1
|
Xiao Y, Xia Z, Hu W, Liu B, Lü C. Phenanthroline Derived N-Doped Carbon Dots as Robust Metal-Free Photocatalysts for PET-RAFT Polymerization and Polymerization-Induced Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309893. [PMID: 38516960 DOI: 10.1002/smll.202309893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Metal-free organic photocatalysts for photo-mediated reversible deactivation radical polymerization (photo-RDRP) are witnessed to make increasing advancement in the precise synthesis of polymers. However, challenges still exist in the development of high-efficiency and environmentally sustainable carbon dots (CDs)-based organocatalysts. Herein, N-doped CDs derived from phenanthroline derivative (Aphen) are prepared as metal-free photocatalysts for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The introduction of phenanthroline structure enhances the excited state lifetime of CDs and expands the conjugated length of their internal structure to enable the light-absorption to reach green light region, thereby enhancing photocatalytic activity. The as-designed CDs exhibit unprecedented photocatalytic capacity in photopolymerization even in large-volume reaction (100 mL) with high monomer conversion and narrow polymer dispersity (Mw/Mn < 1.20) under green light. The photocatalytic system is compatible with PET-RAFT polymerization of numerous monomers and the production of high molecular weight polyacrylate (Mn >250 000) with exquisite spatiotemporal control. Above results confirm the potential of CDs as photocatalyst, which has not been achieved with other CDs catalysts used in photo-RDRP. In addition, the construction of fluorescent polymer nanoparticles using CDs as both photocatalyst and phosphor through photoinitiated polymerization-induced self-assembly (Photo-PISA) technology is successfully demonstrated for the first time.
Collapse
Affiliation(s)
- Yang Xiao
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zhinan Xia
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wanchao Hu
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Bei Liu
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
2
|
Goti G, Manal K, Sivaguru J, Dell'Amico L. The impact of UV light on synthetic photochemistry and photocatalysis. Nat Chem 2024; 16:684-692. [PMID: 38429343 DOI: 10.1038/s41557-024-01472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
During the past 15 years, an increasing number of research groups have embraced visible-light-mediated synthetic transformations as a powerful strategy for the construction and functionalization of organic molecules. This trend has followed the advent and development of photocatalysis, which often operates under mild visible-light irradiation. Nowadays, the general perception of UV-light photochemistry is often as an out-of-fashion approach that is difficult to perform and leads to unselective reaction pathways. Here we wish to propose an alternative and more realistic point of view to the scientific community. First, we will provide an overview of the use of UV light in modern photochemistry, highlighting the pivotal role it still plays in the development of new, efficient synthetic methods. We will then show how the high levels of mechanistic understanding reached for UV-light-driven processes have been key in the implementation of the related visible-light-driven transformations.
Collapse
Affiliation(s)
- Giulio Goti
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Kavyasree Manal
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Jayaraman Sivaguru
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA.
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
3
|
Iqbal S, Farhanaz, Roohi, Zaheer MR, Shankar K, Hussain MK, Zia Q, Rehman MT, AlAjmi MF, Gupta A. Visible-light promoted catalyst-free (VLCF) multi-component synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids: evaluation of in vitro anticancer activity, molecular docking, MD simulation and DFT studies. J Biomol Struct Dyn 2024; 42:3145-3165. [PMID: 37227775 DOI: 10.1080/07391102.2023.2214229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
A new and highly efficient visible-light-promoted catalyst free (VLCF) strategy for neat and clean synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids (6a-d) has been introduced. We have performed visible-light triggered 1,3-Dipolar cycloaddition reaction of maleimide (5a-d) with azomethine ylide generated in situ derived from tryptanthrin (3) and L-proline (4) to obtain desired products (6a-d) in good to excellent yield. Authentication and characterization of product was done using various spectroscopic techniques such as IR, 1H NMR, 13C NMR, Mass spectrometry and single crystal XRD analysis. To explain the reaction spontaneity, product stability, reactivity as well as possible mode of the interaction a quantum chemical investigation was performed and depicted through DFT studies. The synthesized compound 6a was also evaluated for anti-proliferative activity against a panel of five cancer cell lines (MCF-7, MDA-MB-231, HeLa, PC-3 and Ishikawa) and normal human embryonic kidney (HEK-293) cell line by using MTT assay. Compound 6a showed very good in vitro anti-proliferative activity (IC50 = 6.58-17.98 μM) against four cancer cell lines and no cytotoxicity against normal HEK-293. In order to evaluate the anticancer potential of compounds 6a-d, molecular docking was performed against wild type and mutant EGFR. The results suggest that all the compounds occupied the active site of both enzymes, with a strong binding energy (-10.2 to -11.5 kcal/mol). These results have been confirmed by molecular dynamics simulation by evaluating root mean square deviation (RMSD) and root mean square fluctuation (RMSF), along with principal component analysis (PCA).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Farhanaz
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Roohi
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Rehan Zaheer
- Department of Chemistry, R.M.P.S.P. Girls Post Graduate College, Basti, India
| | - Krapa Shankar
- Sun Pharmaceutical industries Ltd, Sarhaul, Sector 18, Gurgaon, India
| | | | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Md Tabish Rehman
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anamika Gupta
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Dinodia M. A Recent Update on the Visible Light-promoted Organic Transformations - A Mini-review. Curr Org Synth 2024; 21:965-975. [PMID: 37641990 DOI: 10.2174/1570179421666230828103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Visible light-induced reactions are a rapidly developing and powerful technique to promote organic transformations. They provide green and sustainable chemistry and have recently received increasing attention from chemists due to their wide application in organic synthesis. Light energy is eco-friendly, cheap, green, and inexhaustible with potential industrial and pharmaceutical applications. In this review, the most recent advances in visible light-induced reactions (2021-till date) have been highlighted.
Collapse
Affiliation(s)
- Monica Dinodia
- Department of Chemistry, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
5
|
Alharthi AI, Alotaibi MA, Alansi AM, Qahtan TF, Ali I, Al-Shalwi MN, Bakht MA. Solar-Driven Thermocatalytic Synthesis of Octahydroquinazolinone Using Novel Polyvinylchloride (PVC)-Supported Aluminum Oxide (Al 2O 3) Catalysts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2835. [PMID: 37049129 PMCID: PMC10096424 DOI: 10.3390/ma16072835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The chemical industry is one of the main fossil fuel consumers, so its reliance on sustainable and renewable resources such as wind and solar energy should be increased to protect the environment. Accordingly, solar-driven thermocatalytic synthesis of octahydroquinazolinone using polyvinylchloride (PVC)-supported aluminum oxide (Al2O3) as a catalyst under natural sunlight is proposed in this work. The Al2O3/PVC catalysts were characterized by FT-IR, SEM, BET, XRD, and XPS techniques. The obtained results indicate that the yield and reaction time can be modified by adjusting the molar ratio of the catalyst. To investigate the stability of the catalyst, the spent catalyst was reused in several reactions. The results indicated that, when a 50% Al2O3 catalyst is employed in an absolute solar heat, it performs exceptionally well in terms of yield (98%) and reaction time (35 min). Furthermore, the reaction times and yield of octahydroquinazolinone derivatives with an aryl moiety were superior to those of heteroaryl. All the synthesized compounds were well characterized by FT-IR, 1H-NMR, and 13C-NMR. The current work introduces a new strategy to use solar heat for energy-efficient chemical reactions using a cost-effective, recyclable environmentally friendly PVC/Al2O3 catalyst that produces a high yield.
