1
|
Warminski M, Depaix A, Ziemkiewicz K, Spiewla T, Zuberek J, Drazkowska K, Kedzierska H, Popielec A, Baranowski M, Sklucka M, Bednarczyk M, Smietanski M, Wolosewicz K, Majewski B, Serwa R, Nowis D, Golab J, Kowalska J, Jemielity J. Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Res 2024; 52:10788-10809. [PMID: 39248095 PMCID: PMC11472058 DOI: 10.1093/nar/gkae763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
The recent COVID-19 pandemics have demonstrated the great therapeutic potential of in vitro transcribed (IVT) mRNAs, but improvements in their biochemical properties, such as cellular stability, reactogenicity and translational activity, are critical for further practical applications in gene replacement therapy and anticancer immunotherapy. One of the strategies to overcome these limitations is the chemical modification of a unique mRNA 5'-end structure, the 5'-cap, which is responsible for regulating translation at multiple levels. This could be achieved by priming the in vitro transcription reaction with synthetic cap analogs. In this study, we combined a highly efficient trinucleotide IVT capping technology with several modifications of the 5' cap triphosphate bridge to synthesize a series of 16 new cap analogs. We also combined these modifications with epigenetic marks (2'-O-methylation and m6Am) characteristic of mRNA 5'-ends in higher eukaryotes, which was not possible with dinucleotide caps. All analogs were compared for their effect on the interactions with eIF4E protein, IVT priming, susceptibility to decapping, and mRNA translation efficiency in model cell lines. The most promising α-phosphorothiolate modification was also evaluated in an in vivo mouse model. Unexpected differences between some of the analogs were analyzed using a protein cell extract pull-down assay.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Anais Depaix
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Kamil Ziemkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Karolina Drazkowska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Hanna Kedzierska
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Agnieszka Popielec
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Marek R Baranowski
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Marta Sklucka
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | | | - Miroslaw Smietanski
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Karol Wolosewicz
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Bartosz Majewski
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Remigiusz A Serwa
- Proteomics Core Facility, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Dominika Nowis
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
- Laboratory of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland
| | - Jakub Golab
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| |
Collapse
|
2
|
Lukaszewicz M. Application of Mammalian Nudix Enzymes to Capped RNA Analysis. Pharmaceuticals (Basel) 2024; 17:1195. [PMID: 39338357 PMCID: PMC11434898 DOI: 10.3390/ph17091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Following the success of mRNA vaccines against COVID-19, mRNA-based therapeutics have now become a great interest and potential. The development of this approach has been preceded by studies of modifications found on mRNA ribonucleotides that influence the stability, translation and immunogenicity of this molecule. The 5' cap of eukaryotic mRNA plays a critical role in these cellular functions and is thus the focus of intensive chemical modifications to affect the biological properties of in vitro-prepared mRNA. Enzymatic removal of the 5' cap affects the stability of mRNA in vivo. The NUDIX hydrolase Dcp2 was identified as the first eukaryotic decapping enzyme and is routinely used to analyse the synthetic cap at the 5' end of RNA. Here we highlight three additional NUDIX enzymes with known decapping activity, namely Nudt2, Nudt12 and Nudt16. These enzymes possess a different and some overlapping activity towards numerous 5' RNA cap structures, including non-canonical and chemically modified ones. Therefore, they appear as potent tools for comprehensive in vitro characterisation of capped RNA transcripts, with special focus on synthetic RNAs with therapeutic activity.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Kozakiewicz-Piekarz A, Grzegórska M, Ziemkiewicz K, Grab K, Baranowski MR, Zapadka M, Karpiel M, Kupcewicz B, Kowalska J, Wujak M. Synthesis, kinetic studies, and QSAR of dinucleoside polyphosphate derivatives as human AK1 inhibitors. Bioorg Chem 2024; 148:107432. [PMID: 38744169 DOI: 10.1016/j.bioorg.2024.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Adenylate kinase (AK) plays a crucial role in the metabolic monitoring of cellular adenine nucleotide homeostasis by catalyzing the reversible transfer of a phosphate group between ATP and AMP, yielding two ADP molecules. By regulating the nucleotide levels and energy metabolism, the enzyme is considered a disease modifier and potential therapeutic target for various human diseases, including malignancies and inflammatory and neurodegenerative disorders. However, lacking approved drugs targeting AK hinders broad studies on this enzyme's pathological importance and therapeutic potential. In this work, we determined the effect of a series of dinucleoside polyphosphate derivatives, commercially available (11 compounds) and newly synthesized (8 compounds), on the catalytic activity of human adenylate kinase isoenzyme 1 (hAK1). The tested compounds belonged to the following groups: (1) diadenosine polyphosphates with different phosphate chain lengths, (2) base-modified derivatives, and (3) phosphate-modified derivatives. We found that all the investigated compounds inhibited the catalytic activity of hAK1, yet with different efficiencies. Three dinucleoside polyphosphates showed IC50 values below 1 µM, and the most significant inhibitory effect was observed for P1-(5'-adenosyl) P5-(5'-adenosyl) pentaphosphate (Ap5A). To understand the observed differences in the inhibition efficiency of the tested dinucleoside polyphosphates, the molecular docking of these compounds to hAK1 was performed. Finally, we conducted a quantitative structure-activity relationship (QSAR) analysis to establish a computational prediction model for hAK1 modulators. Two PLS-regression-based models were built using kinetic data obtained from the AK1 activity analysis performed in both directions of the enzymatic reaction. Model 1 (AMP and ATP synthesis) had a good prediction power (R2 = 0.931, Q2 = 0.854, and MAE = 0.286), while Model 2 (ADP synthesis) exhibited a moderate quality (R2 = 0.913, Q2 = 0.848, and MAE = 0.370). These studies can help better understand the interactions between dinucleoside polyphosphates and adenylate kinase to attain more effective and selective inhibitors in the future.
Collapse
Affiliation(s)
| | - Magdalena Grzegórska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 87-100 Torun, Poland
| | - Kamil Ziemkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2C 02-097 Warsaw, Poland
| | - Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 02-093 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 02-093 Warsaw, Poland
| | - Mariusz Zapadka
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 85-089 Bydgoszcz, Poland
| | - Marta Karpiel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11 30-348 Krakow, Poland
| | - Bogumiła Kupcewicz
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 85-089 Bydgoszcz, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 02-093 Warsaw, Poland
| | - Magdalena Wujak
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 85-089 Bydgoszcz, Poland.
| |
Collapse
|
4
|
Weissenboeck F, Klöcker N, Špaček P, Hüwel S, Rentmeister A. Stabilized 5' Cap Analogue for Optochemical Activation of mRNA Translation. ACS OMEGA 2024; 9:12810-12816. [PMID: 38524462 PMCID: PMC10955689 DOI: 10.1021/acsomega.3c08505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/26/2024]
Abstract
The 5' cap is a distinguishing feature of transcripts made by polymerase II and characterized by an N7-methylated guanosine (m7G) linked to the first transcribed nucleotide by a 5'-5' triphosphate bridge. It stabilizes eukaryotic mRNAs and plays a crucial role in translation initiation. Its importance in mRNA processing, translation, and turnover makes the 5' cap a privileged structure for engineering by non-natural modifications. A photocleavable group at the 5' cap of guanosine was recently used to mute translation of exogenous mRNAs. Its removal by light enabled direct control of protein production at the posttranscriptional level. Modifications in the triphosphate bridge impede degradation by specific decapping enzymes and maintain translation. Here, we combined 5' cap modifications at different positions and investigated how they impact 5' cap-dependent processes in distinct manners. We synthesized 5' cap analogues with a photocleavable group at the N2-position of m7G in addition to a medronate in the triphosphate bridge to obtain a photoactivatable 5' cap analogue featuring a methylene group between the β and γ phosphates. The resulting Medronate-FlashCap transiently or permanently impeded distinct crucial interactions of the 5' cap required for translation and degradation. We show that the Medronate-FlashCap is compatible with in vitro transcription to generate muted mRNA and that light can be used to activate translation in cells. After light-induced removal of the photocleavable group, the Medronate-FlashCap remained stable against degradation by the decapping enzyme DcpS. The additional methylene group renders the 5' cap resistant to DcpS, while maintaining the interaction with cap-binding proteins.
