E, Cao H, Liu S, Wang X, Wang F. Construction of
Self‐Reporting
Biodegradable
CO
2
‐Based
Polycarbonates for the Visualization of Thermoresponsive Behavior with
Aggregation‐Induced
Emission Technology
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Molin Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
15
|
Xu M, Hua L, Gong L, Lu J, Wang J, Zhao C. Lighted up by hydrogen-bonding: luminescence behavior and applications of AIEgen-doped interpenetrating network hydrogel. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1056-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Cham) 2021; 379:9. [PMID: 33544283 DOI: 10.1007/s41061-020-00322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.
Collapse
|
17
|
Han T, Wang X, Wang D, Tang BZ. Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Top Curr Chem (Cham) 2021; 379:7. [PMID: 33428022 PMCID: PMC7797498 DOI: 10.1007/s41061-020-00321-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Functional polymer systems with stimuli responses have attracted great attention over the years due to their diverse range of applications. Such polymers are capable of altering their chemical and/or physical properties, such as chemical structures, chain conformation, solubility, shape, morphologies, and optical properties, in response to single or multiple stimuli. Among various stimuli-responsive polymers, those with aggregation-induced emission (AIE) properties possess the advantages of high sensitivity, fast response, large contrast, excellent photostability, and low background noise. The changes in fluorescence signal can be conveniently detected and monitored using portable instruments. The integration of AIE and stimuli responses into one polymer system provides a feasible and effective strategy for the development of smart polymers with high sensitivity to environmental variations. Here, we review the recent advances in the design, preparation, performance, and applications of functional synthetic polymer systems with AIE and stimuli responses. Various AIE-based polymer systems with responsiveness toward single physical or chemical stimuli as well as multiple stimuli are summarized with specific examples. The current challenges and perspectives on the future development of this research area will also be discussed at the end of this review.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinnan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
18
|
Zuo H, Yang F, Yuan L, Zhang Y, Zhao Y. Thermo-responsive polymers with aggregation induced emission. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1852089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Huazhen Zuo
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Feng Yang
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Ling Yuan
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yong Zhang
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yong Zhao
- Superconductivity and New Energy R&D Center, Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Liu H, Wei S, Qiu H, Zhan B, Liu Q, Lu W, Zhang J, Ngai T, Chen T. Naphthalimide‐Based Aggregation‐Induced Emissive Polymeric Hydrogels for Fluorescent Pattern Switch and Biomimetic Actuators. Macromol Rapid Commun 2020; 41:e2000123. [DOI: 10.1002/marc.202000123] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/26/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Huiyu Qiu
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Beibei Zhan
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Materials Science and TechnologyHunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionHunan University of Science and Technology Xiangtan 411201 China
| | - Qingquan Liu
- School of Materials Science and TechnologyHunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionHunan University of Science and Technology Xiangtan 411201 China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - To Ngai
- Department of ChemistryThe Chinese University of Hong Kong Shatin, N.T. Hong Kong 999077 China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Yuan L, He L, Wang Y, Lang X, Yang F, Zhao Y, Zhao H. Two- and Three-Component Post-Polymerization Modifications Based on Meldrum’s Acid. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ling Yuan
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lirong He
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, Bundesstraße 45, Hamburg 20146, Germany
| | - Yixi Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xianhua Lang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Yang
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Zhao
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Sun X, Tyagi P, Agate S, McCord MG, Lucia LA, Pal L. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Carbohydr Polym 2020; 234:115898. [DOI: 10.1016/j.carbpol.2020.115898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
|
22
|