Collapse
Affiliation(s)
- Abdulrahman I. Alharthi
- Chemistry Department, College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Mshari A. Alotaibi
- Chemistry Department, College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Amani M. Alansi
- Chemistry Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Talal F. Qahtan
- Physics Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Imtiaz Ali
- Preparatory College, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Matar N. Al-Shalwi
- Electrochemical Sciences Research Chair (ESRC), Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Md. Afroz Bakht
- Chemistry Department, College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
6
|
Rouzifar M, Sobhani S, Farrokhi A, Sansano JM. Cobalt isatin-Schiff-base derivative of MOF as a heterogeneous multifunctional bio-photocatalyst for sunlight-induced tandem air oxidation condensation process. Sci Rep 2023; 13:5115. [PMID: 36991101 DOI: 10.1038/s41598-023-32241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
A sunlight-induced tandem air oxidation-condensation of alcohols with ortho-substituted anilines or malononitrile for the efficient synthesis of benz-imidazoles/-oxazoles/-thiazoles, or benzylidene malononitrile catalyzed by Co-isatin-Schiff-base-MIL-101(Fe) as a heterogeneous multifunctional bio-photocatalyst is reported. In these reactions, Co-isatin-Schiff-base-MIL-101(Fe) acts both as a photocatalyst, and a Lewis acid to catalyze the reaction of the in-situ formed aldehydes with o-substituted anilines or malononitrile. A significant decrease in the band gap energy and an increase in the characteristic emission of MIL-101(Fe) after functionalization with cobalt Schiff-base according to the DRS analysis and fluorescence spectrophotometry, respectively, indicate that the photocatalytic effectiveness of the catalyst is associated primarily to the synergetic influence of Fe-O cluster and Co-Schiff-base. EPR results obviously pointed out that Co-isatin-Schiff-base-MIL-101(Fe) is capable of creating 1O2 and O2⋅- as active oxygen species under visible light irradiation. Using an inexpensive catalyst, sunlight irradiation, air as a cost-effective and abundant oxidant, and a low amount of the catalyst with recoverability and durability in ethanol as a green solvent, make this methodology as an environmentally friendly process with energy-saving organic synthetic strategies. Furthermore, Co-isatin-Schiff-base-MIL-101(Fe) displays excellent photocatalytic antibacterial activity under sunlight irradiation against E. coli, S. aureus and S. pyogenes. Based on our knowledge, this is the first report of using a bio-photocatalyst for the synthesis of the target molecules.
Collapse
Affiliation(s)
- Majid Rouzifar
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran.
| | - Alireza Farrokhi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| |
Collapse
|
7
|
Dey S, Das A, Yadav RN, Boruah PJ, Bakli P, Baishya T, Sarkar K, Barman A, Sahu R, Maji B, Paul AK, Hossain MF. Visiblelight-induced ternary electron donor-acceptor complex enabled synthesis of 2-(2-hydrazinyl) thiazole derivatives and the assessment of their antioxidant and antidiabetic therapeutic potential. Org Biomol Chem 2023; 21:1771-1779. [PMID: 36727530 DOI: 10.1039/d2ob02308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A mild and eco-friendly visible-light-induced synthesis of 2-(2-hydrazinyl) thiazole from readily accessible thiosemicarbazide, carbonyl, and phenacyl bromide in the absence of a metal catalyst and/or any extrinsic photosensitizer is reported. This approach only requires a source of visible light and a green solvent at room temperature to produce the medicinally privileged scaffolds of hydrazinyl-thiazole derivatives in good to outstanding yields. Experimental studies support the in situ formation of a visible-light-absorbing, photosensitized colored ternary EDA complex. The next step is to prepare a pair of radicals in an excited state, which makes it easier to prepare thiazole derivatives through a SET and PCET process. DFT calculations additionally supported the mechanistic analysis of the course of the reaction. The antioxidant and antidiabetic properties of some of the compounds in the synthesized library were tested in vitro. All the investigated compounds demonstrated appreciable antioxidant activity, as evidenced by the reducing power experiment and the IC50 values of the DPPH radical scavenging experiment. Furthermore, the IC50 values for 4c, 4d, and 4g also demonstrated a strong α-amylase inhibitory effect.
Collapse
Affiliation(s)
- Sovan Dey
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Arindam Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222003, U.P, India
| | | | - Prerana Bakli
- Department of Chemistry, NIT, Meghalaya, Shillong-793003, India
| | - Tania Baishya
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India
| | - Koushik Sarkar
- Department of Chemical Sciences, IISER Kolkata, Mohanpur-741246, Nadia, WB, India
| | - Anup Barman
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India
| | - Biplab Maji
- Department of Chemical Sciences, IISER Kolkata, Mohanpur-741246, Nadia, WB, India
| | - Amit Kumar Paul
- Department of Chemistry, NIT, Meghalaya, Shillong-793003, India
| | - Md Firoj Hossain
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| |
Collapse
|
8
|
Chinchole A, Henriquez MA, Cortes-Arriagada D, Cabrera AR, Reiser O. Iron(III)-Light-Induced Homolysis: A Dual Photocatalytic Approach for the Hydroacylation of Alkenes Using Acyl Radicals via Direct HAT from Aldehydes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anurag Chinchole
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Bavaria 93053, Germany
| | - Marco A. Henriquez
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Bavaria 93053, Germany
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile
| | - Diego Cortes-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577 , Chile
| | - Alan R. Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Bavaria 93053, Germany
| |
Collapse
|
9
|
Kar B, Paira P. One pot three component synthesis of DNA targeting phototoxic Ru(II)- p-cymene dipyrido[3,2- a:2',3'- c]phenazine analogues. Dalton Trans 2022; 51:15686-15695. [PMID: 36173180 DOI: 10.1039/d2dt01659a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a one pot three component synthetic protocol for half-sandwich Ru(II)-p-cymene dipyrido[3,2-a:2',3'-c]phenazine analogues for selective cancer therapy under light irradiation. On average, the cytotoxicity of all the complexes is indeed doubled upon light irradiation and also exhibited significant photo and dark selectivity against cancer cells with respect to normal cells. Out of five Ru(II) complexes (RuL1-RuL5), [(η6-p-cymene)RuIICl(K2-N,N-11-nitrodipyrido[3,2-a:2',3'-c]phenazine]PF6 (RuL4) exhibited the best phototoxicity (lowest IC50 under light irradiation). Intracellular ROS generation was studied by the 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. Moreover, these complexes exhibited a strong serum albumin and DNA binding capacity. These complexes also exhibited good stability in 10% DMSO-buffer and under 1 mM GSH conditions. Overall, the remarkable photocytotoxic efficacy of new Ru(II)-p-cymene dipyrido[3,2-a:2',3'-c]phenazine analogues (RuL1-RuL5) makes them potential photochemotherapeutics as an alternative of current PDT agents.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
10
|
Liu J, Hao T, Qian L, Shi M, Wei Y. Construction of Benzocyclobutenes Enabled by Visible‐Light‐Induced Triplet Biradical Atom Transfer of Olefins. Angew Chem Int Ed Engl 2022; 61:e202204515. [DOI: 10.1002/anie.202204515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tonggang Hao
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ling Qian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
11
|
Peng S, Liu J, Yang LH, Xie LY. Sunlight Induced and Recyclable g-C 3N 4 Catalyzed C-H Sulfenylation of Quinoxalin-2(1 H)-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155044. [PMID: 35956990 PMCID: PMC9370749 DOI: 10.3390/molecules27155044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
A sunlight-promoted sulfenylation of quinoxalin-2(1H)-ones using recyclable graphitic carbon nitride (g-C3N4) as a heterogeneous photocatalyst was developed. Using the method, various 3-sulfenylated quinoxalin-2(1H)-ones were obtained in good to excellent yields under an ambient air atmosphere. Moreover, the heterogeneous catalyst can be recycled at least six times without significant loss of activity.