Collapse
Affiliation(s)
| | - Nils Klöcker
- Institute of Biochemistry, University of Münster, Münster 48149, Germany
| | - Petr Špaček
- Institute of Biochemistry, University of Münster, Münster 48149, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, University of Münster, Münster 48149, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, University of Münster, Münster 48149, Germany
| |
Collapse
|
5
|
Kurpiejewski K, Stankiewicz-Drogon A, Piecyk K, Rajkowska E, Skrzypczyk P, Geng J, Darzynkiewicz E, Grzela R, Jankowska-Anyszka M. The potential of N2-modified cap analogues for precise genetic manipulation through mRNA engineering. Front Mol Biosci 2024; 10:1269028. [PMID: 38380271 PMCID: PMC10878308 DOI: 10.3389/fmolb.2023.1269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 02/22/2024] Open
Abstract
The technology of mRNA-based drugs is currently being intensively developed and implemented. Medical products of this type are already being used as viral vaccines and could potentially find application in a wide range of diseases. The tremendous interest in mRNA is due to the relatively easy production process, which can be quickly adapted to meet societal needs. The properties of this molecule depend on the structure of its individual components, such as the structure of the cap at the 5' end. Modifications of the cap significantly affect the translational potential and lifespan of the whole mRNA. In the current work, we present the synthesis of derivatives of cap analogues modified at the N2 position of 7-methylguanosine. In addition to the substituent at the N2 position, the derivatives had either an extended triphosphate chain, a thiophosphate modification, an added cap1-modified nucleotide or an extended linker between the substituent and 7-methylguanosine. The compounds were tested for use as translation inhibitors and as components for mRNA preparation and appeared of interest for both applications.
Collapse
Affiliation(s)
| | - Anna Stankiewicz-Drogon
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | | | | | - Jingping Geng
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | - Renata Grzela
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
6
|
Huang T, Peng L, Han Y, Wang D, He X, Wang J, Ou C. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects. Front Immunol 2022; 13:922301. [PMID: 36090974 PMCID: PMC9458914 DOI: 10.3389/fimmu.2022.922301] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Messenger RNA (mRNA) vaccines constitute an emerging therapeutic method with the advantages of high safety and efficiency as well as easy synthesis; thus, they have been widely used in various human diseases, especially in malignant cancers. However, the mRNA vaccine technology has some limitations, such as instability and low transitive efficiency in vivo, which greatly restrict its application. The development of nanotechnology in the biomedical field offers new strategies and prospects for the early diagnosis and treatment of human cancers. Recent studies have demonstrated that Lipid nanoparticle (LNP)-based mRNA vaccines can address the poor preservation and targeted inaccuracy of mRNA vaccines. As an emerging cancer therapy, mRNA vaccines potentially have broad future applications. Unlike other treatments, cancer mRNA vaccines provide specific, safe, and tolerable treatments. Preclinical studies have used personalized vaccines to demonstrate the anti-tumor effect of mRNA vaccines in the treatment of various solid tumors, including colorectal and lung cancer, using these in a new era of therapeutic cancer vaccines. In this review, we have summarized the latest applications and progress of LNP-based mRNA vaccines in cancers, and discussed the prospects and limitations of these fields, thereby providing novel strategies for the targeted therapy of cancers.
Collapse
Affiliation(s)
- Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyun He, ; Junpu Wang, ; Chunlin Ou,
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyun He, ; Junpu Wang, ; Chunlin Ou,
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoyun He, ; Junpu Wang, ; Chunlin Ou,
| |
Collapse
|
7
|
Janowski M, Andrzejewska A. The legacy of mRNA engineering: A lineup of pioneers for the Nobel Prize. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:272-284. [PMID: 35855896 PMCID: PMC9278038 DOI: 10.1016/j.omtn.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
mRNA is like Hermes, delivering the genetic code to cellular construction sites, so it has long been of interest, but only to a small group of scientists, and only demonstrating its remarkable efficacy in coronavirus disease 2019 (COVID-19) vaccines allowed it to go out into the open. Therefore, now is the right timing to delve into the stepping stones that underpin this success and pay tribute to the underlying scientists. From this perspective, advances in mRNA engineering have proven crucial to the rapidly growing role of this molecule in healthcare. Development of consecutive generations of cap analogs, including anti-reverse cap analogs (ARCAs), has significantly boosted translation efficacy and maintained an enthusiasm for mRNA research. Nucleotide modification to protect mRNA molecules from the host's immune system, followed by finding appropriate purification and packaging methods, were other links in the chain enabling medical breakthroughs. Currently, vaccines are the central area of mRNA research, but it will reach far beyond COVID-19. Supplementation of missing or abnormal proteins is another large field of mRNA research. Ex vivo cell engineering and genome editing have been expanding recently. Thus, it is time to recognize mRNA pioneers while building upon their legacy.
Collapse
Affiliation(s)
- Miroslaw Janowski
- Program in Image Guided Neurointerventions, Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA,Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Institute, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland,Corresponding author Anna Andrzejewska, NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
8
|
Photocaged 5' cap analogues for optical control of mRNA translation in cells. Nat Chem 2022; 14:905-913. [PMID: 35725774 PMCID: PMC7613264 DOI: 10.1038/s41557-022-00972-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
The translation of messenger RNA (mRNA) is a fundamental process in gene expression, and control of translation is important to regulate protein synthesis in cells. The primary hallmark of eukaryotic mRNAs is their 5′ cap, whose molecular contacts to the eukaryotic translation initiation factor eIF4E govern the initiation of translation. Here we report 5′ cap analogues with photo-cleavable groups (FlashCaps) that prohibit binding to eIF4E and resist cleavage by decapping enzymes. These compounds are compatible with the general and efficient production of mRNAs by in vitro transcription. In FlashCap-mRNAs, the single photocaging group abrogates translation in vitro and in mammalian cells without increasing immunogenicity. Irradiation restores the native cap, triggering efficient translation. FlashCaps overcome the problem of remaining sequence or structure changes in mRNA after irradiation that limited previous designs. Together, these results demonstrate that FlashCaps offer a route to regulate the expression of any given mRNA and to dose mRNA therapeutics with spatio-temporal control. ![]()
Analogues of mRNA 5′ caps containing a photo-cleavable group have now been developed. These so-called FlashCaps can be used for routine in vitro transcription to make long mRNAs containing a cap. In cells, the capped mRNAs are translationally muted; however, upon irradiation by light, the photo-cleavable group is removed without leaving any remaining modification and mRNA is then translated into the corresponding protein.
Collapse
|
9
|
Evaluation of carboxyfluorescein-labeled 7-methylguanine nucleotides as probes for studying cap-binding proteins by fluorescence anisotropy. Sci Rep 2021; 11:7687. [PMID: 33833335 PMCID: PMC8032668 DOI: 10.1038/s41598-021-87306-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Fluorescence anisotropy (FA) is a powerful technique for the discovery of protein inhibitors in a high-throughput manner. In this study, we sought to develop new universal FA-based assays for the evaluation of compounds targeting mRNA 5′ cap-binding proteins of therapeutic interest, including eukaryotic translation initiation factor 4E and scavenger decapping enzyme. For this purpose, a library of 19 carboxyfluorescein probes based on 7-methylguanine nucleotides was evaluated as FA probes for these proteins. Optimal probe:protein systems were further investigated in competitive binding experiments and adapted for high-throughput screening. Using a small in-house library of compounds, we verified and confirmed the accuracy of the developed FA assay to study cap-binding protein binders. The applications of the most promising probes were then extended to include evaluation of allosteric inhibitors as well as RNA ligands. From this analysis, we confirmed the utility of the method to study small molecule ligands and evaluate differently 5′ capped RNAs.
Collapse
|
10
|
Möhler M, Höfer K, Jäschke A. Synthesis of 5'-Thiamine-Capped RNA. Molecules 2020; 25:E5492. [PMID: 33255222 PMCID: PMC7727699 DOI: 10.3390/molecules25235492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/05/2023] Open
Abstract
RNA 5'-modifications are known to extend the functional spectrum of ribonucleotides. In recent years, numerous non-canonical 5'-modifications, including adenosine-containing cofactors from the group of B vitamins, have been confirmed in all kingdoms of life. The structural component of thiamine adenosine triphosphate (thiamine-ATP), a vitamin B1 derivative found to accumulate in Escherichia coli and other organisms in response to metabolic stress conditions, suggests an analogous function as a 5'-modification of RNA. Here, we report the synthesis of thiamine adenosine dinucleotides and the preparation of pure 5'-thiamine-capped RNAs based on phosphorimidazolide chemistry. Furthermore, we present the incorporation of thiamine-ATP and thiamine adenosine diphosphate (thiamine-ADP) as 5'-caps of RNA by T7 RNA polymerase. Transcripts containing the thiamine modification were modified specifically with biotin via a combination of thiazole ring opening, nucleophilic substitution and copper-catalyzed azide-alkyne cycloaddition. The highlighted methods provide easy access to 5'-thiamine RNA, which may be applied in the development of thiamine-specific RNA capture protocols as well as the discovery and confirmation of 5'-thiamine-capped RNAs in various organisms.
