1
|
Streak Imaging Flow Cytometer for Rare Cell Analysis. Methods Mol Biol 2017. [PMID: 28281262 DOI: 10.1007/978-1-4939-6848-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.
Collapse
|
2
|
Low-Cost Charged-Coupled Device (CCD) Based Detectors for Shiga Toxins Activity Analysis. Methods Mol Biol 2017. [PMID: 28281260 DOI: 10.1007/978-1-4939-6848-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
To improve food safety there is a need to develop simple, low-cost sensitive devices for detection of food-borne pathogens and their toxins. We describe a simple, low-cost webcam-based detector which can be used for various optical detection modalities, including fluorescence, chemiluminescence, densitometry, and colorimetric assays. The portable battery-operated CCD-based detection system consists of four modules: (1) a webcam to measure and record light emission, (2) a sample plate to perform assays, (3) a light emitting diode (LED) for illumination, and (4) a portable computer to acquire and analyze images. To demonstrate the technology, we used a cell based assay for fluorescence detection of the activity of the food borne Shiga toxin type 2 (Stx2), differentiating between biologically active toxin and inactive toxin which is not a risk. The assay is based on Shiga toxin inhibition of cell protein synthesis measured through inhibition of the green fluorescent protein (GFP). In this assay, GFP emits light at 509 nm when excited with a blue LED equipped with a filter at 486 nm. The emitted light is then detected with a green filter at 535 nm. Toxin activity is measured through a reduction in the 509 nm emission. In this system the level of detection (LOD) for Stx2 was 0.1 pg/ml, similar to the LOD of commercial fluorometers. These results demonstrate the utility and potential of low cost detectors for toxin activity. This approach could be readily adapted to the detection of other food-borne toxins.
Collapse
|
3
|
Ossandon M, Balsam J, Bruck HA, Kalpakis K, Rasooly A. A computational streak mode cytometry biosensor for rare cell analysis. Analyst 2017; 142:641-648. [DOI: 10.1039/c6an02517j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Streak mode imaging flow cytometry for rare cell detection involves imaging moving fluorescently labeled cells in the video mode with a CCD camera.
Collapse
Affiliation(s)
- Miguel Ossandon
- National Cancer Institute
- Rockville
- USA
- University of Maryland Baltimore County
- USA
| | | | | | | | | |
Collapse
|
4
|
Rasooly R, Bruck HA, Balsam J, Prickril B, Ossandon M, Rasooly A. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health. Diagnostics (Basel) 2016; 6:E19. [PMID: 27196933 PMCID: PMC4931414 DOI: 10.3390/diagnostics6020019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022] Open
Abstract
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings.
Collapse
Affiliation(s)
- Reuven Rasooly
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94706, USA.
| | - Hugh Alan Bruck
- Department of Mechanical Engineering, University of Maryland College Park (UMCP), College Park, MD 20742, USA.
| | - Joshua Balsam
- Division of Chemistry and Toxicology Devices, Office of In Vitro Diagnostics and Radiological Health, FDA, Silver Spring, MD 20993, USA.
| | - Ben Prickril
- National Cancer Institute, Rockville, MD 208503, USA.
| | | | | |
Collapse
|
5
|
Food Microfluidics Biosensors. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Balsam J, Bruck HA, Rasooly A. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics. Methods Mol Biol 2015; 1256:247-58. [PMID: 25626544 DOI: 10.1007/978-1-4939-2172-0_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
There is a new potential to address needs for medical diagnostics in Point-of-Care (PoC) applications using mHealth (Mobile computing, medical sensors, and communications technologies for health care), a mHealth based lab test will require a LOC to perform clinical analysis. In this work, we describe the design of a simple Lab-on-a-chip (LOC) platform for mHealth medical diagnostics. The LOC utilizes a passive capillary valve with no moving parts for fluid control using channels with very low aspect ratios cross sections (i.e., channel width ≫ height) achieved through transitions in the channel geometry via that arrest capillary flow. Using a CO2 laser in raster engraving mode, we have designed and fabricated an eight-channel LOC for fluorescence signal detection fabricated by engraving and combining just two polymer layers. Each of the LOC channels is capable of mixing two reagents (e.g., enzyme and substrate) for various assays. For mHealth detection, we used a mobile CCD detector equipped with LED multispectral illumination in the red, green, blue, and white range. This technology enables the development of low-cost LOC platforms for mHealth whose fabrication is compatible with standard industrial plastic fabrication processes to enable mass production of mHealth diagnostic devices, which may broaden the use of LOCs in PoC applications, especially in global health settings.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | | | | |
Collapse
|
7
|
Balsam J, Bruck HA, Rasooly A. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput. Analyst 2015; 139:4322-9. [PMID: 24995370 DOI: 10.1039/c4an00669k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here we describe a novel low-cost flow cytometer based on a webcam capable of low cell number detection in a large volume which may overcome the limitations of current flow cytometry. Several key elements have been combined to yield both high throughput and high sensitivity. The first element is a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. The second element in this design is a 1 W 450 nm laser module for area-excitation, which combined with the webcam allows for rapid interrogation of a flow field. The final element is a 2D flow-cell which overcomes the flow limitation of hydrodynamic focusing and allows for higher sample throughput in a wider flow field. This cell allows for the linear velocity of target cells to be lower than in a conventional "1D" hydrodynamic focusing flow-cells typically used in cytometry at similar volumetric flow rates. It also allows cells to be imaged at the full frame rate of the webcam. Using this webcam-based flow cytometer with wide-field imaging, it was confirmed that the detection of fluorescently tagged 5 μm polystyrene beads in "1D" hydrodynamic focusing flow-cells was not practical for low cell number detection due to streaking from the motion of the beads, which did not occur with the 2D flow-cell design. The sensitivity and throughput of this webcam-based flow cytometer was then investigated using THP-1 human monocytes stained with SYTO-9 florescent dye in the 2D flow-cell. The flow cytometer was found to be capable of detecting fluorescently tagged cells at concentrations as low as 1 cell per mL at flow rates of 500 μL min(-1) in buffer and in blood. The effectiveness of detection was concentration dependent: at 100 cells per mL 84% of the cells were detected compared to microscopy, 10 cells per mL 79% detected and 1 cell per mL 59% of the cells were detected. With the blood samples spiked to 100 cells per mL, the average concentration for all samples was 91.4 cells per mL, with a 95% confidence interval of 86-97 cells per mL. These low cell concentrations and the large volume capabilities of the system may overcome the limitations of current cytometry, and are applicable to rare cell (such as circulating tumor cell) detection The simplicity and low cost of this device suggests that it may have a potential use in developing point-of-care clinical flow cytometry for resource-poor settings associated with global health.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, USA