Collapse
|
12
|
Liu J, Hao T, Qian L, Shi M, Wei Y. Construction of Benzocyclobutenes Enabled by Visible‐Light‐Induced Triplet Biradical Atom Transfer of Olefins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiaxin Liu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Tonggang Hao
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Ling Qian
- East China University of Science and Technology School of Chemistry & Molecular Engineering Shanghai CHINA
| | - Min Shi
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Yin Wei
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences State Key Laboratory of Organometallic Chemistry 345 Lingling Road 200032 Shanghai CHINA
| |
Collapse
|
13
|
Jasim SA, Riadi Y, Majdi HS, Altimari US. Nanomagnetic macrocyclic Schiff-base-Mn(ii) complex: an efficient heterogeneous catalyst for click approach synthesis of novel β-substitued-1,2,3-triazoles. RSC Adv 2022; 12:17905-17918. [PMID: 35765316 PMCID: PMC9202600 DOI: 10.1039/d2ra02587f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/03/2022] [Indexed: 12/25/2022] Open
Abstract
In the present work, a novel symmetrical 15-membered macrocyclic Schiff base complex of manganese was prepared using the reaction of the synthetic 2,6-diacetylpyridine functionalized Fe3O4 MNPs with 2,2-(piperazine-1,4-diyl)dianiline and Mn(ii) bromide salt via a template approach. The resulting [Fe3O4@PAM-Schiff-base-Mn][ClO4] heterogenized complex was characterized using FT-IR, XRD, BET, TGA, EDX, Xray-mapping, SEM, TEM and VSM analysis. To demonstrate proof of concept, Huisgen 1,3-dipolar cycloaddition synthesis of 1,2,3-triazoles was selected to evaluate the activity and reusability of the catalyst. The ethanol as a green solvent proved to be an excellent reaction medium for this synthesis. Yields of up to 100% were obtained in some cases. Significantly, as demonstrated, [Fe3O4@PAM-Schiff-base-Mn][ClO4] catalyst was recycled for 8 cycles without losing catalytic activity under the optimized reaction conditions. The hot filtration and ICP-OES tests ratified that there was no leaching of metal during the catalytic reaction, indicating the heterogeneous manner of the catalyst.
Collapse
Affiliation(s)
| | - Yassine Riadi
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Hasan Sh Majdi
- Department Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College 51001 Iraq
| | - Usama S Altimari
- Department of Pharmaceutics, Al-Nisour University College Baghdad Iraq
| |
Collapse
|
14
|
Riente P, Fianchini M, Pericàs MA, Noel T. Accelerating the Photocatalytic Atom Transfer Radical Addition Reaction Induced by Bi2O3 with Amines: Experiment and Computation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Riente
- University of Amsterdam Faculty of Science: Universiteit van Amsterdam Faculteit der Natuurwetenschappen Wiskunde en Informatica Chemistry NETHERLANDS
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Timothy Noel
- University of Amsterdam Van't Hoff Institute for Molecular Science PO Box 94157Science Park 904 1090 GD Amsterdam NETHERLANDS
| |
Collapse
|
15
|
Masson TM, Zondag SDA, Kuijpers KPL, Cambié D, Debije MG, Noël T. Development of an Off-Grid Solar-Powered Autonomous Chemical Mini-Plant for Producing Fine Chemicals. CHEMSUSCHEM 2021; 14:5417-5423. [PMID: 34644441 PMCID: PMC9298775 DOI: 10.1002/cssc.202102011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Photochemistry using inexhaustible solar energy is an eco-friendly way to produce fine chemicals outside the typical laboratory or chemical plant environment. However, variations in solar irradiation conditions and the need for an external energy source to power electronic components limits the accessibility of this approach. In this work, a chemical solar-driven "mini-plant" centred around a scaled-up luminescent solar concentrator photomicroreactor (LSC-PM) was built. To account for the variations in solar irradiance at ground level and passing clouds, a responsive control system was designed that rapidly adapts the flow rate of the reagents to the light received by the reaction channels. Supplying the plant with solar panels, integrated into the module by placing it behind the LSC to utilize the transmitted fraction of the solar irradiation, allowed this setup to be self-sufficient and fully operational off-grid. Such a system can shine in isolated environments and in a distributed manufacturing world, allowing to decentralize the production of fine chemicals.