Zhao L, Zhang Z, Liu Y, Wei J, Liu Q, Ran P, Li X. Fibrous strips decorated with cleavable aggregation-induced emission probes for visual detection of Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121556. [PMID: 31711724 DOI: 10.1016/j.jhazmat.2019.121556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
The widespread contamination and high poisonousness have created significant concerns and thus demands for facile, rapid and selective monitoring of trace Hg2+. Inspired from the unique aggregation-induced emission (AIE) feature, in the current study, novel tetraphenylethylene (TPE) derivatives are prepared containing sulfonic groups for water solubility modulation and carboxyl dithioacetals for Hg2+ sensing. The TPE derivatives are grafted on electrospun fiber as test papers to initiate the AIE activities, while the Hg2+-specific cleavage of dithioacetal groups leads to the release of TPE derivatives and fluorescence turn-off. The decrease in the fluorescence intensities of fibrous mats could be fitted with Hg2+ levels for quantitative analysis, and the fibrous mats turn from green to bluish-green and then to blue in the presence of different Hg2+ levels. The limit of detection (LOD) reaches as low as 20 nM Hg2+, satisfying the threshold detection in drinking water, and the Hg2+ sensing indicates negligible interference from other metal ions and pH variations. The detected Hg2+ levels in lake water are consistent with the added amount with a recovery rate of over 98 %. It demonstrates a feasible strategy to integrate Hg2+-cleavable AIE probes on fibrous strips for real-time, highly specific and naked-eye detection of trace Hg2+.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China; School of Bioscience and Technology, Chengdu Medical College, Chengdu 610031, PR China
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China; School of Bioscience and Technology, Chengdu Medical College, Chengdu 610031, PR China
| | - Qingjie Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
23
|
Gao H, Kam C, Chou TY, Wu MY, Zhao X, Chen S. A simple yet effective AIE-based fluorescent nano-thermometer for temperature mapping in living cells using fluorescence lifetime imaging microscopy. NANOSCALE HORIZONS 2020; 5:488-494. [PMID: 32118250 DOI: 10.1039/c9nh00693a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We designed and synthesized a novel nano-thermometer using aggregation-induced-emission (AIE) dye as the reporter and household butter as the matrix. This temperature nanosensor showed decreased fluorescence intensities (∼2%/°C) and shorter fluorescence lifetimes (∼0.11 ns/°C) upon increasing the environmental temperature in the physiological temperature range. Such fluorescence responses were reversible and independent of the environmental pH and ionic strength. The application of these nano-thermometers in temperature sensing in living cells using fluorescence lifetime imaging microscopy (FLIM) was also demonstrated. To the best of our knowledge, this is the first example of AIE-based nano-thermometer for temperature sensing in living cells. This work also provides us with a simple and low-cost method for rapid fabrication of an effective nanosensor based on AIE mechanism.
Collapse
Affiliation(s)
- Hui Gao
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China. and School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| | - Tsu Yu Chou
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| | - Ming-Yu Wu
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China. and School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| |
Collapse
|
24
|
Zhang Y, Desai MS, Wang T, Lee SW. Elastin-Based Thermoresponsive Shape-Memory Hydrogels. Biomacromolecules 2020; 21:1149-1156. [PMID: 31967464 DOI: 10.1021/acs.biomac.9b01541] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A shape-memory hydrogel is a programmable hydrogel material that can store specific shapes and execute functions in response to stimuli. In this report, we developed shape-memory hydrogels by creating double-network polymeric structures using a physically cross-linking elastin-like polypeptide (ELP) and a chemically cross-linking polyacrylamide (PAM). We synthesized the hydrogel matrix by polymerizing the acrylamide mixed in an ELP solution. We exploited the lower critical solution temperature transition of the ELP to enable the hydrogel to hold a new desired shape at an elevated temperature of 55 °C. The original shape of the hydrogel can then be recovered by lowering the temperature to 20 °C. The shape-memory hydrogels we developed exhibit ultrafast functionality and high repeatability. Taking advantage of the temperature-induced shape-memory capability, we also demonstrate practical functions such as gripping an object and connecting two tubes. Our materials with effective temperature-driven shape-memory functionality will be useful for developing novel materials for biomedical applications in the future.