| | | | | |
Collapse
|
8
|
Srinivasan B, Tung S. Development and Applications of Portable Biosensors. ACTA ACUST UNITED AC 2015; 20:365-89. [DOI: 10.1177/2211068215581349] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 02/01/2023]
|
9
|
Rasooly R, Balsam J, Hernlem BJ, Rasooly A. Sensitive detection of active Shiga toxin using low cost CCD based optical detector. Biosens Bioelectron 2015; 68:705-711. [PMID: 25677808 DOI: 10.1016/j.bios.2015.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 01/22/2023]
Abstract
To reduce the sources and incidence of food-borne illness there is a need to develop affordable, sensitive devices for detection of active toxins, such as Shiga toxin type 2 (Stx2). Currently the widely used methods for measuring Shiga toxin are immunoassay that cannot distinguish between the active form of the toxin, which poses a threat to life, to the inactive form which can bind to antibodies but show no toxicity. In this work, we determine toxin activity based on Shiga toxin inhibition of green fluorescent protein (GFP) combined with low cost charge-coupled device (CCD) fluorescence detection, which is more clinically relevant than immunoassay. For assay detection, a simple low cost fluorescence detection system was constructed using a CCD camera and light emitting diode (LED) excitation source, to measure GFP expression. The system was evaluated and compared to a commercial fluorometer using photomultiplier detection for detecting active Stx2 in the range 100 ng/mL-0.01 pg/mL. The result shows that there is a negative linear relationship between Stx2 concentrations and luminous intensity of GFP, imaged by the CCD camera (R(2)=0.85) or fluorometer (R(2)=0.86). The low cost (∼$300) CCD camera is capable of detecting Shiga toxin activity at comparable levels as a more expensive (∼$30,000) fluorometer. These results demonstrate the utility and the potential of low cost detectors for toxin activity; this approach may increase the availability of foodborne bacterial toxin diagnostics in regions where there are limited resources and could be readily adapted to the detection of other food-borne toxins.
Collapse
Affiliation(s)
- Reuven Rasooly
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States.
| | - Josh Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, United States; University of Maryland, College Park, MD 20742, United States
| | - Bradley J Hernlem
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - Avraham Rasooly
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, United States; Office of Cancer Complementary and Alternative Medicine, National Cancer Institute, Rockville, MD 20850, United States
| |
Collapse
|
10
|
Abstract
Flow cytometry is used for cell counting and analysis in numerous clinical and environmental applications. However flow cytometry is not used in mHealth mainly because current flow cytometers are large, expensive, power-intensive devices designed to operate in a laboratory. Their design results in a lack of portability and makes them unsuitable for mHealth applications. Another limitation of current technology is the low volumetric throughput rates that are not suitable for rapid detection of rare cells.To address these limitations, we describe here a novel, low-cost, mobile flow cytometer based on wide-field imaging with a webcam for large volume and high throughput fluorescence detection of rare cells as a simulation for circulating tumor cells (CTCs) detection. The mobile flow cytometer uses a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. For fluorescence detection, a 1 W 450 nm blue laser is used for excitation of Syto-9 fluorescently stained cells detected at 535 nm. A wide-field flow cell was developed for large volume analysis that allows for the linear velocity of target cells to be lower than in conventional hydrodynamic focusing flow cells typically used in cytometry. The mobile flow cytometer was found to be capable of detecting low concentrations at flow rates of 500 μL/min, suitable for rare cell detection in large volumes. The simplicity and low cost of this device suggests that it may have a potential clinical use for mHealth flow cytometry for resource-poor settings associated with global health.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD, 20993, USA
| | | | | |
Collapse
|
11
|
Shi J, Guo J, Bai G, Chan C, Liu X, Ye W, Hao J, Chen S, Yang M. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity. Biosens Bioelectron 2014; 65:238-44. [PMID: 25461164 DOI: 10.1016/j.bios.2014.10.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022]
Abstract
Botulinum neurotoxins (BoNTs) are among the most potent toxic bacterial proteins for humans, which make them potential agents for bioterrorism. Therefore, an ultrasensitive detection of BoNTs and their active states is in great need as field-deployable systems for anti-terrorism applications. We report the construction of a novel graphene oxide (GO)-peptide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of the BoNT serotype A light chain (BoNT-LcA) protease activity. A green fluorescence protein (GFP) modified SNAP-25 peptide substrate (SNAP-25-GFP) was optimally designed and synthesized with the centralized recognition/cleavage sites. This FRET platform was constructed by covalent immobilization of peptide substrate on GO with BSA passivation which have advantages of low non-specific adsorption and high stability in protein abundant solution. BoNT-LcA can specifically cleave SNAP-25-GFP substrate covalently immobilized on GO to release the fragment with GFP. Based on fluorescence signal recovery measurement, the target BoNT-LcA was detected sensitively and selectively with the linear detection range from 1fg/mL to 1pg/mL. The limit of detection (LOD) for BoNT-LcA is around 1fg/mL.