Collapse
Affiliation(s)
- Tom M. Masson
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| | - Stefan D. A. Zondag
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Koen P. L. Kuijpers
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
- Current address: Technology & EngineeringJanssen R&DTurnhoutseweg 302340BeerseBelgium
| | - Dario Cambié
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
- Current address: Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Michael G. Debije
- Department of Chemical Engineering and ChemistryStimuli-responsive Functional Materials & DevicesEindhoven University of TechnologyGroene Loper 3, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| | - Timothy Noël
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| |
Collapse
|
16
|
Hayakawa M, Shirota H, Hirayama S, Yamada R, Aoyama T, Ouchi A. Sunlight-induced C C bond formation reaction: Radical addition of alcohols/ethers/acetals to olefins. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Wau JS, Robertson MJ, Oelgemöller M. Solar Photooxygenations for the Manufacturing of Fine Chemicals-Technologies and Applications. Molecules 2021; 26:1685. [PMID: 33802876 PMCID: PMC8002662 DOI: 10.3390/molecules26061685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/05/2022] Open
Abstract
Photooxygenation reactions involving singlet oxygen (1O2) are utilized industrially as a mild and sustainable access to oxygenated products. Due to the usage of organic dyes as photosensitizers, these transformations can be successfully conducted using natural sunlight. Modern solar chemical reactors enable outdoor operations on the demonstration (multigram) to technical (multikilogram) scales and have subsequently been employed for the manufacturing of fine chemicals such as fragrances or biologically active compounds. This review will highlight examples of solar photooxygenations for the manufacturing of industrially relevant target compounds and will discuss current challenges and opportunities of this sustainable methodology.
Collapse
Affiliation(s)
- Jayson S. Wau
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; (J.S.W.); (M.J.R.)
| | - Mark J. Robertson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; (J.S.W.); (M.J.R.)
| | - Michael Oelgemöller
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; (J.S.W.); (M.J.R.)
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium
| |
Collapse
|
18
|
Kretz B, Egger DA. Accurate Molecular Geometries in Complex Excited-State Potential Energy Surfaces from Time-Dependent Density Functional Theory. J Chem Theory Comput 2021; 17:357-366. [PMID: 33284603 DOI: 10.1021/acs.jctc.0c00858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay of electronic excitations and structural changes in molecules impacts nonradiative decay and charge transfer in the excited state, thus influencing excited-state lifetimes and photocatalytic reaction rates in optoelectronic and energy devices. To capture such effects requires computational methods providing an accurate description of excited-state potential energy surfaces and geometries. We suggest time-dependent density functional theory using optimally tuned range-separated hybrid (OT-RSH) functionals as an accurate approach to obtain excited-state molecular geometries. We show that OT-RSH provides accurate molecular geometries in excited-state potential energy surfaces that are complex and involve an interplay of local and charge-transfer excitations, for which conventional semilocal and hybrid functionals fail. At the same time, the nonempirical OT-RSH approach maintains the high accuracy of parametrized functionals (e.g., B3LYP) for predicting excited-state geometries of small organic molecules showing valence excited states.
Collapse
Affiliation(s)
- Bernhard Kretz
- Department of Physics, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - David A Egger
- Department of Physics, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
19
|
Raji Reddy C, Ganesh V, Singh AK. E- Z isomerization of 3-benzylidene-indolin-2-ones using a microfluidic photo-reactor. RSC Adv 2020; 10:28630-28634. [PMID: 35520055 PMCID: PMC9055887 DOI: 10.1039/d0ra05288d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023] Open
Abstract
Here, we report controlled E-Z isomeric motion of the functionalized 3-benzylidene-indolin-2-ones under various solvents, temperature, light sources, and most importantly effective enhancement of light irradiance in microfluidic photoreactor conditions. Stabilization of the E-Z isomeric motion is failed in batch process, which might be due to the exponential decay of light intensity, variable irradiation, low mixing, low heat exchange, low photon flux etc. This photo-μ-flow light driven motion is further extended to the establishment of a photostationary state under solar light irradiation.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| | - Veeramalla Ganesh
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| | - Ajay K Singh
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| |
Collapse
|
20
|
Firoozi S, Hosseini-Sarvari M. Photo-Difunctionalization and Photo-Oxidative Cleavage of the C-C Double Bond of Styrenes in the Presence of Nanosized Cadmium Sulfide (CdS) as a Highly Efficient Photo-Induced Reusable Nanocatalyst. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Somayeh Firoozi
- Department of Chemistry; College of Science; Shiraz University; 7194684795 Shiraz I.R. Iran
| | - Mona Hosseini-Sarvari
- Department of Chemistry; College of Science; Shiraz University; 7194684795 Shiraz I.R. Iran
| |
Collapse
|
21
|
Li JY, Li YH, Qi MY, Lin Q, Tang ZR, Xu YJ. Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01567] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing-Yu Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yue-Hua Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Qiong Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|
22
|
Werner D, Griesser C, Stock D, Griesser UJ, Kunze-Liebhäuser J, Portenkirchner E. Substantially Improved Na-Ion Storage Capability by Nanostructured Organic-Inorganic Polyaniline-TiO 2 Composite Electrodes. ACS APPLIED ENERGY MATERIALS 2020; 3:3477-3487. [PMID: 32363329 PMCID: PMC7189615 DOI: 10.1021/acsaem.9b02541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/12/2020] [Indexed: 05/28/2023]
Abstract
Developing sodium (Na)-ion batteries is highly appealing because they offer the potential to be made from raw materials, which hold the promise to be less expensive, less toxic, and at the same time more abundant compared to state-of-the-art lithium (Li)-ion batteries. In this work, the Na-ion storage capability of nanostructured organic-inorganic polyaniline (PANI) titanium dioxide (TiO2) composite electrodes is studied. Self-organized, carbon-coated, and oxygen-deficient anatase TiO2-x -C nanotubes (NTs) are fabricated by a facile one-step anodic oxidation process followed by annealing at high temperatures in an argon-acetylene mixture. Subsequent electropolymerization of a thin film of PANI results in the fabrication of highly conductive and well-ordered, nanostructured organic-inorganic polyaniline-TiO2 composite electrodes. As a result, the PANI-coated TiO2-x -C NT composite electrodes exhibit higher Na storage capacities, significantly better capacity retention, advanced rate capability, and better Coulombic efficiencies compared to PANI-coated Ti metal and uncoated TiO2-x -C NTs for all current rates (C-rates) investigated.