Collapse
Affiliation(s)
| | | | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (M.M.); (K.H.)
| |
Collapse
|
11
|
Golojuch S, Kopcial M, Strzelecka D, Kasprzyk R, Baran N, Sikorski PJ, Kowalska J, Jemielity J. Exploring tryptamine conjugates as pronucleotides of phosphate-modified 7-methylguanine nucleotides targeting cap-dependent translation. Bioorg Med Chem 2020; 28:115523. [PMID: 32362385 DOI: 10.1016/j.bmc.2020.115523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/23/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed in many cancers deregulating translational control of the cell cycle. mRNA 5' cap analogs targeting eIF4E are small molecules with the potential to counteract elevated levels of eIF4E in cancer cells. However, the practical utility of typical cap analogs is limited because of their reduced cell membrane permeability. Transforming the active analogs into their pronucleotide derivatives is a promising approach to overcome this obstacle. 7-Benzylguanosine monophosphate (bn7GMP) is a cap analog that has been successfully transformed into a cell-penetrating pronucleotide by conjugation of the phosphate moiety with tryptamine. In this work, we explored whether a similar strategy is applicable to other cap analogs, particularly phosphate-modified 7-methylguanine nucleotides. We report the synthesis of six new tryptamine conjugates containing N7-methylguanosine mono- and diphosphate and their analogs modified with thiophosphate moiety. These new potential pronucleotides and the expected products of their activation were characterized by biophysical and biochemical methods to determine their affinity towards eIF4E, their ability to inhibit translation in vitro, their susceptibility to enzymatic degradation and their turnover in cell extract. The results suggest that compounds containing the thiophosphate moiety may act as pronucleotides that release low but sustainable concentrations of 7-methylguanosine 5'-phosphorothioate (m7GMPS), which is a translation inhibitor with in vitro potency higher than bn7GMP.
Collapse
Affiliation(s)
- Sebastian Golojuch
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; Faculty of Chemistry, University of Warsaw, L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kopcial
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Dominika Strzelecka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Natalia Baran
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
12
|
Chrominski M, Baranowski MR, Chmielinski S, Kowalska J, Jemielity J. Synthesis of Trifluoromethylated Purine Ribonucleotides and Their Evaluation as 19F NMR Probes. J Org Chem 2020; 85:3440-3453. [PMID: 31994393 PMCID: PMC7497640 DOI: 10.1021/acs.joc.9b03198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protected guanosine and adenosine ribonucleosides and guanine nucleotides are readily functionalized with CF3 substituents within the nucleobase. Protected guanosine is trifluoromethylated at the C8 position under radical-generating conditions in up to 95% yield and guanosine 5'-oligophosphates in up to 35% yield. In the case of adenosine, the selectivity of trifluoromethylation depends heavily on the functional group protection strategy and leads to a set of CF3-modified nucleosides with different substitution patterns (C8, C2, or both) in up to 37% yield. Further transformations based on phosphorimidazolide chemistry afford various CF3-substituted mono- and dinucleoside oligophosphates in good yields. The utility of the trifluoromethylated nucleotides as probes for 19F NMR-based real-time enzymatic reaction monitoring is demonstrated with three different human nucleotide hydrolases (Fhit, DcpS, and cNIIIB). Substrate and product(s) resonances were sufficiently separated to enable effective tracking of each enzymatic activity of interest.
Collapse
Affiliation(s)
- Mikolaj Chrominski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Sebastian Chmielinski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
13
|
Muthmann N, Hartstock K, Rentmeister A. Chemo-enzymatic treatment of RNA to facilitate analyses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1561. [PMID: 31392842 DOI: 10.1002/wrna.1561] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Labeling RNA is a recurring problem to make RNA compatible with state-of-the-art methodology and comes in many flavors. Considering only cellular applications, the spectrum still ranges from site-specific labeling of individual transcripts, for example, for live-cell imaging of mRNA trafficking, to metabolic labeling in combination with next generation sequencing to capture dynamic aspects of RNA metabolism on a transcriptome-wide scale. Combining the specificity of RNA-modifying enzymes with non-natural substrates has emerged as a valuable strategy to modify RNA site- or sequence-specifically with functional groups suitable for subsequent bioorthogonal reactions and thus label RNA with reporter moieties such as affinity or fluorescent tags. In this review article, we will cover chemo-enzymatic approaches (a) for in vitro labeling of RNA for application in cells, (b) for treatment of total RNA, and (c) for metabolic labeling of RNA. This article is categorized under: RNA Processing < RNA Editing and Modification RNA Methods < RNA Analyses in vitro and In Silico RNA Methods < RNA Analyses in Cells.
Collapse
Affiliation(s)
- Nils Muthmann
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Katja Hartstock
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
14
|
Bednarek S, Madan V, Sikorski PJ, Bartenschlager R, Kowalska J, Jemielity J. mRNAs biotinylated within the 5' cap and protected against decapping: new tools to capture RNA-protein complexes. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0167. [PMID: 30397103 DOI: 10.1098/rstb.2018.0167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2018] [Indexed: 01/09/2023] Open
Abstract
The 5'-terminus of eukaryotic mRNAs comprises a 7-methylguanosine cap linked to the first transcribed nucleotide via a 5'-5' triphosphate bond. This cap structure facilitates numerous interactions with molecules participating in mRNA processing, turnover and RNA translation. Here, we report the synthesis and biochemical properties of a set of biotin-labelled cap analogues modified within the triphosphate bridge and increasing mRNA stability while retaining biological activity. Successful co-transcriptional incorporation of the cap analogues allowed for the quantification of cap-dependent translation efficiency, capping efficiency and the susceptibility to decapping by Dcp2. The utility of such cap-biotinylated RNAs as molecular tool was demonstrated by ultraviolet-cross-linking and affinity capture of protein-RNA complexes. In conclusion, RNAs labelled with biotin via the 5' cap structure can be applied to a variety of biological experiments based on biotin-avidin interaction or by means of biotin-specific antibodies, including protein affinity purification, pull-down assays, in vivo visualization, cellular delivery and many others.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Sylwia Bednarek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Vanesa Madan
- Department of Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Ralf Bartenschlager
- Department of Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Xiong Q, Lee GY, Ding J, Li W, Shi J. Biomedical applications of mRNA nanomedicine. NANO RESEARCH 2018; 11:5281-5309. [PMID: 31007865 PMCID: PMC6472920 DOI: 10.1007/s12274-018-2146-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 05/20/2023]
Abstract
As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.
Collapse
Affiliation(s)
- Qingqing Xiong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060 China
| | - Gha Young Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Jianxun Ding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Wenliang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- School of Pharmacy, Jilin Medical University, Jilin, 132013 China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
16
|
Kocmik I, Piecyk K, Rudzinska M, Niedzwiecka A, Darzynkiewicz E, Grzela R, Jankowska-Anyszka M. Modified ARCA analogs providing enhanced translational properties of capped mRNAs. Cell Cycle 2018; 17:1624-1636. [PMID: 29954234 DOI: 10.1080/15384101.2018.1486164] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Nowadays gene manipulation techniques ("DNA therapy") undergo progressive development and become widely used in industry and medicine. Since new advances in mRNA technologies are capable for obtaining particles with increased stability and translational efficiency, RNA become an attractive alternative for advancement of DNA therapy. For the past years studies have been conducted to explore different modification in mRNA cap structure and its effect on RNA properties. Recently we have shown that modification of the cap structure at the N2 position of 7-methylguanosine leads to an enhancement in translation inhibition. Currently, we have decided to exploit translational properties of mRNA capped with the ARCA (anti-reversed cap) analogs modified within N2 position of purine moiety s. We designed and synthesized three new dinucleotide cap analogs and investigated them in the rabbit reticulocyte lysate (RRL) and the human embryonic kidney derived HEK293 cell line, in vitro translational model systems. The obtained data indicate that, in both translational assays, the cap analogs synthesized by us when incorporated into mRNA improved its translational properties compared to the ARCA capped transcripts. Furthermore, the introduced modifications enhanced stability of the capped transcripts in HEK293 cells, which become higher compared to that of the transcripts capped with regular cap or with ARCA. Additionally one of the synthesized cap analogs revealed strong translation inhibition potency in RRL system, with IC50 value 1.7 µM.