Collapse
Affiliation(s)
- Jingyu Shi
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Jiubiao Guo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Gongxun Bai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Chunyu Chan
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Xuan Liu
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Weiwei Ye
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Sheng Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Mo Yang
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China.
| |
Collapse
|
12
|
Lévêque C, Ferracci G, Maulet Y, Mazuet C, Popoff M, Seagar M, El Far O. Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism. Biosens Bioelectron 2014; 57:207-12. [DOI: 10.1016/j.bios.2014.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 12/22/2022]
|
13
|
Zhang Z, Yu L, Xu L, Hu X, Li P, Zhang Q, Ding X, Feng X. Biotoxin sensing in food and environment via microchip. Electrophoresis 2014; 35:1547-59. [PMID: 24723235 DOI: 10.1002/elps.201300570] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/21/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
| | - Li Yu
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan); Ministry of Agriculture; Wuhan China
| | - Lin Xu
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Quality Inspection and Test Center for Oilseeds Products; Ministry of Agriculture; Wuhan China
| | - Xiaofeng Hu
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Detection for Mycotoxins; Ministry of Agriculture; Wuhan China
| | - Peiwu Li
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan); Ministry of Agriculture; Wuhan China
- Quality Inspection and Test Center for Oilseeds Products; Ministry of Agriculture; Wuhan China
- Key Laboratory of Detection for Mycotoxins; Ministry of Agriculture; Wuhan China
| | - Qi Zhang
- Oil Crops Research Institute; Chinese Academy of Agricultural Sciences; Wuhan China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
| | - Xiaoxia Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops; Ministry of Agriculture; Wuhan China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan); Ministry of Agriculture; Wuhan China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory; Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
14
|
Balsam J, Rasooly R, Bruck HA, Rasooly A. Thousand-fold fluorescent signal amplification for mHealth diagnostics. Biosens Bioelectron 2014; 51:1-7. [PMID: 23928092 PMCID: PMC3795847 DOI: 10.1016/j.bios.2013.06.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/19/2013] [Accepted: 06/26/2013] [Indexed: 01/27/2023]
Abstract
The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an image stacking algorithm to decrease the image noise and enhance weak signals, and (2) an optical signal amplifier utilizing a capillary tube array. These approaches were used in a detection system which includes multi-wavelength LEDs capable of exciting many fluorophores in multiple wavelengths, a mobile phone or a webcam as a detector, and capillary tube array configured with 36 capillary tubes for signal enhancement. The capillary array enables a ~100× increase in signal sensitivity for fluorescein, reducing the limit of detection (LOD) for mobile phones and webcams from 1000 nM to 10nM. Computational image stacking enables another ~10× increase in signal sensitivity, further reducing the LOD for webcam from 10nM to 1 nM. To demonstrate the feasibility of the device for the detection of disease-related biomarkers, adenovirus DNA labeled with SYBR green or fluorescein was analyzed by both our capillary array and a commercial plate reader. The LOD for the capillary array was 5 ug/mL, and that of the plate reader was 1 ug/mL. Similar results were obtained using DNA stained with fluorescein. The combination of the two signal amplification approaches enables a ~1000× increase in LOD for the webcam platform. This brings it into the range of a conventional plate reader while using a smaller sample volume (10 ul) than the plate reader requires (100 ul). This suggests that such a device could be suitable for biosensing applications where up to 10 fold smaller sample sizes are needed. The simple optical configuration for mHealth described in this paper employing the combined capillary and image processing signal amplification is capable of measuring weak fluorescent signals without the need of dedicated laboratories. It has the potential to be used to increase sensitivity of other optically based mHealth technologies, and may increase mHealth's clinical utility, especially for telemedicine and for resource-poor settings and global health applications.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, United States; University of Maryland, College Park, MD 20742, United States
| | | | | | | |
Collapse
|
15
|
Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D, Nagi R, Phillips S, Ozcan A. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. LAB ON A CHIP 2013; 13:4015-23. [PMID: 23939637 PMCID: PMC3804724 DOI: 10.1039/c3lc50589h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.
Collapse
Affiliation(s)
- Isa Navruz
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Balsam J, Bruck HA, Rasooly A. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth. SENSORS AND ACTUATORS. B, CHEMICAL 2013; 186:711-717. [PMID: 24039345 PMCID: PMC3769705 DOI: 10.1016/j.snb.2013.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993 ; University of Maryland, College Park, MD 20742
| | | | | |
Collapse
|
17
|
Dadgar S, Ramjan Z, Floriano WB. Paclitaxel is an inhibitor and its boron dipyrromethene derivative is a fluorescent recognition agent for botulinum neurotoxin subtype A. J Med Chem 2013; 56:2791-803. [PMID: 23484537 DOI: 10.1021/jm301829h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have successfully identified one new inhibitor and one new fluorescent recognition agent for the botulinum neurotoxin subtype A (BoNT/A) using the virtual screening protocol "protein scanning with virtual ligand screening" (PSVLS). Hit selection used an in-house developed holistic binding scoring method. Selected hits were tested experimentally for inhibitory activity using fluorescence resonance energy transfer (FRET) assays against the light chain (catalytic domain) of BoNT/A. Ligand binding was determined against the light and heavy chain BoNT/A complex through either radiolabeled ligand binding assays (nonfluorescent ligands) or fluorescence intensity assays (fluorescent ligands). These experimental assays have confirmed one compound (paclitaxel) to inhibit BoNT/A's proteolytic activity experimentally with an IC50 of 5.2 μM. A fluorescent derivative was also confirmed to bind to the toxin and therefore is a suitable candidate for the rational design of new detection agents and for the development of fluorescence-based multiprobe detection assays.