Collapse
Affiliation(s)
- Yuancheng Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Research Institute of Materials Science, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Malav S Desai
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Tsinghua Berkeley Shenzhen Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Tao Wang
- Research Institute of Materials Science, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Tsinghua Berkeley Shenzhen Institute, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Du J, Deng Y, He Y. A single 9-mesityl-10-methylacridinium ion as a solvatochromic sensor array for multicolor visual discrimination of solvents. Analyst 2019; 144:5420-5424. [PMID: 31380527 DOI: 10.1039/c9an01225g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a single 9-mesityl-10-methylacridinium ion (Acr+-Mes) as a solvatochromic sensor array for multicolor visual discrimination of solvents. The composite fluorescent response of Acr+-Mes to polarity, dispersed state, and lone-pair-π interactions produces different colors when it is dissolved in various solvents. The corresponding RGB values as sensing elements are extracted to create distinct fluorescence response patterns for each solvent. With the help of principal component analysis, common solvents, such as water (H2O), absolute ethanol (EtOH), acetonitrile (MeCN), dimethyl sulfoxide (DMSO), acetone (CO(Me)2), dichloromethane (DCM), trichloromethane (TCM), tetrahydrofuran (THF), toluene (PhMe), and tetrachloromethane (CCl4), are successfully discriminated and identified with an accuracy of 100%. What's more, this sensor array can also discriminate binary solvent mixtures and quantitatively detect DMSO in organic and inorganic solvents.
Collapse
Affiliation(s)
- Jiayan Du
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | | | | |
Collapse
|
26
|
Zhu JC, Han T, Guo Y, Wang P, Xie HL, Meng ZG, Yu ZQ, Tang BZ. Design and Synthesis of Luminescent Liquid Crystalline Polymers with “Jacketing” Effect and Luminescent Patterning Applications. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00221] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ji-Chun Zhu
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Ting Han
- School of Chemistry and Environmental Engineering, College of Materials Science and Engineering, Center for AIE Research, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Guo
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Ping Wang
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - He-Lou Xie
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhen-Gong Meng
- School of Chemistry and Environmental Engineering, College of Materials Science and Engineering, Center for AIE Research, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Qiang Yu
- School of Chemistry and Environmental Engineering, College of Materials Science and Engineering, Center for AIE Research, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2201-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Wu Y, Qu L, Li J, Huang L, Liu Z. A versatile method for preparing well-defined polymers with aggregation-induced emission property. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Ishiwari F, Sakamoto M, Matsumura S, Fukushima T. Topology Effect of AIEgen-Appended Poly(acrylic acid) with Biocompatible Segments on Ca 2+-Sensing and Protein-Adsorption-Resistance Properties. ACS Macro Lett 2018; 7:711-715. [PMID: 35632952 DOI: 10.1021/acsmacrolett.8b00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently reported that tetraphenylethene-appended poly(acrylic acid) derivatives (e.g., PAA-TPE0.02) can serve as fluorescent Ca2+ sensors in the presence of physiological concentrations of biologically relevant ions, amino acids, and sugars. However, in the presence of basic proteins such as albumins, the Ca2+-sensing property of the polymer is significantly impaired due to the nonspecific adsorption of protein molecules, which competes with binding to Ca2+. To solve this problem, we explored new designs by focusing on the polymer-chain topology of PAA-TPE0.02 with biocompatible segments. Here, we report the Ca2+-sensing and protein-adsorption-resistance properties of various types of PAA-TPE0.02 copolymers with a poly(oligoethylene glycol acrylate) (polyOEGA) segment, featuring a random, diblock, triblock, or 4-armed-star-block structure. Through this study, we show an interesting topology effect; i.e., a branch-shaped PAA-TPE0.02-co-polyOEGA with biocompatible segments at every terminal (i.e., 4-armed-star-block copolymer) exhibits both good Ca2+-sensing and protein-adsorption-resistance properties.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Minami Sakamoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Satoko Matsumura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
30
|
Grenier CJ, Timberman A, Yang R, Csoros J, Papantones A, Deravi LF, Seitz WR. Rapid, High Affinity Binding by a Fluorescein Templated Copolymer Combining Covalent, Hydrophobic, and Acid⁻Base Noncovalent Crosslinks. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1330. [PMID: 29693601 PMCID: PMC5982700 DOI: 10.3390/s18051330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/16/2023]
Abstract
A new type of biomimetic templated copolymer has been prepared by reverse addition fragmentation chain transfer polymerization (RAFT) in dioxane. The initial formulation includes the template fluorescein, N-isopropylacrylamide (NIPAM, 84 mol %), methacrylic acid (MAA, 5-mol %), 4-vinylpyridine (4-VP, 9 mmol %), and N,N′-methylenebis(acrylamide) (MBA, 2 mol %). PolyNIPAM is a thermosensitive polymer that comes out of aqueous solution above its lower critical solution temperature forming hydrophobic ‘crosslinks’. MAA and 4-VP interact in dioxane forming acid⁻base crosslinks. The excess 4-VP serves as a recognition monomer organizing around the template fluorescein to form a binding site that is held in place by the noncovalent and covalent crosslinks. The MBA is a covalent crosslinker. The RAFT agent in the resulting copolylmer was reduced to a thiol and attached to gold nanoparticles. The gold nanoparticle bound copolymer binds fluorescein completely in less than two seconds with an affinity constant greater than 10⁸ M−1. A reference copolymer prepared with the same monomers by the same procedure binds fluorescein much more weakly.