Collapse
Affiliation(s)
- Daniel Werner
- Institute of Physical
Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Christoph Griesser
- Institute of Physical
Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - David Stock
- Institut für Konstruktion und Materialwissenschaften, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute of Pharmacy, University
of Innsbruck, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
23
|
Mateos J, Vega-Peñaloza A, Franceschi P, Rigodanza F, Andreetta P, Companyó X, Pelosi G, Bonchio M, Dell'Amico L. A visible-light Paternò-Büchi dearomatisation process towards the construction of oxeto-indolinic polycycles. Chem Sci 2020; 11:6532-6538. [PMID: 34094119 PMCID: PMC8159410 DOI: 10.1039/d0sc01569e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of highly functionalised N-containing polycycles (35 examples) are synthesised from simple indoles and aromatic ketones through a mild visible-light Paternò–Büchi process. Tetrahydrooxeto[2,3-b]indole scaffolds, with up to three contiguous all-substituted stereocenters, are generated in high yield (up to >98%) and excellent site- regio- and diastereocontrol (>20 : 1). The use of visible light (405 or 465 nm) ensures enhanced performances by switching off undesired photodimerisation side reactions. The reaction can be easily implemented using a microfluidic photoreactor with improved productivity (up to 0.176 mmol h−1) and generality. Mechanistic investigations revealed that two alternative reaction mechanisms can account for the excellent regio- and diastereocontrol observed. A scalable visible-light [2 + 2]-heterocycloaddition process allows the dearomatisation of indoles to complex biorelevant polycycles.![]()
Collapse
Affiliation(s)
- Javier Mateos
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Alberto Vega-Peñaloza
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Pietro Franceschi
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Francesco Rigodanza
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Philip Andreetta
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Xavier Companyó
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delle Scienze 17 43124 Parma Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
24
|
Venkatraman R, Panneer SVK, Varathan E, Subramanian V. Aromaticity-Photovoltaic Property Relationship of Triphenylamine-Based D-π-A Dyes: Leads from DFT Calculations. J Phys Chem A 2020; 124:3374-3385. [PMID: 32115951 DOI: 10.1021/acs.jpca.9b10245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
D-π-A-based dyes find a wide range of applications in molecular electronics and photovoltaics in general and dye-sensitized solar cells (DSSC) in particular. We speculated whether there exists a relationship between the degree of aromaticity of the π-spacers used in the D-π-A type dyes and their structural, electronic, energetic, photophysical, and intramolecular charge transfer properties. Triphenylamine (TPA) and cyanoacrylic acid (CAA) have been chosen as the donor and acceptor, respectively. In order to carry out the investigation systematically the π-spacers have been logically chosen based on their experimental resonance energies, which follows the order, furan < pyrrole < thiophene < pyridine < benzene. All the properties have been discussed based on the degree of aromaticity of the π-spacers. Geometric properties such as dihedral angles and bond lengths have been discussed extensively. Energy levels of the frontier molecular orbitals, electrochemical properties, namely, ground and excited state oxidation potentials (GSOP/ESOP), and change in Gibbs free energy for electron injection and regeneration (ΔGinj/ΔGreg) have also been evaluated. Photophysical properties like wavelength of maximum absorption (λmax), oscillator strength (f), light harvesting efficiency (LHE), and intramolecular charge transfer properties, viz., charge transfer distance (DCT), fraction of charge transferred (qCT), and change in dipole moment (μCT) have been assessed. The adsorption characteristics of dye with (TiO2)9 nanocluster have been studied along with their optical properties. Results reveal that the nature of the relationship between the aforementioned properties and the extent of aromaticity of the π-spacers is inherently multifaceted. It thus turns out that it is highly difficult to quantify the relationship. These properties of D-π1-π2-A molecules can be regarded to be arising from two groups, namely, π-spacers with lower and higher resonance energies. This results in a natural trade-off in selection of competing properties. The qualitative aromaticity photovoltaic property relationship thus obtained may serve as a guide to tailor-design various properties of D-π-A type dyes for application in the intramolecular charge transfer devices.
Collapse
Affiliation(s)
- Raghavendra Venkatraman
- Inorganic and Physical Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shyam Vinod Kumar Panneer
- Inorganic and Physical Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Elumalai Varathan
- Inorganic and Physical Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Venkatesan Subramanian
- Inorganic and Physical Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
25
|
Li H, Chen H, Zhou Y, Huang J, Yi J, Zhao H, Wang W, Jing L. Selective Synthesis of Z-Cinnamyl Ethers and Cinnamyl Alcohols through Visible Light-Promoted Photocatalytic E to Z Isomerization. Chem Asian J 2020; 15:555-559. [PMID: 31901002 DOI: 10.1002/asia.201901778] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/19/2022]
Abstract
A photocatalytic E to Z isomerization of alkenes using an iridium photosensitizer under mild reaction conditions is disclosed. This method provides scalable and efficient access to Z-cinnamyl ether and allylic alcohol derivatives in high yields with excellent stereoselectivity. Importantly, this method also provides a powerful strategy for the selective synthesis of Z-magnolol and honokiol derivatives possessing potential biological activity.
Collapse
Affiliation(s)
- Hengchao Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Hang Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Yang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Jin Huang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Jundan Yi
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Hongcai Zhao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Wei Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, No. 1 Shi Da Road, Nanchong, 637009, China
| |
Collapse
|
26
|
Harsh S, Kumar S, Sharma R, Kumar Y, Kumar R. Chlorophyll triggered one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via photo induced electron transfer reaction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Rößler M, Huth PU, Liauw MA. Process analytical technology (PAT) as a versatile tool for real-time monitoring and kinetic evaluation of photocatalytic reactions. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00256a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Combining in situ Raman spectroscopy with multivariate data analysis enables the real-time monitoring and kinetic evaluation of photocatalytic reactions. The applicability is demonstrated on the photooxidation of 4-methoxythiophenol.
Collapse
Affiliation(s)
- Martin Rößler
- Institut für Technische und Makromolekulare Chemie (ITMC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Philipp U. Huth
- Institut für Technische und Makromolekulare Chemie (ITMC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Marcel A. Liauw
- Institut für Technische und Makromolekulare Chemie (ITMC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
28
|
Chakraborty J, Nath I, Song S, Mohamed S, Khan A, Heynderickx PM, Verpoort F. Porous organic polymer composites as surging catalysts for visible-light-driven chemical transformations and pollutant degradation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
A tan for molecules: photocatalyzed synthesis with direct sunlight. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00826-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Fernandes RA, Sampaio MJ, Da Silva ES, Serp P, Faria JL, Silva CG. Synthesis of selected aromatic aldehydes under UV-LED irradiation over a hybrid photocatalyst of carbon nanofibers and zinc oxide. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.10.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Wu J, Grant PS, Li X, Noble A, Aggarwal VK. Catalyst-Free Deaminative Functionalizations of Primary Amines by Photoinduced Single-Electron Transfer. Angew Chem Int Ed Engl 2019; 58:5697-5701. [PMID: 30794331 PMCID: PMC6492299 DOI: 10.1002/anie.201814452] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/17/2022]
Abstract
The use of pyridinium-activated primary amines as photoactive functional groups for deaminative generation of alkyl radicals under catalyst-free conditions is described. By taking advantage of the visible light absorptivity of electron donor-acceptor complexes between Katritzky pyridinium salts and either Hantzsch ester or Et3 N, photoinduced single-electron transfer could be initiated in the absence of a photocatalyst. This general reactivity platform has been applied to deaminative alkylation (Giese), allylation, vinylation, alkynylation, thioetherification, and hydrodeamination reactions. The mild conditions are amenable to a diverse range of primary and secondary alkyl pyridiniums and demonstrate broad functional group tolerance.