Collapse
Affiliation(s)
- Ilona Kocmik
- a Faculty of Chemistry , University of Warsaw , Warsaw , Poland
| | - Karolina Piecyk
- a Faculty of Chemistry , University of Warsaw , Warsaw , Poland
| | | | - Anna Niedzwiecka
- c Laboratory of Biological Physics , Institute of Physics, Polish Academy of Sciences , Warsaw , Poland
| | - Edward Darzynkiewicz
- b Centre of New Technologies , University of Warsaw , Warsaw , Poland.,d Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Warsaw , Poland
| | - Renata Grzela
- b Centre of New Technologies , University of Warsaw , Warsaw , Poland
| | | |
Collapse
|
17
|
Wojtczak BA, Sikorski PJ, Fac-Dabrowska K, Nowicka A, Warminski M, Kubacka D, Nowak E, Nowotny M, Kowalska J, Jemielity J. 5'-Phosphorothiolate Dinucleotide Cap Analogues: Reagents for Messenger RNA Modification and Potent Small-Molecular Inhibitors of Decapping Enzymes. J Am Chem Soc 2018; 140:5987-5999. [PMID: 29676910 DOI: 10.1021/jacs.8b02597] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 5' cap consists of 7-methylguanosine (m7G) linked by a 5'-5'-triphosphate bridge to messenger RNA (mRNA) and acts as the master regulator of mRNA turnover and translation initiation in eukaryotes. Cap analogues that influence mRNA translation and turnover (either as small molecules or as part of an RNA transcript) are valuable tools for studying gene expression, which is often also of therapeutic relevance. Here, we synthesized a series of 15 dinucleotide cap (m7GpppG) analogues containing a 5'-phosphorothiolate (5'-PSL) moiety (i.e., an O-to-S substitution within the 5'-phosphoester) and studied their biological properties in the context of three major cap-binding proteins: translation initiation factor 4E (eIF4E) and two decapping enzymes, DcpS and Dcp2. While the 5'-PSL moiety was neutral or slightly stabilizing for cap interactions with eIF4E, it significantly influenced susceptibility to decapping. Replacing the γ-phosphoester with the 5'-PSL moiety (γ-PSL) prevented β-γ-pyrophosphate bond cleavage by DcpS and conferred strong inhibitory properties. Combining the γ-PSL moiety with α-PSL and β-phosphorothioate (PS) moiety afforded first cap-derived hDcpS inhibitor with low nanomolar potency. Susceptibility to Dcp2 and translational properties were studied after incorporation of the new analogues into mRNA transcripts by RNA polymerase. Transcripts containing the γ-PSL moiety were resistant to cleavage by Dcp2. Surprisingly, superior translational properties were observed for mRNAs containing the α-PSL moiety, which were Dcp2-susceptible. The overall protein expression measured in HeLa cells for this mRNA was comparable to mRNA capped with the translation augmenting β-PS analogue reported previously. Overall, our study highlights 5'-PSL as a synthetically accessible cap modification, which, depending on the substitution site, can either reduce susceptibility to decapping or confer superior translational properties on the mRNA. The 5'-PSL-analogues may find application as reagents for the preparation of efficiently expressed mRNA or for investigation of the role of decapping enzymes in mRNA processing or neuromuscular disorders associated with decapping.
Collapse
Affiliation(s)
- Blazej A Wojtczak
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| | - Pawel J Sikorski
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| | - Kaja Fac-Dabrowska
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| | - Anna Nowicka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Elzbieta Nowak
- International Institute of Molecular and Cell Biology in Warsaw , 4 Ks. Trojdena Street , 02-109 Warsaw , Poland
| | - Marcin Nowotny
- International Institute of Molecular and Cell Biology in Warsaw , 4 Ks. Trojdena Street , 02-109 Warsaw , Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Jacek Jemielity
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| |
Collapse
|
18
|
Baranowski MR, Nowicka A, Jemielity J, Kowalska J. A fluorescent HTS assay for phosphohydrolases based on nucleoside 5'-fluorophosphates: its application in screening for inhibitors of mRNA decapping scavenger and PDE-I. Org Biomol Chem 2018; 14:4595-604. [PMID: 27031609 DOI: 10.1039/c6ob00492j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several nucleotide-specific phosphohydrolases can cleave P-F bonds in substrate analogues containing a fluorophosphate moiety to release fluoride ions. In this work, by employing a fluoride-sensitive molecular sensor, we harnessed this cleavage reaction to develop a fluorescence assay to screen for phosphohydrolase inhibitors. The assay is rapid, sensitive, and based on simple and synthetically available reagents. The assay was adapted to the high-throughput screening (HTS) format and its utility was demonstrated by screening an 'in-house' library of small nucleotides against two enzymes: DcpS, a metal-independent mRNA decapping pyrophosphatase of the histidine triad (HIT) family; and PDE-I, a divalent cation-dependent nuclease. Our screening results agreed with the known specificities of DcpS and PDE-I, and led to the selection of several inhibitors featuring low-micromolar IC50 values. For DcpS, we also verified the results by using an alternative method with the natural substrate. Notably, the assay presented here is the first fluorescence-based HTS-adaptable assay for DcpS, an established therapeutic target for spinal muscular atrophy. The assay should be useful for phosphohydrolase specificity profiling and inhibitor discovery, particularly in the context of DcpS and other HIT-family enzymes, which play key roles in maintaining cellular functions and have been linked to disease development.
Collapse
Affiliation(s)
- M R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| | - A Nowicka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland. and Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - J Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - J Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| |
Collapse
|
19
|
Muttach F, Muthmann N, Rentmeister A. Synthetic mRNA capping. Beilstein J Org Chem 2017; 13:2819-2832. [PMID: 30018667 PMCID: PMC5753152 DOI: 10.3762/bjoc.13.274] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic mRNA with its 5'-cap is of central importance for the cell. Many studies involving mRNA require reliable preparation and modification of 5'-capped RNAs. Depending on the length of the desired capped RNA, chemical or enzymatic preparation - or a combination of both - can be advantageous. We review state-of-the art methods and give directions for choosing the appropriate approach. We also discuss the preparation and properties of mRNAs with non-natural caps providing novel features such as improved stability or enhanced translational efficiency.
Collapse
Affiliation(s)
- Fabian Muttach
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Nils Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Andrea Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
20
|
Kwon H, Kim M, Seo Y, Moon YS, Lee HJ, Lee K, Lee H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2017; 156:172-193. [PMID: 29197748 DOI: 10.1016/j.biomaterials.2017.11.034] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
The field of gene therapy has evolved over the past two decades after the first introduction of nucleic acid drugs, such as plasmid DNA (pDNA). With the development of in vitro transcription (IVT) methods, synthetic mRNA has become an emerging class of gene therapy. IVT mRNA has several advantages over conventional pDNA for the expression of target proteins. mRNA does not require nuclear localization to mediate protein translation. The intracellular process for protein expression is much simpler and there is no potential risk of insertion mutagenesis. Having these advantages, the level of protein expression is far enhanced as comparable to that of viral expression systems. This makes IVT mRNA a powerful alternative gene expression system for various applications in regenerative medicine. In this review, we highlight the synthesis and preparation of IVT mRNA and its therapeutic applications. The article includes the design and preparation of IVT mRNA, chemical modification of IVT mRNA, and therapeutic applications of IVT mRNA in cellular reprogramming, stem cell engineering, and protein replacement therapy. Finally, future perspectives and challenges of IVT mRNA are discussed.
Collapse
Affiliation(s)
- Hyokyoung Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yae Seul Moon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
21
|
Rydzik AM, Warminski M, Sikorski PJ, Baranowski MR, Walczak S, Kowalska J, Zuberek J, Lukaszewicz M, Nowak E, W Claridge TD, Darzynkiewicz E, Nowotny M, Jemielity J. mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Nucleic Acids Res 2017; 45:8661-8675. [PMID: 28666355 PMCID: PMC5587727 DOI: 10.1093/nar/gkx569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Analogues of the mRNA 5'-cap are useful tools for studying mRNA translation and degradation, with emerging potential applications in novel therapeutic interventions including gene therapy. We report the synthesis of novel mono- and dinucleotide cap analogues containing dihalogenmethylenebisphosphonate moiety (i.e. one of the bridging O atom substituted with CCl2 or CF2) and their properties in the context of cellular translational and decapping machineries, compared to phosphate-unmodified and previously reported CH2-substituted caps. The analogues were bound tightly to eukaryotic translation initiation factor 4E (eIF4E), with CCl2-substituted analogues having the highest affinity. When incorporated into mRNA, the CCl2-substituted dinucleotide most efficiently promoted cap-dependent translation. Moreover, the CCl2-analogues were potent inhibitors of translation in rabbit reticulocyte lysate. The crystal structure of eIF4E in complex with the CCl2-analogue revealed a significantly different ligand conformation compared to that of the unmodified cap analogue, which likely contributes to the improved binding. Both CCl2- and CF2- analogues showed lower susceptibility to hydrolysis by the decapping scavenger enzyme (DcpS) and, when incorporated into RNA, conferred stability against major cellular decapping enzyme (Dcp2) to transcripts. Furthermore, the use of difluoromethylene cap analogues was exemplified by the development of 19F NMR assays for DcpS activity and eIF4E binding.