Collapse
Affiliation(s)
- Saedeh Dadgar
- Department of Chemistry, Lakehead University and Thunder Bay Regional Research Institute, Thunder Bay, Ontario P7B 5E1, Canada
| | | | | |
Collapse
|
18
|
Balsam J, Ossandon M, Bruck HA, Lubensky I, Rasooly A. Low-cost technologies for medical diagnostics in low-resource settings. ACTA ACUST UNITED AC 2013; 7:243-55. [DOI: 10.1517/17530059.2013.767796] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Zhu H, Isikman SO, Mudanyali O, Greenbaum A, Ozcan A. Optical imaging techniques for point-of-care diagnostics. LAB ON A CHIP 2013; 13:51-67. [PMID: 23044793 PMCID: PMC3510351 DOI: 10.1039/c2lc40864c] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Improving access to effective and affordable healthcare has long been a global endeavor. In this quest, the development of cost-effective and easy-to-use medical testing equipment that enables rapid and accurate diagnosis is essential to reduce the time and costs associated with healthcare services. To this end, point-of-care (POC) diagnostics plays a crucial role in healthcare delivery in both developed and developing countries by bringing medical testing to patients, or to sites near patients. As the diagnosis of a wide range of diseases, including various types of cancers and many endemics, relies on optical techniques, numerous compact and cost-effective optical imaging platforms have been developed in recent years for use at the POC. Here, we review the state-of-the-art optical imaging techniques that can have a significant impact on global health by facilitating effective and affordable POC diagnostics.
Collapse
Affiliation(s)
- Hongying Zhu
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Serhan O. Isikman
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Onur Mudanyali
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Alon Greenbaum
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Rasooly A, Kostov Y, Bruck HA. Charged-coupled device (CCD) detectors for Lab-on-a Chip (LOC) optical analysis. Methods Mol Biol 2013; 949:365-385. [PMID: 23329454 DOI: 10.1007/978-1-62703-134-9_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A critical element of any Lab-on-a-Chip (LOC) is a detector; among the many detection approaches, optical detection is very widely used for biodetection. One challenge for advancing the development of LOC for biodetection has been to enhance the portability and lower the cost for Point-of-Care diagnostics, which has the potential to enhance the quality of healthcare delivery for underserved populations and for global health. We describe a simple and relatively low cost charged-coupled device (CCD)-based detector that can be integrated with a conventional microtiter plate or a portable LOC assay for various optical detection modalities including fluorescence, chemiluminescence, densitometry, and colorimetric assays. In general, the portable battery-operated CCD-based detection system consists of four modules: (1) a cooled CCD digital camera to monitor light emission, (2) a LOC or microtiter plate to perform assays, (3) a light source to illuminate the assay (such as electroluminescence (EL) or light emitting diode (LED)), and (4) a portable computer to acquire and analyze images. The configuration of the fluorescence detector presented here was designed to measure fluorogenic excitation at 490 nm and to monitor emission at 523 nm used for FITC detection.The LOC used for this detection system was fabricated with laminated object manufacturing (LOM) technology, and was designed to detection activity of botulinum neurotoxin serotype A (BoNT-A) using a fluorogenic peptide substrate (SNAP-25) for botulinum neurotoxin serotype A (BoNT-A) labeled with FITC. The limit of detection (LOD) for the CCD detector is 0.5 nM (25 ng/ml). The portable system is small and is powered by a 12 V source. The modular detector was designed with easily interchangeable LEDs, ELs, filters, lenses, and LOC, and can be used and adapted for a wide variety of densitometry, florescence and colorimetric assays.
Collapse
Affiliation(s)
- Avraham Rasooly
- Division of Biology, Office of Science and Engineering, FDA Center for Devices and Radiological Health (CDRH), Silver Spring, MD, USA.
| | | | | |
Collapse
|
21
|
van Oordt T, Stevens GB, Vashist SK, Zengerle R, von Stetten F. Rapid and highly sensitive luciferase reporter assay for the automated detection of botulinum toxin in the centrifugal microfluidic LabDisk platform. RSC Adv 2013. [DOI: 10.1039/c3ra44482a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Abstract
Laminated object manufacturing (LOM) technology using polymer sheets is an easy and affordable method for rapid prototyping of Lab-on-a-Chip (LOC) systems. It has recently been used to fabricate a miniature 96 sample ELISA lab-on-a-chip (ELISA-LOC) by integrating the washing step directly into an ELISA plate. LOM has been shown to be capable of creating complex 3D microfluidics through the assembly of a stack of polymer sheets with features generated by laser micromachining and by bonding the sheets together with adhesive. A six layer ELISA-LOC was fabricated with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO(2) laser with simple microfluidic features including a miniature 96-well sample plate. Immunological assays can be carried out in several configurations (1 × 96 wells, 2 × 48 wells, or 4 × 24 wells). The system includes three main functional elements: (1) a reagent loading fluidics module, (2) an assay and detection wells plate, and (3) a reagent removal fluidics module. The ELISA-LOC system combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected Staphylococcal enterotoxin B (SEB) at concentrations as low as 0.1 ng/ml, a detection level similar to that reported for conventional ELISA. ELISA-LOC can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without the laboratory required for conventional ELISA, and therefore may be more useful for global healthcare delivery.