Collapse
Affiliation(s)
| | - Anthony Timberman
- Department of Chemistry, University of New Hampshire, Durham NH 03824, USA.
| | - Rongfang Yang
- Department of Chemistry, University of New Hampshire, Durham NH 03824, USA.
| | - John Csoros
- Department of Chemistry, University of New Hampshire, Durham NH 03824, USA.
| | | | - Leila F Deravi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - W Rudolf Seitz
- Department of Chemistry, University of New Hampshire, Durham NH 03824, USA.
| |
Collapse
|
31
|
Li Q, Yuan Y, He L, Liu S, Zhang H. Preparation and characterization of a multistimuli-responsive photoluminescent monomer and its corresponding polymer. Polym Chem 2018. [DOI: 10.1039/c8py01372a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel multistimuli-responsive photo-luminescent monomer and its corresponding polymer were prepared.
Collapse
Affiliation(s)
- Qiangjun Li
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Lifang He
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Shenglan Liu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province
- Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
32
|
Ju L, Qin T, Zhang T, Wang P, Sheng L, Xiao-An Zhang S. Water-soluble and adjustable fluorescence copolymers containing a hydrochromic dye: synthesis, characterization and properties. RSC Adv 2018; 8:13664-13670. [PMID: 35539349 PMCID: PMC9079821 DOI: 10.1039/c8ra01306c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 02/01/2023] Open
Abstract
Water solubility and adjustable fluorescence properties have been successfully implemented in the hydrochromic amino rhodamine via copolymerization. Four copolymers have been synthesized and clearly characterized by UV-Vis spectroscopy, proving greater detail than the commonly used NMR and IR technologies. The four copolymers have good solubility in pure water and in many common organic solvents, while preserving the hydrochromism of the dye monomer. Based on aggregation and dispersion of the copolymers as adjusted by solvent media and temperature, reversible fluorescence properties were successfully realized. Furthermore, their luminescence in solid state was observed. These studies are of great significance for expanding the application of hydrochromic dyes in biological fields and promoting green industrialization. Water solubility and adjustable fluorescence adjustable properties have been successfully endowed to established in a hydrochromic dye via copolymerization.![]()
Collapse
Affiliation(s)
- Le Ju
- College of Chemistry
- Jilin University
- Changchun
- China
- Department of Chemistry and Pharmacy
| | - Tianyou Qin
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Ting Zhang
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Peng Wang
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Lan Sheng
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Sean Xiao-An Zhang
- Department of Chemistry and Pharmacy
- Zhuhai College of Jilin University
- Zhuhai
- China
- State Key Lab of Supramolecular Structure and Materials
| |
Collapse
|
33
|
Chiang CH, Huang SH, Nien PC, Chiang YW, Tsai JC. Tacticity effects in side-chain photoluminescent polymers. Chem Commun (Camb) 2018; 54:13706-13709. [DOI: 10.1039/c8cc06772d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A significant red shift (or blue shift) can be observed by increasing the degree of isotacticity (or syndiotacticity).