Collapse
Affiliation(s)
- Jingjing Wu
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Phillip S. Grant
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Xiabing Li
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
32
|
Powder and Nanotubes Titania Modified by Dye Sensitization as Photocatalysts for the Organic Pollutants Elimination. NANOMATERIALS 2019; 9:nano9040517. [PMID: 30987003 PMCID: PMC6523326 DOI: 10.3390/nano9040517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 11/17/2022]
Abstract
In this study, titanium dioxide powder obtained by the sol-gel method and TiO₂ nanotubes, were prepared. In order to increase the TiO₂ photoactivity, the powders and nanotubes obtained were modified by dye sensitization treatment during the oxide synthesis. The sensitizers applied were Quinizarin (Q) and Zinc protoporphyrin (P). The materials synthesized were extensively characterized and it was found that the dye sensitization treatment leads to modify the optical and surface properties of Titania. It was also found that the effectiveness of the dye-sensitized catalysts in the phenol and methyl orange (MO) photodegradation strongly depends on the dye sensitizer employed. Thus, the highest degradation rate for MO was obtained over the conventional Q-TiO₂ photocatalyst. In the case of the nanotubes series, the most effective photocatalyst in the MO degradation was based on TiO₂-nanotubes sensitized with the dye protoporfirin (ZnP). Selected catalysts were also tested in the phenol and MO photodegradation under visible light and it was observed that these samples are also active under this radiation.
Collapse
|
33
|
Wu J, Grant PS, Li X, Noble A, Aggarwal VK. Catalyst‐Free Deaminative Functionalizations of Primary Amines by Photoinduced Single‐Electron Transfer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814452] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingjing Wu
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Phillip S. Grant
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Xiabing Li
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
34
|
Abstract
In recent years, photochemistry has been a highly active research field. This renaissance is linked to the upsurge of photoredox catalysis, a versatile platform for synthetic methodologies using visible light photons as a traceless reagent. In contrast with UV, visible light constitutes almost half of the ground solar irradiance, making the use of solar light in chemistry a sustainable and viable possibility. However, the direct use of sunlight to power chemical reactions is still little explored. This can be explained by both the hurdles associated with solar radiation (e.g., its variability, irreproducibility, high IR content, etc.) and the need for a specialized photoreactor. Most of these issues can be tackled with technological solutions, and especially with the recourse to flow chemistry. Flow chemistry goes hand in hand with photochemistry thanks to the uniform irradiation it provides to the reaction. Furthermore, a continuous-flow reactor can be easily integrated with different solar collectors (including compound parabolic concentrators and luminescent solar concentrators) and constitutes the most efficient approach to solar photochemistry. After a description of the characteristics of the solar radiation relevant to chemistry, this chapter critically describes the different type of solar photoreactors and their applications in synthetic organic chemistry. Finally, an outlook on the future of solar photochemistry in flow is included.
Collapse
Affiliation(s)
- Dario Cambié
- Micro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
| | - Timothy Noël
- Micro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
35
|
Zhang B, Yang X, Li J, Cheng G. Selective aerobic oxidation of alkyl aromatics on Bi 2MoO 6 nanoplates decorated with Pt nanoparticles under visible light irradiation. Chem Commun (Camb) 2018; 54:12194-12197. [PMID: 30303206 DOI: 10.1039/c8cc06909c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt/Bi2MoO6 nanoplates are efficient photocatalysts for the selective oxidation of saturated C-H bonds in alkyl aromatics under visible light illumination using O2 as an oxidant. This study opens a new window for direct C-H functionalization through the photocatalytic method based on cheap Bi2MoO6 semiconductor materials.
Collapse
Affiliation(s)
- Bao Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | | | | | | |
Collapse
|
36
|
Liu NW, Chen Z, Herbert A, Ren H, Manolikakes G. Visible-Light-Induced 3-Component Synthesis of Sulfonylated Oxindoles by Fixation of Sulfur Dioxide. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nai-Wei Liu
- Institute of Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Str. 7 -60438 Frankfurt am Main Germany
| | - Zhengkai Chen
- Department of Chemistry; Zhejiang Sci-Tech University; 310018 Hangzhou People's Republic of China
| | - André Herbert
- Institute of Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Str. 7 -60438 Frankfurt am Main Germany
| | - Hongjun Ren
- Department of Chemistry; Zhejiang Sci-Tech University; 310018 Hangzhou People's Republic of China
| | - Georg Manolikakes
- Institute of Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Str. 7 -60438 Frankfurt am Main Germany
- Department of Chemistry; TU Kaiserslautern; Erwin-Schrödinger-Str. Geb. 54 67663 Kaiserslautern Germany
| |
Collapse
|
37
|
da Silva Júnior PE, Amin HIM, Nauth AM, da Silva Emery F, Protti S, Opatz T. Flow Photochemistry of Azosulfones: Application of “Sunflow” Reactors. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Paulo Eliandro da Silva Júnior
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, Department of Pharmaceutical Sciences University of Sao Paulo Ribeirão Preto 14040-903 Brazil
- Department of Organic Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Hawraz I. M. Amin
- Department of Chemistry, PhotoGreen Lab University of Pavia Viale Taramelli 12 27100 Pavia Italy
- Chemistry Department, College of Science Salahaddin University-Erbil Iraq
| | - Alexander M. Nauth
- Department of Organic Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Flavio da Silva Emery
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, Department of Pharmaceutical Sciences University of Sao Paulo Ribeirão Preto 14040-903 Brazil
| | - Stefano Protti
- Department of Chemistry, PhotoGreen Lab University of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Till Opatz
- Department of Organic Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
38
|
Hloušková Z, Tydlitát J, Kong M, Pytela O, Mikysek T, Klikar M, Almonasy N, Dvořák M, Jiang Z, Růžička A, Bureš F. Structure-Catalytic Activity in a Series of Push-Pull Dicyanopyrazine/Dicyanoimidazole Photoredox Catalysts. ChemistrySelect 2018. [DOI: 10.1002/slct.201800719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zuzana Hloušková
- Institute of Organic Chemistry and Technology; Faculty of Chemical Technology, University of Pardubice; Studentská 573, Pardubice 53210 Czech Republic
| | - Jiří Tydlitát
- Institute of Organic Chemistry and Technology; Faculty of Chemical Technology, University of Pardubice; Studentská 573, Pardubice 53210 Czech Republic
| | - Manman Kong
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province; Henan University; Kaifeng Henan 475004, People's Republic of China
| | - Oldřich Pytela
- Institute of Organic Chemistry and Technology; Faculty of Chemical Technology, University of Pardubice; Studentská 573, Pardubice 53210 Czech Republic
| | - Tomáš Mikysek
- Department of Analytical Chemistry; Faculty of Chemical Technology, University of Pardubice; Studentská 573 Pardubice 53210 Czech Republic
| | - Milan Klikar
- Institute of Organic Chemistry and Technology; Faculty of Chemical Technology, University of Pardubice; Studentská 573, Pardubice 53210 Czech Republic
| | - Numan Almonasy
- Institute of Organic Chemistry and Technology; Faculty of Chemical Technology, University of Pardubice; Studentská 573, Pardubice 53210 Czech Republic
| | - Miroslav Dvořák
- Department of Physical Electronics; Faculty of Nuclear Sciences and Physical Engineering; Czech Technical University in Prague; V Holešovičkách 2 CZ-180 00 Prague, Czech Republic