Collapse
Affiliation(s)
- Anna M Rydzik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Sylwia Walczak
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
22
|
Mamot A, Sikorski PJ, Warminski M, Kowalska J, Jemielity J. Azido-Functionalized 5′ Cap Analogues for the Preparation of Translationally Active mRNAs Suitable for Fluorescent Labeling in Living Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Adam Mamot
- University of Warsaw; Centre of New Technologies; Laboratory of Bioorganic Chemistry; Banacha 2c 02-097 Warsaw Poland
- University of Warsaw; Faculty of Chemistry; Pasteura 1 02-093 Warsaw Poland
| | - Pawel J. Sikorski
- University of Warsaw; Centre of New Technologies; Laboratory of Bioorganic Chemistry; Banacha 2c 02-097 Warsaw Poland
| | - Marcin Warminski
- University of Warsaw; Faculty of Physics; Institute of Experimental Physics, Division of Biophysics; Pasteura 5 02-093 Warsaw Poland
| | - Joanna Kowalska
- University of Warsaw; Faculty of Physics; Institute of Experimental Physics, Division of Biophysics; Pasteura 5 02-093 Warsaw Poland
| | - Jacek Jemielity
- University of Warsaw; Centre of New Technologies; Laboratory of Bioorganic Chemistry; Banacha 2c 02-097 Warsaw Poland
| |
Collapse
|
23
|
Mamot A, Sikorski PJ, Warminski M, Kowalska J, Jemielity J. Azido-Functionalized 5' Cap Analogues for the Preparation of Translationally Active mRNAs Suitable for Fluorescent Labeling in Living Cells. Angew Chem Int Ed Engl 2017; 56:15628-15632. [PMID: 29048718 DOI: 10.1002/anie.201709052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 12/18/2022]
Abstract
The 7-methylguanosine (m7 G) cap structure is a unique feature present at the 5' ends of messenger RNAs (mRNAs), and it can be subjected to extensive modifications, resulting in alterations to mRNA properties (e.g. translatability, susceptibility to degradation). It also can provide molecular tools to study mRNA metabolism. We developed new mRNA 5' cap analogues that enable the site-specific labeling of RNA at the 5' end using strain-promoted azide-alkyne cycloaddition (SPAAC) without disrupting the basic function of mRNA in protein biosynthesis. Some of these azide-functionalized compounds are equipped with additional modifications to augment mRNA properties. The application of these tools was demonstrated by labeling translationally active mRNAs in living cells.
Collapse
Affiliation(s)
- Adam Mamot
- University of Warsaw, Centre of New Technologies, Laboratory of Bioorganic Chemistry, Banacha 2c, 02-097, Warsaw, Poland.,University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- University of Warsaw, Centre of New Technologies, Laboratory of Bioorganic Chemistry, Banacha 2c, 02-097, Warsaw, Poland
| | - Marcin Warminski
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Division of Biophysics, Pasteura 5, 02-093, Warsaw, Poland
| | - Joanna Kowalska
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Division of Biophysics, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- University of Warsaw, Centre of New Technologies, Laboratory of Bioorganic Chemistry, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
24
|
Warminski M, Sikorski PJ, Warminska Z, Lukaszewicz M, Kropiwnicka A, Zuberek J, Darzynkiewicz E, Kowalska J, Jemielity J. Amino-Functionalized 5' Cap Analogs as Tools for Site-Specific Sequence-Independent Labeling of mRNA. Bioconjug Chem 2017; 28:1978-1992. [PMID: 28613834 DOI: 10.1021/acs.bioconjchem.7b00291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mRNA is a template for protein biosynthesis, and consequently mRNA transport, translation, and turnover are key elements in the overall regulation of gene expression. Along with growing interest in the mechanisms regulating mRNA decay and localization, there is an increasing need for tools enabling convenient fluorescent labeling or affinity tagging of mRNA. We report new mRNA 5' cap analog-based tools that enable site-specific labeling of RNA within the cap using N-hydroxysuccinimide (NHS) chemistry. We explored two complementary methods: a co-transcriptional labeling method, in which the label is first attached to a cap analog and then incorporated into RNA by in vitro transcription, and a post-transcriptional labeling method, in which an amino-functionalized cap analog is incorporated into RNA followed by chemical labeling of the resulting transcript. After testing the biochemical properties of RNAs carrying the novel modified cap structures, we demonstrated the utility of fluorescently labeled RNAs in decapping assays, RNA decay assays, and RNA visualization in cells. Finally, we also demonstrated that mRNAs labeled by the reported method are translationally active. We envisage that the novel analogs will provide an alternative to radiolabeling of mRNA caps for in vitro studies and open possibilities for new applications related to the study of mRNA fates in vivo.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw , 02-097, Warsaw, Poland
| | - Zofia Warminska
- Centre of New Technologies, University of Warsaw , 02-097, Warsaw, Poland.,College of Interfaculty Individual Studies of Mathematics and Natural Sciences, University of Warsaw , 02-093, Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Anna Kropiwnicka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland.,Centre of New Technologies, University of Warsaw , 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw , 02-097, Warsaw, Poland
| |
Collapse
|
25
|
Warminski M, Sikorski PJ, Kowalska J, Jemielity J. Applications of Phosphate Modification and Labeling to Study (m)RNA Caps. Top Curr Chem (Cham) 2017; 375:16. [PMID: 28116583 PMCID: PMC5396385 DOI: 10.1007/s41061-017-0106-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The cap is a natural modification present at the 5' ends of eukaryotic messenger RNA (mRNA), which because of its unique structural features, mediates essential biological functions during the process of gene expression. The core structural feature of the mRNA cap is an N7-methylguanosine moiety linked by a 5'-5' triphosphate chain to the first transcribed nucleotide. Interestingly, other RNA 5' end modifications structurally and functionally resembling the m7G cap have been discovered in different RNA types and in different organisms. All these structures contain the 'inverted' 5'-5' oligophosphate bridge, which is necessary for interaction with specific proteins and also serves as a cleavage site for phosphohydrolases regulating RNA turnover. Therefore, cap analogs containing oligophosphate chain modifications or carrying spectroscopic labels attached to phosphate moieties serve as attractive molecular tools for studies on RNA metabolism and modification of natural RNA properties. Here, we review chemical, enzymatic, and chemoenzymatic approaches that enable preparation of modified cap structures and RNAs carrying such structures, with emphasis on phosphate-modified mRNA cap analogs and their potential applications.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
26
|
Strenkowska M, Grzela R, Majewski M, Wnek K, Kowalska J, Lukaszewicz M, Zuberek J, Darzynkiewicz E, Kuhn AN, Sahin U, Jemielity J. Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Res 2016; 44:9578-9590. [PMID: 27903882 PMCID: PMC5175369 DOI: 10.1093/nar/gkw896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022] Open
Abstract
Along with a growing interest in mRNA-based gene therapies, efforts are increasingly focused on reaching the full translational potential of mRNA, as a major obstacle for in vivo applications is sufficient expression of exogenously delivered mRNA. One method to overcome this limitation is chemically modifying the 7-methylguanosine cap at the 5′ end of mRNA (m7Gppp-RNA). We report a novel class of cap analogs designed as reagents for mRNA modification. The analogs carry a 1,2-dithiodiphosphate moiety at various positions along a tri- or tetraphosphate bridge, and thus are termed 2S analogs. These 2S analogs have high affinities for translation initiation factor 4E, and some exhibit remarkable resistance against the SpDcp1/2 decapping complex when introduced into RNA. mRNAs capped with 2S analogs combining these two features exhibit high translation efficiency in cultured human immature dendritic cells. These properties demonstrate that 2S analogs are potentially beneficial for mRNA-based therapies such as anti-cancer immunization.
Collapse
Affiliation(s)
- Malwina Strenkowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Maciej Majewski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Katarzyna Wnek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93 Warsaw 02-089, Poland.,Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Andreas N Kuhn
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany.,Translational Oncology (TRON), Freiligrathstraße 12, 55131 Mainz, Germany
| | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131 Mainz, Germany.,Translational Oncology (TRON), Freiligrathstraße 12, 55131 Mainz, Germany
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
27
|
Abstract
In prokaryotic organisms, certain regulatory RNAs have recently been found to be linked to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD) at their 5'-ends. Biochemical and structural investigations of this new caplike RNA modification require synthetic access to pure NAD-RNA. Here we report a chemoenzymatic approach to generate 5'-NAD-capped RNA in high yields and purity under mild conditions. This approach uses unprotected 5'-monophosphate RNA synthesized either chemically or enzymatically, 5',5'-pyrophosphate bond formation by phosphorimidazolide chemistry, and an enzymatic cleanup step. Thus, 5'-NAD-modified RNA can be synthesized independent of length, structure, and nucleotide sequence.