Collapse
Affiliation(s)
- Avraham Rasooly
- Division of Biology, Office of Science and Engineering, FDA Center for Devices and Radiological Health (CDRH), Silver Spring, MD, USA.
| | | | | |
Collapse
|
23
|
Balsam J, Ossandon M, Bruck HA, Rasooly A. Modeling and design of micromachined optical Söller collimators for lensless CCD-based fluorometry. Analyst 2012; 137:5011-7. [DOI: 10.1039/c2an35729a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Balsam J, Bruck HA, Kostov Y, Rasooly A. Image stacking approach to increase sensitivity of fluorescence detection using a low cost complementary metal-oxide-semiconductor (CMOS) webcam. SENSORS AND ACTUATORS. B, CHEMICAL 2012; 171-172:141-147. [PMID: 23990697 PMCID: PMC3752898 DOI: 10.1016/j.snb.2012.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Optical technologies are important for biological analysis. Current biomedical optical analyses rely on high-cost, high-sensitivity optical detectors such as photomultipliers, avalanched photodiodes or cooled CCD cameras. In contrast, Webcams, mobile phones and other popular consumer electronics use lower-sensitivity, lower-cost optical components such as photodiodes or CMOS sensors. In order for consumer electronics devices, such as webcams, to be useful for biomedical analysis, they must have increased sensitivity. We combined two strategies to increase the sensitivity of CMOS-based fluorescence detector. We captured hundreds of low sensitivity images using a Webcam in video mode, instead of a single image typically used in cooled CCD devices.We then used a computational approach consisting of an image stacking algorithm to remove the noise by combining all of the images into a single image. While video mode is widely used for dynamic scene imaging (e.g. movies or time-lapse photography), it is not used to capture a single static image, which removes noise and increases sensitivity by more than thirty fold. The portable, battery-operated Webcam-based fluorometer system developed here consists of five modules: (1) a low cost CMOS Webcam to monitor light emission, (2) a plate to perform assays, (3) filters and multi-wavelength LED illuminator for fluorophore excitation, (4) a portable computer to acquire and analyze images, and (5) image stacking software for image enhancement. The samples consisted of various concentrations of fluorescein, ranging from 30 μM to 1000 μM, in a 36-well miniature plate. In the single frame mode, the fluorometer's limit-of-detection (LOD) for fluorescein is ∼1000 μM, which is relatively insensitive. However, when used in video mode combined with image stacking enhancement, the LOD is dramatically reduced to 30 μM, sensitivity which is similar to that of state-of-the-art ELISA plate photomultiplier-based readers. Numerous medical diagnostics assays rely on optical and fluorescence readers. Our novel combination of detection technologies, which is new to biodetection may enable the development of new low cost optical detectors based on an inexpensive Webcam (<$10). It has the potential to form the basis for high sensitivity, low cost medical diagnostics in resource-poor settings.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, United States
- University of Maryland College Park (UMCP), College Park, MD 20742, United States
| | - Hugh Alan Bruck
- University of Maryland College Park (UMCP), College Park, MD 20742, United States
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250, United States
| | - Avraham Rasooly
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, United States
- National Cancer Institute, Bethesda, MD 20892, United States
| |
Collapse
|
25
|
Dorner MB, Schulz KM, Kull S, Dorner BG. Complexity of Botulinum Neurotoxins: Challenges for Detection Technology. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Yang M, Sun S, Kostov Y, Rasooly A. An automated point-of-care system for immunodetection of staphylococcal enterotoxin B. Anal Biochem 2011; 416:74-81. [PMID: 21640067 PMCID: PMC3148523 DOI: 10.1016/j.ab.2011.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 01/19/2023]
Abstract
An automated point-of-care (POC) immunodetection system for immunological detection of staphylococcal enterotoxin B (SEB) was designed, fabricated, and tested. The system combines several elements: (i) enzyme-linked immunosorbent assay-lab-on-a-chip (ELISA-LOC) with fluidics, (ii) a charge-coupled device (CCD) camera detector, (iii) pumps and valves for fluid delivery to the ELISA-LOC, (iv) a computer interface board, and (v) a computer for controlling the fluidics, logging, and data analysis of the CCD data. The ELISA-LOC integrates a simple microfluidic system into a miniature 96-well sample plate, allowing the user to carry out immunological assays without a laboratory. The analyte is measured in a sandwich ELISA assay format combined with a sensitive electrochemiluminescence (ECL) detection method. Using the POC system, SEB, a major foodborne toxin, was detected at concentrations as low as 0.1 ng/ml. This is similar to the reported sensitivity of conventional ELISA. The open platform with simple modular fluid delivery automation design described here is interchangeable between detection systems, and because of its versatility it can also be used to automate many other LOC systems, simplifying LOC development. This new POC system is useful for carrying out various immunological and other complex medical assays without a laboratory and can easily be adapted for high-throughput biological screening in remote and resource-poor areas.