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province; Henan University; Kaifeng Henan 475004, People's Republic of China
| | - Aleš Růžička
- Department of General and Inorganic Chemistry; Faculty of Chemical Technology; University of Pardubice; Studentská 573, Pardubice 53210 Czech Republic
| | - Filip Bureš
- Institute of Organic Chemistry and Technology; Faculty of Chemical Technology, University of Pardubice; Studentská 573, Pardubice 53210 Czech Republic
| |
Collapse
|
39
|
Jangale AD, Dalal DS. Green synthetic approaches for biologically relevant organic compounds. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1369544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Asha D. Jangale
- School of Chemical Sciences, North Maharashtra University, Jalgaon, India
| | - Dipak S. Dalal
- School of Chemical Sciences, North Maharashtra University, Jalgaon, India
| |
Collapse
|
40
|
Farran R, Ducloiset C, Buendia J, Vo NT, Guillot R, Halime Z, Dauban P, Leibl W, Sircoglou M, Aukauloo A. Light-Induced Activation of the Du Bois [RhII
2
(Esp)2
] Catalyst for Nitrogen Atom Transfer Reactions. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajaa Farran
- Institut des Sciences du Vivant Frédéric Joliot, SB2SM/ Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA; CNRS, Université Paris Sud; F-91191 Gif sur Yvette France
| | - Clémence Ducloiset
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; CNRS, Université Paris Sud, Université Paris-Saclay; F-91405 Orsay France
| | - Julien Buendia
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301; Université Paris Sud, Université Paris-Saclay; F-91198 Gif-sur-Yvette France
| | - Nhat Tam Vo
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; CNRS, Université Paris Sud, Université Paris-Saclay; F-91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; CNRS, Université Paris Sud, Université Paris-Saclay; F-91405 Orsay France
| | - Zakaria Halime
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; CNRS, Université Paris Sud, Université Paris-Saclay; F-91405 Orsay France
| | - Philippe Dauban
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301; Université Paris Sud, Université Paris-Saclay; F-91198 Gif-sur-Yvette France
| | - Winfried Leibl
- Institut des Sciences du Vivant Frédéric Joliot, SB2SM/ Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA; CNRS, Université Paris Sud; F-91191 Gif sur Yvette France
| | - Marie Sircoglou
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; CNRS, Université Paris Sud, Université Paris-Saclay; F-91405 Orsay France
| | - Ally Aukauloo
- Institut des Sciences du Vivant Frédéric Joliot, SB2SM/ Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA; CNRS, Université Paris Sud; F-91191 Gif sur Yvette France
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; CNRS, Université Paris Sud, Université Paris-Saclay; F-91405 Orsay France
| |
Collapse
|
41
|
Fabregat V, Burguete MI, Luis SV, Galindo F. Improving photocatalytic oxygenation mediated by polymer supported photosensitizers using semiconductor quantum dots as ‘light antennas’. RSC Adv 2017. [DOI: 10.1039/c7ra06036j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Semiconductor nanoparticles (quantum dots) sensitize the photochemical generation of singlet oxygen at the surface of a photoactive polymer.
Collapse
Affiliation(s)
- Víctor Fabregat
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Spain
| | | | - Santiago V. Luis
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Spain
| | - Francisco Galindo
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Spain
| |
Collapse
|
42
|
Nauth AM, Lipp A, Lipp B, Opatz T. Sunflow: Sunlight Drives Fast and Green Photochemical Flow Reactions in Simple Microcapillary Reactors - Application to Photoredox and H-Atom-Transfer Chemistry. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601394] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander M. Nauth
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; 55128 Mainz Germany
| | - Alexander Lipp
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; 55128 Mainz Germany
| | - Benjamin Lipp
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; 55128 Mainz Germany
| | - Till Opatz
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; 55128 Mainz Germany
| |
Collapse
|
43
|
Cambié D, Zhao F, Hessel V, Debije MG, Noël T. A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry. Angew Chem Int Ed Engl 2016; 56:1050-1054. [DOI: 10.1002/anie.201611101] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Dario Cambié
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Fang Zhao
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Michael G. Debije
- Department of Chemical Engineering and Chemistry, Functional Organic Materials & Devices; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|
44
|
Cambié D, Zhao F, Hessel V, Debije MG, Noël T. A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201611101] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dario Cambié
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Fang Zhao
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Michael G. Debije
- Department of Chemical Engineering and Chemistry, Functional Organic Materials & Devices; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|
45
|
Ravelli D, Protti S, Fagnoni M. Decatungstate Anion for Photocatalyzed "Window Ledge" Reactions. Acc Chem Res 2016; 49:2232-2242. [PMID: 27648722 DOI: 10.1021/acs.accounts.6b00339] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The majority of organic reactions are commonly carried out inside a lab, under a fume hood. A particular case is that of photochemical reactions, a field where the pioneering experiments by Giacomo Ciamician demonstrated more than one century ago that different processes can be carried out outdoors, for example, on the balcony of his own department, upon exposure of the reacting mixtures to sunlight. The main problem related to this chemistry of the "window ledge" is that most organic compounds are colorless and their absorption in the solar light region is in most cases negligible. Recently, the impressive development in the use of visible light absorbing photocatalysts (e.g., RuII or IrIII complexes, as well as organic dyes) made light-induced processes convenient even for non-photochemistry practitioners. It is thus possible to easily perform the reactions by simply placing the reaction vessel in a sunny place outside the lab. However, most of these processes are based on single electron transfer (SET) reactions (photoredox catalysis). Other photocatalysts able to activate substrates via alternative paths, such as hydrogen atom transfer (HAT), are emerging. In the last years, we were deeply involved in the use of the decatungstate anion ([W10O32]4-, a polyoxometalate) in synthesis. Indeed, such a versatile species is able to promote the photocatalytic C-H activation of organic compounds via either SET or HAT reactions. Interestingly, though the absorption spectrum of [W10O32]4- does not extend into the visible region, it shows an overlap with solar light emission. In this Account, we provide an overview on the application of decatungstate salts as photocatalysts in window ledge chemistry. We initially discuss the nature of the photogenerated species involved in the mechanism of action of the anion, also supported by theoretical simulations. The first-formed excited state of the decatungstate anion decays rapidly to the active species, a dark state tagged wO, featuring the presence of electron-deficient oxygen centers. Next, we describe the main applications of decatungstate chemistry. A significant part of this Account is devoted to photocatalyzed synthesis (C-X bond formation, with X = C, N, O, and oxidations) carried out by adopting sunlight (or simulated solar light). This synthetic approach is versatile, and most of the reactions involved C-H activation in cycloalkanes, alkylaromatics, amides, ethers (1,4-dioxane, oxetane, benzodioxole, and THF), aldehydes, nitriles, and cyclopentanones, and the ensuing addition of the resulting radicals onto electron-deficient olefins. Finally, the increasing role of the decatungstate anion in water depollution and polymerization is briefly discussed.