Collapse
Affiliation(s)
- Katharina Höfer
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University , 69120 Heidelberg, Germany
| | - Florian Abele
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University , 69120 Heidelberg, Germany
| | - Jasmin Schlotthauer
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University , 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University , 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Gratia M, Vende P, Charpilienne A, Baron HC, Laroche C, Sarot E, Pyronnet S, Duarte M, Poncet D. Challenging the Roles of NSP3 and Untranslated Regions in Rotavirus mRNA Translation. PLoS One 2016; 11:e0145998. [PMID: 26727111 PMCID: PMC4699793 DOI: 10.1371/journal.pone.0145998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Rotavirus NSP3 is a translational surrogate of the PABP-poly(A) complex for rotavirus mRNAs. To further explore the effects of NSP3 and untranslated regions (UTRs) on rotavirus mRNAs translation, we used a quantitative in vivo assay with simultaneous cytoplasmic NSP3 expression (wild-type or deletion mutant) and electroporated rotavirus-like and standard synthetic mRNAs. This assay shows that the last four GACC nucleotides of viral mRNA are essential for efficient translation and that both the NSP3 eIF4G- and RNA-binding domains are required. We also show efficient translation of rotavirus-like mRNAs even with a 5’UTR as short as 5 nucleotides, while more than eleven nucleotides are required for the 3’UTR. Despite the weak requirement for a long 5’UTR, a good AUG environment remains a requirement for rotavirus mRNAs translation.
Collapse
Affiliation(s)
- Matthieu Gratia
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Patrice Vende
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Annie Charpilienne
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Hilma Carolina Baron
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Cécile Laroche
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Emeline Sarot
- INSERM UMR-1037 - Université de Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Equipe labellisée Ligue Contre le Cancer Toulouse, France
| | - Stéphane Pyronnet
- INSERM UMR-1037 - Université de Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Equipe labellisée Ligue Contre le Cancer Toulouse, France
| | - Mariela Duarte
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
- Université d’Evry Val d’Essonne, Département de Biologie, Evry, France
| | - Didier Poncet
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
29
|
Ziemniak M, Kowalska J, Lukaszewicz M, Zuberek J, Wnek K, Darzynkiewicz E, Jemielity J. Phosphate-modified analogues of m(7)GTP and m(7)Gppppm(7)G-Synthesis and biochemical properties. Bioorg Med Chem 2015; 23:5369-81. [PMID: 26264844 DOI: 10.1016/j.bmc.2015.07.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 01/05/2023]
Abstract
The synthesis and biochemical properties of 17 new mRNA cap analogues are reported. Six of these nucleotides are m(7)GTP derivatives, whereas 11 are 'two headed' tetraphosphate dinucleotides based on a m(7)Gppppm(7)G structure. The compounds contain either a boranophosphate or phosphorothioate moiety in the nucleoside neighbouring position(s) and some of them possess an additional methylene group between β and γ phosphorus atoms. The compounds were prepared by divalent metal chloride-mediated coupling of an appropriate m(7)GMP analogue with a given P(1),P(2)-di(1-imidazolyl) derivative. The analogues were evaluated as tools for studying cap-dependent processes in a number of biochemical assays, including determination of affinity to eukaryotic initiation factor eIF4E, susceptibility to enzymatic hydrolysis, and translational efficiency in vitro. The results indicate that modification in the phosphate chain can increase binding to cap-interacting proteins and provides higher resistance to degradation. Furthermore, modified derivatives of m(7)GTP were found to be potent inhibitors of cap-dependent translation in cell free systems.
Collapse
Affiliation(s)
- Marcin Ziemniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Katarzyna Wnek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
30
|
Warminski M, Warminska Z, Kowalska J, Jemielity J. mRNA Cap Modification through Carbamate Chemistry: Synthesis of Amino- and Carboxy-Functionalised Cap Analogues Suitable for Labelling and Bioconjugation. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex. J Virol 2015; 89:8773-82. [PMID: 26063427 DOI: 10.1128/jvi.01402-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Through its interaction with the 5' translation initiation factor eIF4G, poly(A) binding protein (PABP) facilitates the translation of 5'-capped and 3'-poly(A)-tailed mRNAs. Rotavirus mRNAs are capped but not polyadenylated, instead terminating in a 3' GACC motif that is recognized by the viral protein NSP3, which competes with PABP for eIF4G binding. Upon rotavirus infection, viral, GACC-tailed mRNAs are efficiently translated, while host poly(A)-tailed mRNA translation is, in contrast, severely impaired. To explore the roles of NSP3 in these two opposing events, the translational capabilities of three capped mRNAs, distinguished by either a GACC, a poly(A), or a non-GACC and nonpoly(A) 3' end, have been monitored after electroporation of cells expressing all rotavirus proteins (infected cells) or only NSP3 (stably or transiently transfected cells). In infected cells, we found that the magnitudes of translation induction (GACC-tailed mRNA) and translation reduction [poly(A)-tailed mRNA] both depended on the rotavirus strain used but that translation reduction not genetically linked to NSP3. In transfected cells, even a small amount of NSP3 was sufficient to dramatically enhance GACC-tailed mRNA translation and, surprisingly, to slightly favor the translation of both poly(A)- and nonpoly(A)-tailed mRNAs, likely by stabilizing the eIF4E-eIF4G interaction. These data suggest that NSP3 is a translational surrogate of the PABP-poly(A) complex; therefore, it cannot by itself be responsible for inhibiting the translation of host poly(A)-tailed mRNAs upon rotavirus infection. IMPORTANCE To control host cell physiology and to circumvent innate immunity, many viruses have evolved powerful mechanisms aimed at inhibiting host mRNA translation while stimulating translation of their own mRNAs. How rotavirus tackles this challenge is still a matter of debate. Using rotavirus-infected cells, we show that the magnitude of cellular poly(A) mRNA translation differs with respect to rotavirus strains but is not genetically linked to NSP3. Using cells expressing rotavirus NSP3, we show that NSP3 alone not only dramatically enhances rotavirus-like mRNA translation but also enhances poly(A) mRNA translation rather than inhibiting it, likely by stabilizing the eIF4E-eIF4G complex. Thus, the inhibition of cellular polyadenylated mRNA translation during rotavirus infection cannot be attributed solely to NSP3 and is more likely the result of global competition between viral and host mRNAs for the cellular translation machinery.
Collapse
|
32
|
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:471-99. [DOI: 10.1002/wrna.1288] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH; Mainz Germany
- TRON gGmbH; Mainz Germany
| |
Collapse
|
33
|
Nowakowska M, Kowalska J, Martin F, d'Orchymont A, Zuberek J, Lukaszewicz M, Darzynkiewicz E, Jemielity J. Cap analogs containing 6-thioguanosine--reagents for the synthesis of mRNAs selectively photo-crosslinkable with cap-binding biomolecules. Org Biomol Chem 2015; 12:4841-7. [PMID: 24763507 DOI: 10.1039/c4ob00059e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Numerous biomolecules recognize the 7-methylguanosine cap structure present at the 5' ends of eukaryotic mRNAs. Photo-crosslinking is a valuable technique to study these interactions. We report three anti-reverse cap analogs containing a photo-activable nucleoside, 6-thioguanosine ((6S)G), that enable the synthesis of capped RNAs with (6S)G positioned exclusively as the first transcribed nucleotide. The effect of the 6-thioguanosine moiety on binding to the translation factor eIF4E and the efficiency of mRNA translation was determined. The utility of mRNAs with a (6S)G-modified cap in crosslinking experiments is shown by mapping the histone H4 cap-binding pocket.
Collapse
Affiliation(s)
- Monika Nowakowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hofer A, Cremosnik GS, Müller AC, Giambruno R, Trefzer C, Superti-Furga G, Bennett KL, Jessen HJ. A Modular Synthesis of Modified Phosphoanhydrides. Chemistry 2015; 21:10116-22. [PMID: 26033174 DOI: 10.1002/chem.201500838] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/11/2022]
Abstract
Phosphoanhydrides (P-anhydrides) are ubiquitously occurring modifications in nature. Nucleotides and their conjugates, for example, are among the most important building blocks and signaling molecules in cell biology. To study and manipulate their biological functions, a diverse range of analogues have been developed. Phosphate-modified analogues have been successfully applied to study proteins that depend on these abundant cellular building blocks, but very often both the preparation and purification of these molecules are challenging. This study discloses a general access to P-anhydrides, including different nucleotide probes, that greatly facilitates their preparation and isolation. The convenient and scalable synthesis of, for example, (18) O labeled nucleoside triphosphates holds promise for future applications in phosphoproteomics.
