1
|
Silva J, Spiess R, Marchesi A, Flitsch SL, Gough JE, Webb SJ. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. J Mater Chem B 2022; 10:5016-5027. [PMID: 35723603 PMCID: PMC9258907 DOI: 10.1039/d2tb00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the β-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, β4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.
Collapse
Affiliation(s)
- Joana Silva
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Reynard Spiess
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Andrea Marchesi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
2
|
Damm D, Kostka K, Weingärtner C, Wagner JT, Rojas-Sánchez L, Gensberger-Reigl S, Sokolova V, Überla K, Epple M, Temchura V. Covalent coupling of HIV-1 glycoprotein trimers to biodegradable calcium phosphate nanoparticles via genetically encoded aldehyde-tags. Acta Biomater 2022; 140:586-600. [PMID: 34968725 DOI: 10.1016/j.actbio.2021.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
The usage of antigen-functionalized nanoparticles has become a major focus in the field of experimental HIV-1 vaccine research during the last decade. Various molecular mechanisms to couple native-like trimers of the HIV-1 envelope protein (Env) onto nanoparticle surfaces have been reported, but many come with disadvantages regarding the coupling efficiency and stability. In this study, a short amino acid sequence ("aldehyde-tag") was introduced at the C-terminus of a conformationally stabilized native-like Env. The post-translational conversion of a tag-associated cysteine to formylglycine creates a site-specific aldehyde group without alteration of the Env antigenicity. This aldehyde group was further utilized for bioconjugation of Env trimers. We demonstrated that the low acidic environment necessary for this bioconjugation is not affecting the trimer conformation. Furthermore, we developed a two-step coupling method for pH-sensitive nanoparticles. To this end, we conjugated aldehyde-tagged Env with Propargyl-PEG3-aminooxy linker (oxime ligation; Step-one) and coupled these conjugates by copper-catalyzed azide-alkyne cycloaddition (Click reaction; Step-two) to calcium phosphate nanoparticles (CaPs) functionalized with terminal azide groups. CaPs displaying orthogonally arranged Env trimers on their surface (o-CaPs) were superior in activation of Env-specific B-cells (in vitro) and induction of Env-specific antibody responses (in vivo) compared to CaPs with Env trimers coupled in a randomly oriented manner. Taken together, we present a reliable method for the site-specific, covalent coupling of HIV-1 Env native-like trimers to the surface of nanoparticle delivery systems. This method can be broadly applied for functionalization of nanoparticle platforms with conformationally stabilized candidate antigens for both vaccination and diagnostic approaches. STATEMENT OF SIGNIFICANCE: During the last decade antigen-functionalized nanoparticles have become a major focus in the field of experimental HIV-1 vaccines. Rational design led to the production of conformationally stabilized HIV-1 envelope protein (Env) trimers - the only target for the humoral immune system. Various molecular mechanisms to couple Env trimers onto nanoparticle surfaces have been reported, but many come with disadvantages regarding the coupling efficiency and stability. In this paper, we describe a highly selective bio-conjugation of Env trimers to the surface of medically relevant calcium phosphate nanoparticles. This method maintains the native-like protein conformation and has a broad potential application in functionalization of nanoparticle platforms with stabilized candidate antigens (including stabilized spike proteins of coronaviruses) for both vaccination and diagnostic approaches.
Collapse
Affiliation(s)
- D Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - K Kostka
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - C Weingärtner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - J T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - L Rojas-Sánchez
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - S Gensberger-Reigl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - V Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - K Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - M Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - V Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany.
| |
Collapse
|
3
|
Sibakoti TR, Stinger CR, Adhihetty PK, Zamborini FP, Nantz MH. Tunable Aminooxy-Functionalized Monolayer-Protected Gold Clusters for Non-Polar or Aqueous Oximation Reactions. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2019; 36:1900093. [PMID: 33299268 PMCID: PMC7723347 DOI: 10.1002/ppsc.201900093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/10/2023]
Abstract
Aminooxy (-ONH2) groups are well known for their chemoselective reactions with carbonyl compounds, specifically aldehydes and ketones. The versatility of aminooxy chemistry has proven to be an attractive feature that continues to stimulate new applications. This work describes application of aminooxy 'click chemistry' on the surface of gold nanoparticles. We present here a trifunctional amine-containing aminooxy alkane thiol ligand for use in the functionalization of gold monolayer protected clusters (Au MPCs). Diethanolamine is readily transformed into an organic-soluble aminooxy thiol (AOT) ligand using a short synthetic path. The synthesized AOT ligand was coated on ≤ 2 nm diameter hexanethiolate (C6S)-capped Au MPCs using a ligand exchange protocol to afford organic-soluble AOT/C6S (1:1 ratio) Au mixed monolayer protected clusters (MMPCs). This work describes the synthesis of Au(C6S)(AOT) MMPCs and representative oximation reactions with various types of aldehyde-containing molecules, highlighting the ease and versatility of the chemistry and how amine protonation can be used to switch solubility characteristics.