Collapse
Affiliation(s)
- Davide Ravelli
- PhotoGreen
Lab, Department
of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department
of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department
of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
46
|
|
47
|
Bliumkin L, Dutta Majumdar R, Soong R, Adamo A, Abbatt JPD, Zhao R, Reiner E, Simpson AJ. Development of an in Situ NMR Photoreactor To Study Environmental Photochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5506-5516. [PMID: 27172272 DOI: 10.1021/acs.est.6b00361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photochemistry is a key environmental process directly linked to the fate, source, and toxicity of pollutants in the environment. This study explores two approaches for integrating light sources with nuclear magnetic resonance (NMR) spectroscopy: sample irradiation using a "sunlight simulator" outside the magnet versus direct irradiation of the sample inside the magnet. To assess their applicability, the in situ NMR photoreactors were applied to a series of environmental systems: an atmospheric pollutant (p-nitrophenol), crude oil extracts, and groundwater. The study successfully illustrates that environmentally relevant aqueous photochemical processes can be monitored in situ and in real time using NMR spectroscopy. A range of intermediates and degradation products were identified and matched to the literature. Preliminary measurements of half-lives were also obtained from kinetic curves. The sunlight simulator was shown to be the most suitable model to explore environmental photolytic processes in situ. Other light sources with more intense UV output hold potential for evaluating UV as a remediation alternative in areas such as wastewater treatment plants or oil spills. Finally, the ability to analyze the photolytic fate of trace chemicals at natural abundance in groundwater, using a cryogenic probe, demonstrates the viability of NMR spectroscopy as a powerful and complementary technique for environmental applications in general.
Collapse
Affiliation(s)
- Liora Bliumkin
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | | | | | | | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Ran Zhao
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Eric Reiner
- Ontario Ministry of the Environment , Toronto, Ontario M9P 3 V6, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
48
|
Oelgemöller M. Solar Photochemical Synthesis: From the Beginnings of Organic Photochemistry to the Solar Manufacturing of Commodity Chemicals. Chem Rev 2016; 116:9664-82. [PMID: 27181285 DOI: 10.1021/acs.chemrev.5b00720] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural sunlight offers a cost-efficient and sustainable energy source for photochemical reactions. In contrast to the lengthy and small-scale "flask in the sun" procedures of the past, modern solar concentrator systems nowadays significantly shorten reaction times and enable technical-scale operations. After a brief historical introduction, this review presents the most important solar reactor types and their successful application in preparative solar syntheses. The examples demonstrate that solar manufacturing of fine chemicals is technically feasible and environmentally sustainable. After over 100 years, Ciamician's prophetic vision of "the photochemistry of the future" as a clean and green manufacturing methodology has yet to be realized. At the same time, his warning "for nature is not in a hurry but mankind is" is still valid today. It is hoped that this review will lead to a renewed interest in this truly enlightening technology, that it will stimulate photochemists and photochemical engineers to "go back to the roots onto the roofs" and that it will ultimately result in industrial applications in the foreseeable future.
Collapse
Affiliation(s)
- Michael Oelgemöller
- College of Science and Engineering, James Cook University , Townsville, Queensland 4811, Australia
| |
Collapse
|
49
|
Dadashi-Silab S, Doran S, Yagci Y. Photoinduced Electron Transfer Reactions for Macromolecular Syntheses. Chem Rev 2016; 116:10212-75. [PMID: 26745441 DOI: 10.1021/acs.chemrev.5b00586] [Citation(s) in RCA: 552] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photochemical reactions, particularly those involving photoinduced electron transfer processes, establish a substantial contribution to the modern synthetic chemistry, and the polymer community has been increasingly interested in exploiting and developing novel photochemical strategies. These reactions are efficiently utilized in almost every aspect of macromolecular architecture synthesis, involving initiation, control of the reaction kinetics and molecular structures, functionalization, and decoration, etc. Merging with polymerization techniques, photochemistry has opened up new intriguing and powerful avenues for macromolecular synthesis. Construction of various polymers with incredibly complex structures and specific control over the chain topology, as well as providing the opportunity to manipulate the reaction course through spatiotemporal control, are one of the unique abilities of such photochemical reactions. This review paper provides a comprehensive account of the fundamentals and applications of photoinduced electron transfer reactions in polymer synthesis. Besides traditional photopolymerization methods, namely free radical and cationic polymerizations, step-growth polymerizations involving electron transfer processes are included. In addition, controlled radical polymerization and "Click Chemistry" methods have significantly evolved over the last few decades allowing access to narrow molecular weight distributions, efficient regulation of the molecular weight and the monomer sequence and incredibly complex architectures, and polymer modifications and surface patterning are covered. Potential applications including synthesis of block and graft copolymers, polymer-metal nanocomposites, various hybrid materials and bioconjugates, and sequence defined polymers through photoinduced electron transfer reactions are also investigated in detail.
Collapse
Affiliation(s)
- Sajjad Dadashi-Silab
- Department of Chemistry, Istanbul Technical University , 34469 Maslak, Istanbul, Turkey
| | - Sean Doran
- Department of Chemistry, Istanbul Technical University , 34469 Maslak, Istanbul, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University , 34469 Maslak, Istanbul, Turkey.,Center of Excellence for Advanced Materials Research (CEAMR) and Department of Chemistry, King Abdulaziz University , 21589 Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Selen F, Can V, Temel G. Preparation of photodegradable polyacrylamide hydrogels via micellar copolymerization and determination of their phototunable elasticity and swelling behaviors. RSC Adv 2016. [DOI: 10.1039/c6ra00556j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A photo-decomposable hydrophobic crosslinker was synthesized and utilized to obtain photo-tunable hydrogelsviafree radical micellar copolymerization.
Collapse
Affiliation(s)
- Fatma Selen
- Yalova University
- Polymer Engineering Department
- Yalova
- Turkey
| | - Volkan Can
- Helmholtz Institute
- Lisa-Meitner Campus
- Berlin
- Germany
- Istanbul Technical University
| | - Gokhan Temel
- Yalova University
- Polymer Engineering Department
- Yalova
- Turkey
| |
Collapse
|