Collapse
Affiliation(s)
- Alexandre Hofer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Gregor S Cremosnik
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA (UK)
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Roberto Giambruno
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Claudia Trefzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Henning J Jessen
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland).
| |
Collapse
|
35
|
Baranowski MR, Nowicka A, Rydzik AM, Warminski M, Kasprzyk R, Wojtczak BA, Wojcik J, Claridge TDW, Kowalska J, Jemielity J. Synthesis of fluorophosphate nucleotide analogues and their characterization as tools for ¹⁹F NMR studies. J Org Chem 2015; 80:3982-97. [PMID: 25816092 DOI: 10.1021/acs.joc.5b00337] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To broaden the scope of existing methods based on (19)F nucleotide labeling, we developed a new method for the synthesis of fluorophosphate (oligo)nucleotide analogues containing an O to F substitution at the terminal position of the (oligo)phosphate moiety and evaluated them as tools for (19)F NMR studies. Using three efficient and comprehensive synthetic approaches based on phosphorimidazolide chemistry and tetra-n-butylammonium fluoride, fluoromonophosphate, or fluorophosphate imidazolide as fluorine sources, we prepared over 30 fluorophosphate-containing nucleotides, varying in nucleobase type (A, G, C, U, m(7)G), phosphate chain length (from mono to tetra), and presence of additional phosphate modifications (thio, borano, imido, methylene). Using fluorophosphate imidazolide as fluorophosphorylating reagent for 5'-phosphorylated oligos we also synthesized oligonucleotide 5'-(2-fluorodiphosphates), which are potentially useful as (19)F NMR hybridization probes. The compounds were characterized by (19)F NMR and evaluated as (19)F NMR molecular probes. We found that fluorophosphate nucleotide analogues can be used to monitor activity of enzymes with various specificities and metal ion requirements, including human DcpS enzyme, a therapeutic target for spinal muscular atrophy. The compounds can also serve as reporter ligands for protein binding studies, as exemplified by studying interaction of fluorophosphate mRNA cap analogues with eukaryotic translation initiation factor (eIF4E).
Collapse
Affiliation(s)
- Marek R Baranowski
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Anna Nowicka
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,§Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anna M Rydzik
- ‡Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Marcin Warminski
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Renata Kasprzyk
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Blazej A Wojtczak
- §Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Jacek Wojcik
- ∥Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Timothy D W Claridge
- ‡Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Joanna Kowalska
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Jacek Jemielity
- §Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
36
|
Kowalska J, Wypijewska del Nogal A, Darzynkiewicz ZM, Buck J, Nicola C, Kuhn AN, Lukaszewicz M, Zuberek J, Strenkowska M, Ziemniak M, Maciejczyk M, Bojarska E, Rhoads RE, Darzynkiewicz E, Sahin U, Jemielity J. Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes. Nucleic Acids Res 2014; 42:10245-64. [PMID: 25150148 PMCID: PMC4176373 DOI: 10.1093/nar/gku757] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Modified mRNA cap analogs aid in the study of mRNA-related processes and may enable creation of novel therapeutic interventions. We report the synthesis and properties of 11 dinucleotide cap analogs bearing a single boranophosphate modification at either the α-, β- or γ-position of the 5',5'-triphosphate chain. The compounds can potentially serve either as inhibitors of translation in cancer cells or reagents for increasing expression of therapeutic proteins in vivo from exogenous mRNAs. The BH3-analogs were tested as substrates and binding partners for two major cytoplasmic cap-binding proteins, DcpS, a decapping pyrophosphatase, and eIF4E, a translation initiation factor. The susceptibility to DcpS was different between BH3-analogs and the corresponding analogs containing S instead of BH3 (S-analogs). Depending on its placement, the boranophosphate group weakened the interaction with DcpS but stabilized the interaction with eIF4E. The first of the properties makes the BH3-analogs more stable and the second, more potent as inhibitors of protein biosynthesis. Protein expression in dendritic cells was 2.2- and 1.7-fold higher for mRNAs capped with m2 (7,2'-O)GppBH3pG D1 and m2 (7,2'-O)GppBH3pG D2, respectively, than for in vitro transcribed mRNA capped with m2 (7,3'-O)GpppG. Higher expression of cancer antigens would make mRNAs containing m2 (7,2'-O)GppBH3pG D1 and m2 (7,2'-O)GppBH3pG D2 favorable for anticancer immunization.
Collapse
Affiliation(s)
- Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Anna Wypijewska del Nogal
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Zbigniew M Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Janina Buck
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | | | - Andreas N Kuhn
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany TRON-Translational Oncology at the University Medical Center Mainz, Germany
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Malwina Strenkowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Marcin Ziemniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | | | - Robert E Rhoads
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland Centre of New Technologies, University of Warsaw, Poland
| | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany TRON-Translational Oncology at the University Medical Center Mainz, Germany
| | - Jacek Jemielity
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland Centre of New Technologies, University of Warsaw, Poland
| |
Collapse
|
37
|
Zochowska M, Piguet AC, Jemielity J, Kowalska J, Szolajska E, Dufour JF, Chroboczek J. Virus-like particle-mediated intracellular delivery of mRNA cap analog with in vivo activity against hepatocellular carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:67-76. [PMID: 25101883 DOI: 10.1016/j.nano.2014.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/17/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
Adenovirus dodecahedron (Dd), a nanoparticulate proteinaceous biodegradable virus-like particle (VLP), was used as a vector for delivery of an oncogene inhibitor to hepatocellular carcinoma (HCC) rat orthotopic model. Initiation factor eIF4E is an oncogene with elevated expression in human cancers. Cell-impermeant eIF4E inhibitor, cap structure analog (cap) and anti-cancer antibiotic doxorubicin (Dox) were delivered as Dd conjugates. Dd-cap and Dd-dox inhibited cancer cell culture proliferation up to 50 and 84%, respectively, while with free Dox similar results could be obtained only at a 5 times higher concentration. In animal HCC model the combination treatment of Dd-cap/Dd-dox caused 40% inhibition of tumor growth. Importantly, the level of two pro-oncogenes, eIF4E and c-myc, was significantly diminished in tumor sections of treated rats. Attachment to Dd, a virus-like particle, permitted the first demonstration of cap analog intracellular delivery and resulted in improved doxorubicin delivery leading to statistically significant inhibition of HCC tumor growth.
Collapse
Affiliation(s)
- Monika Zochowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anne-Christine Piguet
- Hepatology, Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Jacek Jemielity
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jean-François Dufour
- University Clinics of Visceral Surgery and Medicine, Inselspital Berne, Berne, Switzerland
| | - Jadwiga Chroboczek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Therex, TIMC-IMAG, CNRS, Université Joseph Fourier, La Tronche, France.
| |
Collapse
|
38
|
Milac AL, Bojarska E, Wypijewska del Nogal A. Decapping Scavenger (DcpS) enzyme: advances in its structure, activity and roles in the cap-dependent mRNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:452-62. [PMID: 24742626 DOI: 10.1016/j.bbagrm.2014.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/27/2023]
Abstract
Decapping Scavenger (DcpS) enzyme rids eukaryotic cells of short mRNA fragments containing the 5' mRNA cap structure, which appear in the 3'→5' mRNA decay pathway, following deadenylation and exosome-mediated turnover. The unique structural properties of the cap, which consists of 7-methylguanosine attached to the first transcribed nucleoside by a triphosphate chain (m(7)GpppN), guarantee its resistance to non-specific exonucleases. DcpS enzymes are dimers belonging to the Histidine Triad (HIT) superfamily of pyrophosphatases. The specific hydrolysis of m(7)GpppN by DcpS yields m(7)GMP and NDP. By precluding inhibition of other cap-binding proteins by short m(7)GpppN-containing mRNA fragments, DcpS plays an important role in the cap-dependent mRNA metabolism. Over the past decade, lots of new structural, biochemical and biophysical data on DcpS has accumulated. We attempt to integrate these results, referring to DcpS enzymes from different species. Such a synergistic characteristic of the DcpS structure and activity might be useful for better understanding of the DcpS catalytic mechanism, its regulatory role in gene expression, as well as for designing DcpS inhibitors of potential therapeutic application, e.g. in spinal muscular atrophy.
Collapse
Affiliation(s)
- Adina L Milac
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy (IBAR), Splaiul Independentei 296, 060031, Bucharest 17, Romania
| | - Elzbieta Bojarska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki & Wigury 93, 02-089 Warsaw, Poland.
| | - Anna Wypijewska del Nogal
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki & Wigury 93, 02-089 Warsaw, Poland.
| |
Collapse
|
39
|
Abstract
Cap analogs are chemically modified derivatives of the unique cap structure present at the 5´ end of all eukaryotic mRNAs and several non-coding RNAs. Until recently, cap analogs have served primarily as tools in the study of RNA metabolism. Continuing advances in our understanding of cap biological functions (including RNA stabilization, pre-mRNA splicing, initiation of mRNA translation, as well as cellular transport of mRNAs and snRNAs) and the consequences of the disruption of these processes - resulting in serious medical disorders - have opened new possibilities for pharmaceutical applications of these compounds. In this review, the medicinal potential of cap analogs in areas, such as cancer treatment (including eIF4E targeting and mRNA-based immunotherapy), spinal muscular atrophy treatment, antiviral therapy and the improvement of the localization of nucleus-targeting drugs, are highlighted. Advances achieved to date, challenges, plausible solutions and prospects for the future development of cap analog-based drug design are described.