Collapse
Affiliation(s)
- Minghui Yang
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Steven Sun
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250
| | - Avraham Rasooly
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993
- National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
27
|
Neethirajan S, Kobayashi I, Nakajima M, Wu D, Nandagopal S, Lin F. Microfluidics for food, agriculture and biosystems industries. LAB ON A CHIP 2011; 11:1574-86. [PMID: 21431239 DOI: 10.1039/c0lc00230e] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microfluidics, a rapidly emerging enabling technology has the potential to revolutionize food, agriculture and biosystems industries. Examples of potential applications of microfluidics in food industry include nano-particle encapsulation of fish oil, monitoring pathogens and toxins in food and water supplies, micro-nano-filtration for improving food quality, detection of antibiotics in dairy food products, and generation of novel food structures. In addition, microfluidics enables applications in agriculture and animal sciences such as nutrients monitoring and plant cells sorting for improving crop quality and production, effective delivery of biopesticides, simplified in vitro fertilization for animal breeding, animal health monitoring, vaccination and therapeutics. Lastly, microfluidics provides new approaches for bioenergy research. This paper synthesizes information of selected microfluidics-based applications for food, agriculture and biosystems industries.
Collapse
Affiliation(s)
- Suresh Neethirajan
- Biological and Nanoscale Systems Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Sapsford KE, Granek J, Deschamps JR, Boeneman K, Blanco-Canosa JB, Dawson PE, Susumu K, Stewart MH, Medintz IL. Monitoring botulinum neurotoxin a activity with peptide-functionalized quantum dot resonance energy transfer sensors. ACS NANO 2011; 5:2687-2699. [PMID: 21361387 DOI: 10.1021/nn102997b] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent bacterial toxins that contaminate food supplies along with having a high potential for exploitation as bioterrorism agents. There is a continuing need to rapidly and sensitively detect exposure to these toxins and to verify their active state, as the latter directly affects diagnosis and helps provide effective treatments. We investigate the use of semiconductor quantum dot (QD)-peptide Förster resonance energy transfer (FRET) assemblies to monitor the activity of the BoNT serotype A light chain protease (LcA). A modular LcA peptide substrate was designed and optimized to contain a central LcA recognition/cleavage region, a unique residue to allow labeling with a Cy3 acceptor dye, an extended linker-spacer sequence, and a terminal oligohistidine that allows for final ratiometric peptide-QD-self-assembly. A number of different QD materials displaying charged or PEGylated surface-coatings were evaluated for their ability to self-assemble dye-labeled LcA peptide substrates by monitoring FRET interactions. Proteolytic assays were performed utilizing either a direct peptide-on-QD format or alternatively an indirect pre-exposure of peptide to LcA prior to QD assembly. Variable activities were obtained depending on QD materials and formats used with the most sensitive pre-exposure assay result demonstrating a 350 pM LcA limit of detection. Modeling the various QD-peptide sensor constructs provided insight into how the resulting assembly architecture influenced LcA recognition interactions and subsequent activity. These results also highlight the unique roles that both peptide design and QD features, especially surface-capping agents, contribute to overall sensor activity.
Collapse
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Balsam J, Ossandon M, Kostov Y, Bruck HA, Rasooly A. Lensless CCD-based fluorometer using a micromachined optical Söller collimator. LAB ON A CHIP 2011; 11:941-9. [PMID: 21243150 DOI: 10.1039/c0lc00431f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this paper, we describe a simple charge-coupled device (CCD) based lensless fluorometer with sensitivity in the range of current ELISA plate readers. In our lensfree fluorometer, a multi-wavelength LED light source was used for fluorophore excitation. To collimate the light, we developed a simple optical Söller collimator based on a "stack of pinholes" (a stack of black PMMA with array of pinholes machined with laser) enabling the light to be collimated from the LED through the filters and the assay's microfluidics directly onto the CCD without a lens. The elimination of the lens that is used in almost all other current CCD based detection systems has four major advantages: (1) It simplifies the device design and fabrication while reducing cost. (2) It reduces the distance between the sample and the measuring device (without a lens the distance needed to focus the image on the CCD is reduced and the fluorometer can be more compact). (3) It couples the CCD and the detected surface by using an optical Söller Collimator which allows the use of filters for fluorescence detection. (4) It also uncouples the CCD and the microfluidics to enable the use of interchangeable fluidics while protecting the delicate CCD. The lensless CCD-based fluorometer is capable of detecting 16 samples simultaneously, and was used for in vitro detection of botulinum neurotoxin serotype A (BoNT-A) activity with a FRET assay that measures cleavage of a fluorophore-tagged peptide substrate specific for BoNT-A (SNAP-25) by the toxin light chain (LcA). The limit of detection (LOD) of our lensless fluorometer is 1.25 nM, which is similar to the LOD of a modern ELISA plate reader. Combined with microfluidics, this simple low cost point-of-care (POC) medical diagnostic system may be useful for the performance of many other complex medical diagnostic assays without a laboratory and thus potentially enhancing the accessibility and the quality of health care delivery in underserved populations.
Collapse
Affiliation(s)
- Joshua Balsam
- University of Maryland College Park (UMCP), College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
30
|
Liu K, Fan ZH. Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst 2011; 136:1288-97. [PMID: 21274478 DOI: 10.1039/c0an00969e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microfluidics is a platform technology that has been used for genomics, proteomics, chemical synthesis, environment monitoring, cellular studies, and other applications. The fabrication materials of microfluidic devices have traditionally included silicon and glass, but plastics have gained increasing attention in the past few years. We focus this review on thermoplastic microfluidic devices and their applications in protein and DNA analysis. We outline the device design and fabrication methods, followed by discussion on the strategies of surface treatment. We then concentrate on several significant advancements in applying thermoplastic microfluidic devices to protein separation, immunoassays, and DNA analysis. Comparison among numerous efforts, as well as the discussion on the challenges and innovation associated with detection, is presented.
