1
|
Ellett F, Irimia D. Passive redirection filters minimize red blood cell contamination during neutrophil chemotaxis assays using whole blood. LAB ON A CHIP 2023; 23:1879-1885. [PMID: 36857665 PMCID: PMC11343506 DOI: 10.1039/d2lc00903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neutrophils are the most numerous white blood cells and are the first to arrive at sites of inflammation and infection. Thus, neutrophil behavior provides a comprehensive biomarker for antimicrobial defenses. Several microfluidic tools have been developed to test neutrophil chemotaxis, phagocytosis, extrusion of extracellular traps, etc. Traditional tools rely on purified neutrophil samples, which require lengthy and expensive isolation procedures from large volumes of blood. In the absence of such isolation, visualizing neutrophils in blood is complicated by the overwhelming number of red blood cells (RBCs), which outnumber neutrophils by 1000 : 1. Recently, several microfluidic technologies have been designed to analyze neutrophils directly in blood, by separating neutrophils on selectin coated surfaces before the migration assay or blocking the advance of RBCs with the moving neutrophils. However, RBC contamination remains an issue, albeit with a reduced ratio, down to 1 : 1. Here, we present an RBC-debulking strategy for neutrophil assays based on microscale passive redirection filters (PRFs) that reduce RBC contamination down to as few as a 1 : 17 RBC to neutrophil ratio. We compare the performance of different PRF designs and measure changes in neutrophil chemotaxis velocity and directionality following immune stimulation of whole blood.
Collapse
Affiliation(s)
- Felix Ellett
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA.
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Chen C, Li P, Guo T, Chen S, Xu D, Chen H. Generation of Dynamic Concentration Profile Using A Microfluidic Device Integrating Pneumatic Microvalves. BIOSENSORS 2022; 12:bios12100868. [PMID: 36291005 PMCID: PMC9599525 DOI: 10.3390/bios12100868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/12/2023]
Abstract
Generating and maintaining the concentration dilutions of diffusible molecules in microchannels is critical for high-throughput chemical and biological analysis. Conventional serial network microfluidic technologies can generate high orders of arbitrary concentrations by a predefined microchannel network. However, a previous design requires a large occupancy area and is unable to dynamically generate different profiles in the same chip, limiting its applications. This study developed a microfluidic device enabling dynamic variations of both the concentration in the same channel and the concentration distribution in multiple channels by adjusting the flow resistance using programmable pneumatic microvalves. The key component (the pneumatic microvalve) allowed dynamic adjustment of the concentration profile but occupied a tiny space. Additionally, a Matlab program was developed to calculate the flow rates and flow resistance of various sections of the device, which provided theoretical guidance for dimension design. In silico investigations were conducted to evaluate the microvalve deformation with widths from 100 to 300 µm and membrane thicknesses of 20 and 30 µm under the activation pressures between 0 and 2000 mbar. The flow resistance of the deformed valve was studied both numerically and experimentally and an empirical model for valve flow resistance with the form of Rh=aebP was proposed. Afterward, the fluid flow in the valve region was characterized using Micro PIV to further demonstrate the adjustment mechanism of the flow resistance. Then, the herringbone structures were employed for fast mixing to allow both quick variation of concentration and minor space usage of the channel network. Finally, an empirical formula-supported computational program was developed to provide the activation pressures required for the specific concentration profile. Both linear (Ck = -0.2k + 1) and nonlinear (Ck = (110)k) concentration distribution in four channels were varied using the same device by adjusting microvalves. The device demonstrated the capability to control the concentration profile dynamically in a small space, offering superior application potentials in analytical chemistry, drug screening, and cell biology research.
Collapse
Affiliation(s)
- Chang Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Panpan Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Siyuan Chen
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Dong Xu
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
4
|
Paduthol G, Korma TS, Agrawal A, Paul D. Dynamic generation of power function gradient profiles in a universal microfluidic gradient generator by controlling the inlet flow rates. LAB ON A CHIP 2022; 22:592-604. [PMID: 34985077 DOI: 10.1039/d1lc00938a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a two-inlet universal microfluidic gradient generator capable of generating gradient profiles of the functional form xp in the same device by controlling only the inlet flow rates. We have developed an analytical model to predict the inlet flow rates needed to generate a user-specified gradient profile at the outlet. We have validated this model by performing both COMSOL simulations and experiments. Our experiments show an excellent match between the target functions (x0.33, x1, x2 and x3) and the gradient profiles generated in this device. Unlike the universal gradient generators reported earlier, our device does not require changing the positions of the internal barriers for each new gradient profile, thereby making it easier for the user to operate this device.