Collapse
|
40
|
Wypijewska del Nogal A, Surleac MD, Kowalska J, Lukaszewicz M, Jemielity J, Bisaillon M, Darzynkiewicz E, Milac AL, Bojarska E. Analysis of decapping scavenger cap complex using modified cap analogs reveals molecular determinants for efficient cap binding. FEBS J 2013; 280:6508-27. [PMID: 24119043 DOI: 10.1111/febs.12553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022]
Abstract
Decapping scavenger (DcpS) assists in precluding inhibition of cap-binding proteins by hydrolyzing cap species remaining after mRNA 3'→5' degradation. Its significance was reported in splicing, translation initiation and microRNA turnover. Here we examine the structure and binding mode of DcpS from Caenorhabditis elegans (CeDcpS) using a large collection of chemically modified methylenebis(phosphonate), imidodiphosphate and phosphorothioate cap analogs. We determine that CeDcpS is a homodimer and propose high accuracy structural models of apo- and m(7) GpppG-bound forms. The analysis of CeDcpS regioselectivity uncovers that the only site of hydrolysis is located between the β and γ phosphates. Structure-affinity relationship studies of cap analogs for CeDcpS reveal molecular determinants for efficient cap binding: a strong dependence on the type of substituents in the phosphate chain, and reduced binding affinity for either methylated hydroxyl groups of m(7) Guo or an extended triphosphate chain. Docking analysis of cap analogs in the CeDcpS active site explains how both phosphate chain mobility and the orientation in the cap-binding pocket depend on the number of phosphate groups, the substituent type and the presence of the second nucleoside. Finally, the comparison of CeDcpS with its well known human homolog provides general insights into DcpS-cap interactions.
Collapse
Affiliation(s)
- Anna Wypijewska del Nogal
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Strenkowska M, Wanat P, Ziemniak M, Jemielity J, Kowalska J. Preparation of synthetically challenging nucleotides using cyanoethyl P-imidazolides and microwaves. Org Lett 2012; 14:4782-5. [PMID: 22966945 DOI: 10.1021/ol302071f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a general method for the elongation of nucleoside oligophosphate chains by means of cyanoethyl (CE) phosphorimidazolides. Though the method requires a phosphorylation and subsequent deprotection reaction, both steps could be achieved in one pot without isolation/purification of the initial phosphorylation product. We have also found that pyrophosphate bond formation by this method is significantly accelerated by microwave irradiation.
Collapse
Affiliation(s)
- Malwina Strenkowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|
42
|
Szczepaniak SA, Zuberek J, Darzynkiewicz E, Kufel J, Jemielity J. Affinity resins containing enzymatically resistant mRNA cap analogs--a new tool for the analysis of cap-binding proteins. RNA (NEW YORK, N.Y.) 2012; 18:1421-32. [PMID: 22589334 PMCID: PMC3383972 DOI: 10.1261/rna.032078.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/12/2012] [Indexed: 05/21/2023]
Abstract
Cap-binding proteins have been routinely isolated using m⁷GTP-Sepharose; however, this resin is inefficient for proteins such as DcpS (scavenger decapping enzyme), which interacts not only with the 7-methylguanosine, but also with the second cap base. In addition, DcpS purification may be hindered by the reduced resin capacity due to the ability of DcpS to hydrolyze m⁷GTP. Here, we report the synthesis of new affinity resins, m⁷GpCH₂pp- and m⁷GpCH₂ppA-Sepharoses, with attached cap analogs resistant to hydrolysis by DcpS. Biochemical tests showed that these matrices, as well as a hydrolyzable m⁷GpppA-Sepharose, bind recombinant mouse eIF4E²⁸⁻²¹⁷ specifically and at high capacity. In addition, purification of cap-binding proteins from yeast extracts confirmed the presence of all expected cap-binding proteins, including DcpS in the case of m⁷GpCH₂pp- and m⁷GpCH₂ppA-Sepharoses. In contrast, binding studies in vitro demonstrated that recombinant human DcpS efficiently bound only m⁷GpCH₂ppA-Sepharose. Our data prove the applicability of these novel resins, especially m⁷GpCH₂ppA-Sepharose, in biochemical studies such as the isolation and identification of cap-binding proteins from different organisms.
Collapse
Affiliation(s)
- Sylwia Anna Szczepaniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Jacek Jemielity
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| |
Collapse
|
43
|
Rydzik AM, Kulis M, Lukaszewicz M, Kowalska J, Zuberek J, Darzynkiewicz ZM, Darzynkiewicz E, Jemielity J. Synthesis and properties of mRNA cap analogs containing imidodiphosphate moiety--fairly mimicking natural cap structure, yet resistant to enzymatic hydrolysis. Bioorg Med Chem 2012; 20:1699-710. [PMID: 22316555 DOI: 10.1016/j.bmc.2012.01.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 11/19/2022]
Abstract
We describe synthesis and properties of eight dinucleotide mRNA 5' cap analogs containing imidodiphosphate moiety within 5',5'-tri- or tetraphosphate bridge (NH-analogs). The compounds were obtained by coupling an appropriate nucleoside 5'-imidodiphosphate with nucleotide P-imidazolide mediated by divalent metal chloride in anhydrous DMF. To evaluate the novel compounds as tools for studying cap-dependent processes, we determined their binding affinities for eukaryotic translation initiation factor 4E, susceptibilities to decapping pyrophosphatase DcpS and, for non-hydrolysable analogs, binding affinities to this enzyme. The results indicate that the O to NH substitution in selected positions of oligophosphate bridge ensures resistance to enzymatic decapping and suggest that interactions of NH-analogs with cap binding proteins fairly mimic interactions of unmodified parent compounds. Finally, we identified NH-analogs as potent inhibitors of cap-dependent translation in cell free system, and evaluated their utility as reagents for obtaining 5' capped mRNAs in vitro to be rather moderate.
Collapse
Affiliation(s)
- Anna M Rydzik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Strenkowska M, Kowalska J, Lukaszewicz M, Zuberek J, Su W, Rhoads RE, Darzynkiewicz E, Jemielity J. Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications. NEW J CHEM 2010; 34:993-1007. [PMID: 20711517 PMCID: PMC2918917 DOI: 10.1039/b9nj00644c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe the chemical synthesis and preliminary biophysical and biochemical characterization of a series of mRNA 5' end (cap) analogs designed as reagents for obtaining mRNA molecules with augmented translation efficiency and stability in vivo and as useful tools to study mRNA metabolism. The analogs share three structural features: (i) 5',5'- bridge elongated to tetraphosphate to increase their affinity to translation initiation factor eIF4E (ii) a single phosphorothioate modification at either the α, β, γ or δ-position of the tetraphosphate to decrease their susceptibility to enzymatic degradation and/or to modulate their interaction with specific proteins and (iii) a 2'-O-methyl group in the ribose of 7-methylguanosine, characteristic to Anti-Reverse Cap Analogs (ARCAs), which are incorporated into mRNA during in vitro transcription exclusively in the correct orientation. The dinucleotides bearing modified tetraphosphate bridge were synthesized by ZnCl(2) mediated coupling between two mononucleotide subunits with isolated yields of 30-65%. The preliminary biochemical results show that mRNAs capped with new analogs are 2.5-4.5 more efficiently translated in a cell free system than m(7)GpppG-capped mRNAs, which makes them promising candidates for RNA-based therapeutic applications such as gene therapy and anti-cancer vaccines.
Collapse
Affiliation(s)
- Malwina Strenkowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland. Fax: 48 22 5540771; Tel: 48 22 5540774
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland. Fax: 48 22 5540771; Tel: 48 22 5540774
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland. Fax: 48 22 5540771; Tel: 48 22 5540774
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland. Fax: 48 22 5540771; Tel: 48 22 5540774
| | - Wei Su
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA 71130-3932, USA
| | - Robert E. Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA 71130-3932, USA
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland. Fax: 48 22 5540771; Tel: 48 22 5540774
| | - Jacek Jemielity
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland. Fax: 48 22 5540771; Tel: 48 22 5540774
| |
Collapse
|
45
|
Jemielity J, Kowalska J, Rydzik AM, Darzynkiewicz E. Synthetic mRNA cap analogs with a modified triphosphate bridge – synthesis, applications and prospects. NEW J CHEM 2010. [DOI: 10.1039/c0nj00041h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|