Collapse
Affiliation(s)
- Tirtha R Sibakoti
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Colton R Stinger
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | | | - Francis P Zamborini
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| |
Collapse
|
4
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
5
|
Baudendistel OR, Wieland DE, Schmidt MS, Wittmann V. Real-Time NMR Studies of Oxyamine Ligations of Reducing Carbohydrates under Equilibrium Conditions. Chemistry 2016; 22:17359-17365. [DOI: 10.1002/chem.201603369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Oliver R. Baudendistel
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Daniel E. Wieland
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Magnus S. Schmidt
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Valentin Wittmann
- Department of Chemistry; Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| |
Collapse
|
6
|
Hamagami H, Kumazoe M, Yamaguchi Y, Fuse S, Tachibana H, Tanaka H. 6-Azido-6-deoxy-l
-idose as a Hetero-Bifunctional Spacer for the Synthesis of Azido-Containing Chemical Probes. Chemistry 2016; 22:12884-90. [DOI: 10.1002/chem.201602044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Hiroki Hamagami
- Department of Chemical Science and Engineering; School of Material and Chemical Technology; Tokyo Institute of Technology; 2-12-1-H101 Ookayama Meguro Tokyo 152-8552 Japan
| | - Motofumi Kumazoe
- Department of Bioscience and Biotechnology; Faculty of Agriculture; Kyushu University; 6-10-1 Hakozaki Fukuoka 812-8581 Japan
| | - Yoshiki Yamaguchi
- RIKEN-Max-Planck Joint Research Center, for Systems Chemical Biology; RIKEN Global Research Cluster; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Shinichiro Fuse
- Department of Chemical Science and Engineering; School of Material and Chemical Technology; Tokyo Institute of Technology; 2-12-1-H101 Ookayama Meguro Tokyo 152-8552 Japan
- Laboratory for Chemistry and Life Science; Tokyo Institute of Technology; 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Hirofumi Tachibana
- Department of Bioscience and Biotechnology; Faculty of Agriculture; Kyushu University; 6-10-1 Hakozaki Fukuoka 812-8581 Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering; School of Material and Chemical Technology; Tokyo Institute of Technology; 2-12-1-H101 Ookayama Meguro Tokyo 152-8552 Japan
| |
Collapse
|
7
|
Yu M, Di Y, Zhang Y, Zhang Y, Guo J, Lu H, Wang C. Fabrication of Alkoxyamine-Functionalized Magnetic Core-Shell Microspheres via Reflux Precipitation Polymerization for Glycopeptide Enrichment. Polymers (Basel) 2016; 8:E74. [PMID: 30979171 PMCID: PMC6432552 DOI: 10.3390/polym8030074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
As a facile method to prepare hydrophilic polymeric microspheres, reflux precipitation polymerization has been widely used for preparation of polymer nanogels. In this article, we synthesized a phthalamide-protected N-aminooxy methyl acrylamide (NAMAm-p) for preparation of alkoxyamine-functionalized polymer composite microspheres via reflux precipitation polymerization. The particle size and functional group density of the composite microspheres could be adjusted by copolymerization with the second monomers, N-isopropyl acrylamide, acrylic acid or 2-hydroxyethyl methacrylate. The resultant microspheres have been characterized by TEM, FT-IR, TGA and DLS. The experimental results showed that the alkoxyamine group density of the microspheres could reach as high as 1.49 mmol/g, and these groups showed a great reactivity with ketone/aldehyde compounds. With the aid of magnetic core, the hybrid microspheres could capture and magnetically isolate glycopeptides from the digested mixture of glycopeptides and non-glycopeptides at a 1:100 molar ratio. After that, we applied the composite microspheres to profile the glycol-proteome of a normal human serum sample, 95 unique glycopeptides and 64 glycoproteins were identified with these enrichment substrates in a 5 μL of serum sample.
Collapse
Affiliation(s)
- Meng Yu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Yi Di
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, China.
| | - Ying Zhang
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, China.
| | - Yuting Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Jia Guo
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Haojie Lu
- Institutes of Biomedical Sciences and Department of Chemistry, Fudan University, Shanghai 200032, China.
| | - Changchun Wang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
Abstract
The synthesis and chemical and physicochemical properties as well as biological and medical applications of various hydroxylamine-functionalized carbohydrate derivatives are summarized.