Collapse
Affiliation(s)
- Cheng-Hung Chiang
- Department of Chemical Engineering
- National Chung Cheng University
- Chiayi 62102
- Taiwan
| | - Shih-Hung Huang
- Department of Materials and Optoelectronic Science
- National Sun Yat-Sen University
- Kaohsiung 80424
- Taiwan
| | - Po-Chun Nien
- Department of Materials and Optoelectronic Science
- National Sun Yat-Sen University
- Kaohsiung 80424
- Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science
- National Sun Yat-Sen University
- Kaohsiung 80424
- Taiwan
| | - Jing-Cherng Tsai
- Department of Chemical Engineering
- National Chung Cheng University
- Chiayi 62102
- Taiwan
| |
Collapse
|
34
|
Li Q, Li X, Wu Z, Sun Y, Fang J, Chen D. Highly efficient luminescent side-chain polymers with short-spacer attached tetraphenylethylene AIEgens via RAFT polymerization capable of naked eye explosive detection. Polym Chem 2018. [DOI: 10.1039/c8py00710a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fluorescence quantum yield of side-chain AIE polymers was remarkably promoted just by shortening the linking spacer.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Xiao Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Zhongying Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Yuhao Sun
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jianglin Fang
- Center for Materials Analysis
- Nanjing University
- Nanjing 210093
- China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
35
|
Kurzhals S, Gal N, Zirbs R, Reimhult E. Aggregation of thermoresponsive core-shell nanoparticles: Influence of particle concentration, dispersant molecular weight and grafting. J Colloid Interface Sci 2017; 500:321-332. [DOI: 10.1016/j.jcis.2017.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
|
36
|
Morishima K, Ishiwari F, Matsumura S, Fukushima T, Shibayama M. Mesoscopic Structural Aspects of Ca2+-Triggered Polymer Chain Folding of a Tetraphenylethene-Appended Poly(acrylic acid) in Relation to Its Aggregation-Induced Emission Behavior. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00883] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ken Morishima
- Institute
for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha,
Kashiwa, Chiba 277-8581, Japan
| | - Fumitaka Ishiwari
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Satoko Matsumura
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Mitsuhiro Shibayama
- Institute
for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha,
Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
37
|
Wang Z, Heng L, Jiang L. Wettability with Aggregation-Induced Emission Luminogens. Macromol Rapid Commun 2017; 38. [PMID: 28306167 DOI: 10.1002/marc.201700041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/12/2017] [Indexed: 12/11/2022]
Abstract
Aggregation-induced emission luminogens (AIEgens) have become an emerging field since the concept of AIE was proposed in 2001. Recently, AIEgens have attracted considerable attention due to their abnormal non-emissive fluorescent behavior in solution but strongly emissive behavior in the aggregate state. By utilizing the inherent hydrophobicity, AIEgens can be used to monitor the crystal formation and dewetting behavior in the self-assembly process. More importantly, some stimuli-responsive AIE-active surfaces have been successfully fabricated. In this perspective review, we outline the advances of surface wettability of AIEgens and its applications.