Collapse
Affiliation(s)
- Ke Liu
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611-6250, USA
| | | |
Collapse
|
31
|
Wang D, Baudys J, Kalb SR, Barr JR. Improved detection of botulinum neurotoxin type A in stool by mass spectrometry. Anal Biochem 2011; 412:67-73. [PMID: 21276417 DOI: 10.1016/j.ab.2011.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 11/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic substances known to humankind. Rapid and sensitive detection of BoNTs is necessary for timely clinical confirmation of the disease state in botulism. BoNTs cleave proteins and peptide mimics at specific sites. A mass spectrometry (MS)-based method, Endopep-MS, can detect these cleavages and has detection limits of 0.05-0.5 mouse LD(50) (U) in serum, depending on the BoNT serotypes. In this method, the products generated from cleavage of peptide substrates using antibody affinity-purified toxins are detected by MS. Nonspecific bound endogenous proteases or peptidases in stool can coextract with the toxin, cleaving the peptide substrates and reducing the sensitivity of the method. Here we report a method to reduce nonspecific substrate cleavage by reducing stool protease coextraction in the Endopep-MS assay.
Collapse
Affiliation(s)
- Dongxia Wang
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | | | | | | |
Collapse
|
32
|
Frisk ML, Lin G, Johnson EA, Beebe DJ. Synaptotagmin II peptide-bead conjugate for botulinum toxin enrichment and detection in microchannels. Biosens Bioelectron 2011; 26:1929-35. [DOI: 10.1016/j.bios.2010.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 05/27/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
|
33
|
Yang M, Sun S, Bruck HA, Kostov Y, Rasooly A. Lab-on-a-chip for label free biological semiconductor analysis of staphylococcal enterotoxin B. LAB ON A CHIP 2010; 10:2534-2540. [PMID: 20668726 DOI: 10.1039/c005141a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We describe a new lab-on-a-chip (LOC) which utilizes a biological semiconductor (BSC) transducer for label free analysis of Staphylococcal Enterotoxin B (SEB) (or other biological interactions) directly and electronically. BSCs are new transducers based on electrical percolation through a multi-layer carbon nanotube-antibody network. In BSCs the passage of current through the conductive network is dependent upon the continuity of the network. Molecular interactions within the network, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. For the fabrication of a BSC based detector, we combined several elements: (1) BSC transducers for direct detection, (2) LOC for flow through continuous measurements, (3) a digital multimeter with computer connection for data logging, (4) pumps and valves for fluid delivery, and (5) a computer for fluid delivery control and data analysis. Polymer lamination technology was used for the fabrication of a four layer LOC for BSC detection, the BSC on the chip is fabricated by immobilizing pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex directly on the PMMA surface of the LOC. SEB samples were loaded into the device using a peristaltic pump and the change in resistance resulting from antibody-antigen interactions was continuously monitored and recorded. Binding of SEB rapidly increases the BSC electrical resistance. SEB in buffer was assayed with limit of detection (LOD) of 5 ng mL(-1) at a signal to baseline (S/B) ratio of 2. A secondary antibody was used to verify the presence of the SEB captured on the surface of the BSC and for signal amplification. The new LOC system permits rapid detection and semi-automated operation of BSCs. Such an approach may enable the development of multiple biological elements "Biological Central Processing Units (CPUs)" for parallel processing and sorting out automatically information on multiple analytes simultaneously. Such an approach has potential use for point-of-care medical and environmental testing.
Collapse
Affiliation(s)
- Minghui Yang
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250, USA
| | | | | | | | | |
Collapse
|
34
|
Sun S, Yang M, Kostov Y, Rasooly A. ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. LAB ON A CHIP 2010; 10:2093-100. [PMID: 20544092 DOI: 10.1039/c003994b] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A miniature 96 sample ELISA-lab-on-a-chip (ELISA-LOC) was designed, fabricated, and tested for immunological detection of Staphylococcal Enterotoxin B (SEB). The chip integrates a simple microfluidics system into a miniature ninety-six sample plate, allowing the user to carry out an immunological assay without a laboratory. Assay reagents are delivered into the assay plate without the need for separate devices commonly used in immunoassays. The ELISA-LOC was constructed using Laminated Object Manufacturing (LOM) technology to assemble six layers with an acrylic (poly(methyl methacrylate) (PMMA)) core and five polycarbonate layers micromachined by a CO(2) laser. The ELISA-LOC has three main functional elements: reagent loading fluidics, assay and detection wells, and reagent removal fluidics, a simple "surface tension" valve used to control the flow. To enhance assay sensitivity and to perform the assay without a lab, ELISA-LOC detection combines several biosensing elements: (1) carbon nanotube (CNT) technology to enhance primary antibody immobilization, (2) sensitive ECL (electrochemiluminescence) detection, and (3) a charge-coupled device (CCD) detector for measuring the light signal generated by ECL. Using a sandwich ELISA assay, the system detected SEB at concentrations as low as 0.1 ng ml(-1), which is similar to the reported sensitivity of conventional ELISA. The fluidics system can be operated by a syringe and does not require power for operation. This simple point-of-care (POC) system is useful for carrying out various immunological assays and other complex medical assays without a laboratory.