Collapse
Affiliation(s)
- N. Chen
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| | - J. Xie
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| |
Collapse
|
9
|
Deng Y, Zou T, Tao X, Semetey V, Trepout S, Marco S, Ling J, Li MH. Poly(ε-caprolactone)-block-polysarcosine by Ring-Opening Polymerization of Sarcosine N-Thiocarboxyanhydride: Synthesis and Thermoresponsive Self-Assembly. Biomacromolecules 2015; 16:3265-74. [PMID: 26388179 DOI: 10.1021/acs.biomac.5b00930] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biocompatible amphiphilic block copolymers composed of polysarcosine (PSar) and poly(ε-caprolactone) (PCL) were synthesized using ring-opening polymerization of sarcosine N-thiocarboxyanhydride initiated by oxyamine-ended PCL and characterized by NMR, SEC, and DSC. Self-assembling of two triblock copolymers PSar8-b-PCL28-b-PSar8 (CS7) and PSar16-b-PCL40-b-PSar16 (CS10) in dilute solution was studied in detail toward polymersome formation using thin-film hydration and nanoprecipitation techniques. A few giant vesicles were obtained by thin-film hydration from both copolymers and visualized by confocal laser scanning microscope. Unilamellar sheets and nanofibers (with 8-10 nm thickness or diameter) were obtained by nanoprecipitation at room temperature and observed by Cryo-TEM. These lamellae and fibrous structures were transformed into worm-like cylinders and spheres (D∼30-100 nm) after heating to 65 °C (>Tm,PCL). Heating CS10 suspensions to 90 °C led eventually to multilamellar polymersomes (D∼100-500 nm). Mechanism II, where micelles expand to vesicles through water diffusion and hydrophilic core forming, was proposed for polymersome formation. A cell viability test confirmed the self-assemblies were not cytotoxic.
Collapse
Affiliation(s)
- Yangwei Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 310027 Hangzhou, China.,Institut Curie - CNRS - Université Pierre and Marie Curie , Laboratoire Physico-Chimie Curie, UMR168, 26 Rue d'Ulm, 75248 Paris, France
| | - Tao Zou
- Institut Curie - CNRS - Université Pierre and Marie Curie , Laboratoire Physico-Chimie Curie, UMR168, 26 Rue d'Ulm, 75248 Paris, France
| | - Xinfeng Tao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 310027 Hangzhou, China
| | - Vincent Semetey
- Institut Curie - CNRS - Université Pierre and Marie Curie , Laboratoire Physico-Chimie Curie, UMR168, 26 Rue d'Ulm, 75248 Paris, France.,Institut de Recherche de Chimie Paris, UMR8247, CNRS - Chimie ParisTech (ENSCP) , 11 rue Pierre et Marie Curie, 75231 Paris, France
| | | | - Sergio Marco
- Institut Curie, INSERM U1196, 91405 Orsay cedex, France
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 310027 Hangzhou, China
| | - Min-Hui Li
- Institut Curie - CNRS - Université Pierre and Marie Curie , Laboratoire Physico-Chimie Curie, UMR168, 26 Rue d'Ulm, 75248 Paris, France.,Institut de Recherche de Chimie Paris, UMR8247, CNRS - Chimie ParisTech (ENSCP) , 11 rue Pierre et Marie Curie, 75231 Paris, France
| |
Collapse
|
10
|
Aykaç A, Martos-Maldonado MC, Casas-Solvas JM, Quesada-Soriano I, García-Maroto F, García-Fuentes L, Vargas-Berenguel A. β-Cyclodextrin-bearing gold glyconanoparticles for the development of site specific drug delivery systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:234-242. [PMID: 24313322 DOI: 10.1021/la403454p] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three novel gold nanoparticles containing multiple long, flexible linkers decorated with lactose, β-cyclodextrin, and both simultaneously have been prepared. The interaction of such nanoparticles with β-d-galactose-recognizing lectins peanut agglutinin (PNA) and human galectin-3 (Gal-3) was demonstrated by UV-vis studies. Gal-3 is well-known to be overexpressed in several human tumors and can act as a biorecognizable target. This technique also allowed us to estimate their loading capability toward the anticancer drug methotrexate (MTX). Both results make these glyconanoparticles potential site-specific delivery systems for anticancer drugs.