Collapse
Affiliation(s)
- Zubin Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing, 100191, China
| | - Liping Heng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing, 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing, 100191, China
| |
Collapse
|
38
|
Liow SS, Zhou H, Sugiarto S, Guo S, Chalasani MLS, Verma NK, Xu J, Loh XJ. Highly Efficient Supramolecular Aggregation-Induced Emission-Active Pseudorotaxane Luminogen for Functional Bioimaging. Biomacromolecules 2017; 18:886-897. [DOI: 10.1021/acs.biomac.6b01777] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sing Shy Liow
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Hui Zhou
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Sigit Sugiarto
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Shifeng Guo
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Madhavi Latha S. Chalasani
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Experimental
Medicine Building, Singapore 636921, Singapore
| | - Navin Kumar Verma
- Lee
Kong Chian School of Medicine, Nanyang Technological University, Experimental
Medicine Building, Singapore 636921, Singapore
- Singapore Eye
Research Institute, 11 Third Hospital
Avenue, The Academia, 20 College Road, Singapore 168751, Singapore
| | - Jianwei Xu
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials
Research and Engineering (IMRE), 2
Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Singapore Eye
Research Institute, 11 Third Hospital
Avenue, The Academia, 20 College Road, Singapore 168751, Singapore
- Department
of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
39
|
Jung Y, Jang WD. Recent approaches for clickable poly(2-oxazoline)-based functional stimuli-responsive polymers and related applications. Supramol Chem 2017. [DOI: 10.1080/10610278.2016.1269905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yongseok Jung
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Sasaki S, Konishi GI. Thermo-responsive fluorescence of AIE-active poly(N-isopropylacrylamides) labeled with highly twisted bis(N,N-dialkylamino)arenes. RSC Adv 2017. [DOI: 10.1039/c7ra01212h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A thermo-responsive fluorescent polymer materials were synthesized fromN-isopropylacrylamides with AIE-active 9,10-bis(N,N-dialkylamino)arene monomers.
Collapse
Affiliation(s)
- Shunsuke Sasaki
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo
- Japan
| | - Gen-ichi Konishi
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Tokyo
- Japan
| |
Collapse
|
41
|
Hua QX, Xin B, Liu JX, Zhao LX, Xiong ZJ, Chen T, Chen ZQ, Li C, Gong WL, Huang ZL, Zhu MQ. Bulky 4,6-disubstituted tetraphenylethene–naphthalimide dyad: synthesis, copolymerization, stimuli-responsive fluorescence and cellular imaging. Faraday Discuss 2017; 196:439-454. [DOI: 10.1039/c6fd00160b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the design and synthesis of a tetraphenylethene substituted with naphthalimide at the 4, 6 positions, named NI-2TPE. NI-2TPE exhibits strong solvent-dependent emission properties with combined ICT and AIE characteristics in THF–H2O systems. This probe was used directly on test papers to distinguish normal organic solvents using their emission colours under UV light based on its AIE and ICT nature. Thanks to the vinyl group in NI-2TPE, we synthesized a copolymer of NIPAM and NI-2TPE, termed P(NIPAM-co-NI-2TPE). The resulting polymer is highly soluble and fluorescent in water (ΦF = 15.4%). Due to the well-known thermo-responsive character of NIPAM, P(NIPAM-co-NI-2TPE) exhibits an interesting fluorescence change in response to various temperatures. Due to the thermo-induced shrinking of the PNIPAM chain, the fluorescence intensity gradually increased from 20 to 34 °C. As the temperature further increased from 34 to 90 °C, the fluorescence intensity decreased sharply, which was caused by the well-known thermal effects. Furthermore, we synthesized a P(HEA-co-NI-2TPE–TPP acrylate) copolymer, in which HEA is a hydrophilic unit, TPP is a mitochondria label and NI-2TPE a fluorescent probe. The corresponding polymer probe is highly soluble in water with FLQY = 7% and we have further applied this probe as a mitochondria targeted imaging tracker in HeLa cells successfully.
Collapse
|
42
|
Dasgupta S, Mukherjee PS. Carboxylatopillar[n]arenes: a versatile class of water soluble synthetic receptors. Org Biomol Chem 2017; 15:762-772. [DOI: 10.1039/c6ob02214f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Carboxylatopillar[n]arenes (CP[n]As, n = 5, 6, 7, 9, 10) constitute a family of water soluble synthetic receptors. These receptors are excellent hosts for a wide range of cationic organic molecules and have shown promising application in the fields of stimuli-responsive supramolecular assemblies, targeted drug delivery vehicles and sensors. Analogous metal-coordinated prismatic structures have shown excellent affinities for analytes.