Collapse
Affiliation(s)
- Steven Sun
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, USA
| | | | | | | |
Collapse
|
35
|
Yang M, Sun S, Bruck HA, Kostov Y, Rasooly A. Electrical percolation-based biosensor for real-time direct detection of staphylococcal enterotoxin B (SEB). Biosens Bioelectron 2010; 25:2573-8. [PMID: 20447819 PMCID: PMC2996829 DOI: 10.1016/j.bios.2010.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 11/20/2022]
Abstract
Electrical percolation-based biosensing is a new technology. This is the first report of an electrical percolation-based biosensor for real-time detection. The label-free biosensor is based on electrical percolation through a single-walled carbon nanotubes (SWNTs)-antibody complex that forms a network functioning as a "Biological Semiconductor" (BSC). The conductivity of a BSC is directly related to the number of contacts facilitated by the antibody-antigen "connectors" within the SWNT network. BSCs are fabricated by immobilizing a pre-functionalized SWNTs-antibody complex directly on a poly(methyl methacrylate) (PMMA) and polycarbonate (PC) surface. Each BSC is connected via silver electrodes to a computerized ohmmeter, thereby enabling a continuous electronic measurement of molecular interactions (e.g. antibody-antigen binding) via the change in resistance. Using anti-staphylococcal enterotoxin B (SEB) IgG to functionalize the BSC, we demonstrate that the biosensor was able to detect SEB at concentrations as low as 5 ng/mL at a signal to baseline (S/B) ratio of 2. Such measurements were performed on the chip in wet conditions. The actuation of the chip by SEB is immediate, permitting real-time signal measurements. In addition to this "direct" label-free detection mode, a secondary antibody can be used to "label" the target molecule bound to the BSC in a manner analogous to an immunological sandwich "indirect" detection-type assay. Although a secondary antibody is not needed for direct detection, the indirect mode of detection may be useful as an additional measurement to verify or amplify signals from direct detection in clinical, food safety and other critical assays. The BSC was used to measure SEB both in buffer and in milk, a complex matrix, demonstrating the potential of electrical percolation-based biosensors for real-time label-free multi-analyte detection in clinical and complex samples. Assembly of BSCs is simple enough that multiple sensors can be fabricated on the same chip, thereby creating "Biological Central Processing Units (BCPUs)" capable of parallel processing and sorting out information on multiple analytes simultaneously which may be used for complex analysis and for point of care diagnostics.
Collapse
Affiliation(s)
- Minghui Yang
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Steven Sun
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993
| | - Hugh Alan Bruck
- University of Maryland College Park (UMCP), College Park MD 20742
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250
| | - Avraham Rasooly
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993
- National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
36
|
Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest Developments in Micro Total Analysis Systems. Anal Chem 2010; 82:4830-47. [PMID: 20462185 DOI: 10.1021/ac100969k] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Arora
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Giuseppina Simone
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Georgette B. Salieb-Beugelaar
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Jung Tae Kim
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Andreas Manz
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
37
|
Yang M, Sun S, Kostov Y, Rasooly A. Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). LAB ON A CHIP 2010; 10:1011-1017. [PMID: 20358108 DOI: 10.1039/b923996k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We describe a new eight channel Lab-On-a-Chip (LOC) for a Carbon Nanotube (CNT) based immunoassay with optical detection of Staphylococcal Enterotoxin B (SEB) for food safety applications. In this work, we combined four biosensing elements: (1) CNT technology for primary antibody immobilization, (2) Enhanced Chemiluminescence (ECL) for light signal generation, (3) a cooled charge-coupled device (CCD) for detection and (4) polymer lamination technology for developing a point of care immunological assay for SEB detection. Our concept for developing versatile LOCs, which can be used for many different applications, is to use a modular design with interchangeable recognition elements (e.g. various antibodies) to determine the specificity. Polymer lamination technology was used for the fabrication of a six layer, syringe operated LOC capable of analyzing eight samples simultaneously. An anti-SEB antibody-nanotube mixture was immobilized onto a polycarbonate strip, to serve as an interchangeable ligand surface that was then bonded onto the LOC. SEB samples are loaded into the device and detected by an ELISA assay using Horse Radish Peroxidase (HRP) conjugated anti-SEB IgG as a secondary antibody and ECL, with detection by a previously described portable cooled CCD detector. Eight samples of SEB in buffer or soy milk were assayed simultaneously with a limit of detection of 0.1 ng mL(-1). CNT immobilization of the antibody increased the sensitivity of detection six fold. Use of a simple interchangeable immunological surface allows this LOC to be adapted to any immunoassay by simply replacing the ligand surface. A syringe was used to move fluids for this assay so no power is needed to operate the device. Our versatile portable point-of-care CCD detector combined with the LOC immunoassay method described here can be used to reduce the exposure of users to toxins and other biohazards when working outside the lab, as well as to simplify and increase sensitivity for many other types of immunological diagnostics and detection assays.
Collapse
Affiliation(s)
- Minghui Yang
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, MD 21250, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.
Collapse
Affiliation(s)
- Petr Čapek
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Tobin J. Dickerson
- Department of Chemistry and Worm Institute for Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-858-784-2522; Fax: +1-858-784-2590
| |
Collapse
|
39
|
Čapek P, Dickerson TJ. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins (Basel) 2010; 2:24-53. [PMID: 22069545 PMCID: PMC3206617 DOI: 10.3390/toxins2020024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/16/2022] Open
Abstract
Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most poisonous substances known to date, is essential for studies of medical applications of BoNTs and detection of poisoned food, as well as for response to potential bioterrorist threats. Currently, the most common method of BoNT detection is the mouse bioassay. While this assay is sensitive, it is slow, quite expensive, has limited throughput and requires sacrificing animals. Herein, we discuss and compare recently developed alternative in vitro detection methods and assess their ability to supplement or replace the mouse bioassay in the analysis of complex matrix samples.
Collapse
Affiliation(s)
- Petr Čapek
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Tobin J. Dickerson
- Department of Chemistry and Worm Institute for Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|