Collapse
Affiliation(s)
- Ahmet Aykaç
- Department of Chemistry and Physics, University of Almería , Carretera de Sacramento s/n, 04120 Almería, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Kopitzki S, Thiem J. Short Synthetic Route to Benzaldehyde-Functionalized Idose and Talose Derivatives by Acetoxonium Ion Rearrangements. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Regioselective fluorescent labeling of N,N,N-trimethyl chitosan via oxime formation. Carbohydr Polym 2012; 90:1273-80. [DOI: 10.1016/j.carbpol.2012.06.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/14/2012] [Accepted: 06/23/2012] [Indexed: 11/23/2022]
|
13
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2807] [Impact Index Per Article: 215.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Styslinger TJ, Zhang N, Bhatt VS, Pettit N, Palmer AF, Wang PG. Site-selective glycosylation of hemoglobin with variable molecular weight oligosaccharides: potential alternative to PEGylation. J Am Chem Soc 2012; 134:7507-15. [PMID: 22489605 PMCID: PMC3353419 DOI: 10.1021/ja300893t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Poly(ethylene glycol) (PEG) conjugation (i.e., PEGylation) is a commonly used strategy to increase the circulatory half-life of therapeutic proteins and colloids; however, few viable alternatives exist to replicate its functions. Herein, we report a method for the rapid site-selective glycosylation of proteins with variously sized carbohydrates, up to a molecular weight (MW) of 10,000, thus serving as a potential alternative for PEGylation. More importantly, the method developed has two unique features. First, traditional protecting group strategies that typically accompany the modification of the carbohydrate fragments are circumvented, allowing for the facile site-selective glycosylation of a desired protein with variously sized glycans. Second, the methodology employed is not limited by oligosaccharide size; consequently, glycans of MW similar to that of PEG, used in the PEGylation of therapeutic proteins, can be employed. To demonstrate the usefulness of this technology, hemoglobin (Hb) was site-selectively glycosylated with a series of carbohydrates of increasing MW (from 504 to ∼10,000). Hb was selected on the basis of the vast wealth of biochemical and biophysical knowledge present in the literature and because of its use as a precursor in the synthesis/formulation of artificial red blood cell substitutes. Following the successful site-selective glycosylation of Hb, the impact of increasing the glycan MW on Hb's biophysical properties was investigated in vitro.
Collapse
Affiliation(s)
- Thomas J Styslinger
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 2011; 22:825-58. [PMID: 21585205 DOI: 10.1021/bc200065z] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interest in developing diverse nanoparticle (NP)-biological composite materials continues to grow almost unabated. This is motivated primarily by the desire to simultaneously exploit the properties of both NP and biological components in new hybrid devices or materials that can be applied in areas ranging from energy harvesting and nanoscale electronics to biomedical diagnostics. The utility and effectiveness of these composites will be predicated on the ability to assemble these structures with control over NP/biomolecule ratio, biomolecular orientation, biomolecular activity, and the separation distance within the NP-bioconjugate architecture. This degree of control will be especially critical in creating theranostic NP-bioconjugates that, as a single vector, are capable of multiple functions in vivo, including targeting, image contrast, biosensing, and drug delivery. In this review, a perspective is given on current and developing chemistries that can provide improved control in the preparation of NP-bioconjugates. The nanoscale properties intrinsic to several prominent NP materials are briefly described to highlight the motivation behind their use. NP materials of interest include quantum dots, carbon nanotubes, viral capsids, liposomes, and NPs composed of gold, lanthanides, silica, polymers, or magnetic materials. This review includes a critical discussion on the design considerations for NP-bioconjugates and the unique challenges associated with chemistry at the biological-nanoscale interface-the liabilities of traditional bioconjugation chemistries being particularly prominent therein. Select bioorthogonal chemistries that can address these challenges are reviewed in detail, and include chemoselective ligations (e.g., hydrazone and Staudinger ligation), cycloaddition reactions in click chemistry (e.g., azide-alkyne cyclyoaddition, tetrazine ligation), metal-affinity coordination (e.g., polyhistidine), enzyme driven modifications (e.g., HaloTag, biotin ligase), and other site-specific chemistries. The benefits and liabilities of particular chemistries are discussed by highlighting relevant NP-bioconjugation examples from the literature. Potential chemistries that have not yet been applied to NPs are also discussed, and an outlook on future developments in this field is given.
Collapse
Affiliation(s)
- W Russ Algar
- Center for Bio/Molecular Science and Engineering, Optical Sciences Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, DC 20375, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Thygesen MB, Munch H, Sauer J, Cló E, Jørgensen MR, Hindsgaul O, Jensen KJ. Nucleophilic Catalysis of Carbohydrate Oxime Formation by Anilines. J Org Chem 2010; 75:1752-5. [DOI: 10.1021/jo902425v] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikkel B. Thygesen
- IGM -Bioorganic Chemistry, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Henrik Munch
- IGM -Bioorganic Chemistry, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Jørgen Sauer
- IGM -Bioorganic Chemistry, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
- Centre for Carbohydrate Recognition and Signalling
| | - Emiliano Cló
- IGM -Bioorganic Chemistry, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | | | | | - Knud J. Jensen
- IGM -Bioorganic Chemistry, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
- Centre for Carbohydrate Recognition and Signalling
| |
Collapse
|