Collapse
Affiliation(s)
- Suvankar Dasgupta
- Department of Chemistry
- National Institute of Technology Patna
- Patna-800005
- India
| | | |
Collapse
|
43
|
Qiao J, Mu X, Qi L. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review. Biosens Bioelectron 2016; 85:403-413. [DOI: 10.1016/j.bios.2016.04.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
|
44
|
Vancoillie G, Hoogenboom R. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery. SENSORS 2016; 16:s16101736. [PMID: 27775572 PMCID: PMC5087521 DOI: 10.3390/s16101736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023]
Abstract
Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| |
Collapse
|
45
|
Liang G, Wu J, Gao H, Wu Q, Lu J, Zhu F, Tang BZ. General Platform for Remarkably Thermoresponsive Fluorescent Polymers with Memory Function. ACS Macro Lett 2016; 5:909-914. [PMID: 35607203 DOI: 10.1021/acsmacrolett.6b00453] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Memory polymers capable of remembering their shape or thermal history have attracted increasing interest due to their potential applications in smart and medical devices. Memory polymers established are mechanically based, which suffer from some inherent limitations such as low sensitivity and bulky size. Here, we develop a general platform for sensitive memory polymers. Incorporating crystallizable polymers with solid-state fluorescent dyes results in crystallizable fluorescent polymers. Such polymers show remarkably temperature-dependent fluorescence emission. Interestingly, fluorescence of the polymers shows a hysteresis between heating and subsequent cooling scans, which offers them a valuable thermally stimulated recording function. Both off-on and on-off recording functions can be achieved. Characters recorded on the polymer films can be erased and rewritten. Moreover, thermal history subjected to the polymers can be memorized and retrieved by measuring fluorescence intensity. With the merit of easy synthesis, recording function, remarkably thermoresponsive fluorescence with memory function, superior flexibility, and biocompatibility inherited from polymers, crystallizable fluorescent polymers offer a general platform for memory fluorescent polymers that are potentially useful for biosensing, recording materials, and smart devices.
Collapse
Affiliation(s)
- Guodong Liang
- DSAP,
PCFM and GDHPPC Lab, School of Materials Science and Engineering,
School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jialong Wu
- DSAP,
PCFM and GDHPPC Lab, School of Materials Science and Engineering,
School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- DSAP,
PCFM and GDHPPC Lab, School of Materials Science and Engineering,
School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing Wu
- DSAP,
PCFM and GDHPPC Lab, School of Materials Science and Engineering,
School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiang Lu
- DSAP,
PCFM and GDHPPC Lab, School of Materials Science and Engineering,
School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangming Zhu
- DSAP,
PCFM and GDHPPC Lab, School of Materials Science and Engineering,
School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ben Zhong Tang
- Department
of Chemistry, Institute for Advanced Study, Division of Biomedical
Engineering, State Key Laboratory of Molecular, Neuroscience and Institute
of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
46
|
Tian S, Liu G, Wang X, Wu T, Yang J, Ye X, Zhang G, Hu J, Liu S. pH-Regulated Reversible Transition Between Polyion Complexes (PIC) and Hydrogen-Bonding Complexes (HBC) with Tunable Aggregation-Induced Emission. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3693-3702. [PMID: 26584477 DOI: 10.1021/acsami.5b08970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The mimicking of biological supramolecular interactions and their mutual transitions to fabricate intelligent artificial systems has been of increasing interest. Herein, we report the fabrication of supramolecular micellar nanoparticles consisting of quaternized poly(ethylene oxide)-b-poly(2-dimethylaminoethyl methacrylate) (PEO-b-PQDMA) and tetrakis(4-carboxylmethoxyphenyl)ethene (TPE-4COOH), which was capable of reversible transition between polyion complexes (PIC) and hydrogen bonding complexes (HBC) with tunable aggregation-induced emission (AIE) mediated by solution pH. At pH 8, TPE-4COOH chromophores can be directly dissolved in aqueous milieu without evident fluorescence emission. However, upon mixing with PEO-b-PQDMA, polyion complexes were formed by taking advantage of electrostatic interaction between carboxylate anions and quaternary ammonium cations and the most compact PIC micelles were achieved at the isoelectric point (i.e., [QDMA(+)]/[COO(-)] = 1), as confirmed by dynamic light scattering (DLS) measurement. Simultaneously, fluorescence spectroscopy revealed an evident emission turn-on and the maximum fluorescence intensity was observed near the isoelectric point due to the restriction of intramolecular rotation of TPE moieties within the PIC cores. The kinetic study supported a micelle fusion/fission mechanism on the formation of PIC micelles at varying charge ratios, exhibiting a quick time constant (τ1) relating to the formation of quasi-equilibrium micelles and a slow time constant (τ2) corresponding to the formation of final equilibrium micelles. Upon deceasing the pH of PIC micelles from 8 to 2 at the [QDMA(+)]/[COO(-)] molar ratio of 1, TPE-4COOH chromophores became gradually protonated and hydrophobic. The size of micellar nanoparticles underwent a remarkable decrease, whereas the fluorescence intensity exhibited a further increase by approximately 7.35-fold, presumably because of the formation of HBC micelles comprising cationic PQDMA coronas and PEO/TPE-4COOH hydrogen-bonded cores, an inverted micellar structures compared to initial PIC micelles. Moreover, the pH-mediated schizophrenic micellar transition from PIC to HBC with tunable AIE characteristic was reversible.
Collapse
Affiliation(s)
- Sidan Tian
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiaorui Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Tao Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jinxian Yang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiaodong Ye
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
47
|
Li M, Song X, Zhang T, Zeng L, Xing J. Aggregation induced emission controlled by a temperature-sensitive organic–inorganic hybrid polymer with a particular LCST. RSC Adv 2016. [DOI: 10.1039/c6ra16244d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fluorescence intensity change of TPE encapsulated in POSS–PNIPAM with a particular LCST (37.5 °C) with the temperature change.
Collapse
Affiliation(s)
- Mengmeng Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Xiaoyan Song
- College of Material Science and Engineering
- Tianjin Polytechnic University
- Tianjin
- China
| | - Tingbin Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Lintao Zeng
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| |
Collapse
|
48
|
Qi Y, Xu C, Nizam MN, Li Y, Yu B, Xu FJ. Functionalized PGMA nanoparticles with aggregation-induced emission characteristics for gene delivery systems. Polym Chem 2016. [DOI: 10.1039/c6py00998k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIE fluorogen conjugated cationic nanoparticles with excellent bioimaging abilities and stable morphologies were designed for multifunctional gene delivery systems.
Collapse
Affiliation(s)
- Yu Qi
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Muhammad Naeem Nizam
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| |
Collapse
|
49
|
Liang G, Ren F, Gao H, Wu Q, Zhu F, Tang BZ. Continuously-tunable fluorescent polypeptides through a polymer-assisted assembly strategy. Polym Chem 2016. [DOI: 10.1039/c6py01218c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a versatile method to continuously tune the packing and fluorescence of organic chromophores through a polymer-assisted assembly (PAA) strategy, affording a catalog of fluorescent polymers with continuously-tunable fluorescence emission.
Collapse
Affiliation(s)
- Guodong Liang
- PCFM and GDHPPC Labs
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
| | - Feng Ren
- PCFM and GDHPPC Labs
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
| | - Haiyang Gao
- PCFM and GDHPPC Labs
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
| | - Qing Wu
- PCFM and GDHPPC Labs
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
| | - Fangming Zhu
- PCFM and GDHPPC Labs
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
| | - Ben Zhong Tang
- Department of Chemistry
- Institute for Advanced Study
- Division of Biomedical Engineering and Institute of Molecular Functional Materials
- The Hong Kong University of Science and Technology
- Clear Water Bay
| |
Collapse
|
50
|
Li C, Liu X, He S, Huang Y, Cui D. Synthesis and AIE properties of PEG–PLA–PMPC based triblock amphiphilic biodegradable polymers. Polym Chem 2016. [DOI: 10.1039/c5py01849h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis of a novel AIE-active micelle based on living immortal polymerization of cyclic esters and a “click” reaction of azide functionalized TPE is described.
Collapse
Affiliation(s)
- Chuanyang Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Xinli Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Shasha He
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|