Collapse
Affiliation(s)
- Gauri Paduthol
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Teji Shenne Korma
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debjani Paul
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
5
|
Babatunde KA, Ayuso JM, Kerr SC, Huttenlocher A, Beebe DJ. Microfluidic Systems to Study Neutrophil Forward and Reverse Migration. Front Immunol 2021; 12:781535. [PMID: 34899746 PMCID: PMC8653704 DOI: 10.3389/fimmu.2021.781535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
During infection, neutrophils are the most abundantly recruited innate immune cells at sites of infection, playing critical roles in the elimination of local infection and healing of the injury. Neutrophils are considered to be short-lived effector cells that undergo cell death at infection sites and in damaged tissues. However, recent in vitro and in vivo evidence suggests that neutrophil behavior is more complex and that they can migrate away from the inflammatory site back into the vasculature following the resolution of inflammation. Microfluidic devices have contributed to an improved understanding of the interaction and behavior of neutrophils ex vivo in 2D and 3D microenvironments. The role of reverse migration and its contribution to the resolution of inflammation remains unclear. In this review, we will provide a summary of the current applications of microfluidic devices to investigate neutrophil behavior and interactions with other immune cells with a focus on forward and reverse migration in neutrophils.
Collapse
Affiliation(s)
| | - Jose M Ayuso
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Sheena C Kerr
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
6
|
On-Chip Micro Mixer Driven by Elastic Wall with Virtual Actuator. MICROMACHINES 2021; 12:mi12020217. [PMID: 33670037 PMCID: PMC7926952 DOI: 10.3390/mi12020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022]
Abstract
In this paper, we propose an on-chip micromixer driven by an elastic wall with a virtual actuator. The on-chip micro mixer is composed of a circular chamber surrounded by a ring-shaped channel under isolation with an elastic wall. When vibrational pressure is put on the driving channel by an actuator, the volume of the circular chamber changes through the deformation of the elastic wall, as if there exists a virtual actuator near the wall. As a result, the liquid in the circular chamber is pushed out and pulled through the neck channel. This action creates a swirling flow in the circular chamber while maintaining isolation from the driving channel. Through experiments, we confirmed the swirling flow under an isolated environment using an air-based valve. The advantage of this approach is that the micromixer can be designed with a single layer having a simple mechanism.
Collapse
|
7
|
Push/Pull Inequality Based High-Speed On-Chip Mixer Enhanced by Wettability. MICROMACHINES 2020; 11:mi11100950. [PMID: 33096922 PMCID: PMC7589582 DOI: 10.3390/mi11100950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
In this paper, a high-speed on-chip mixer using two effects is proposed, i.e., push/pull inequality and wettability. Push/pull inequality and wettability are effective for generating a rotational fluid motion in the chamber and for enhancing the rotational speed by reducing the viscous loss between the liquid and channel wall, respectively. An on-chip mixer is composed of three components, a microfluidic channel for making the main fluid flow, a circular chamber connected to the channel for generating a rotational flow, and an actuator connected at the end of the channel allowing a push/pull motion to be applied to the liquid in the main channel. The flow patterns in the chamber under push/pull motions are nonreversible for each motion and, as a result, produce one-directional torque to the fluid in the circular chamber. This nonreversible motion is called push/pull inequality and eventually creates a swirling flow in the chamber. Using hydrophilic treatments, we executed the experiment with a straight channel and a circular chamber to clarify the mixing characteristics at different flow speeds. According to the results, it is confirmed that the swirling velocity under appropriately tuned wettability is 100 times faster than that without tuning.
Collapse
|
8
|
Feng Q, Gao H, Wen H, Huang H, Li Q, Liang M, Liu Y, Dong H, Cao X. Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: Insights from a microgel model. Acta Biomater 2020; 113:393-406. [PMID: 32629189 DOI: 10.1016/j.actbio.2020.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023]
Abstract
Biophysical cues (especially mechanical cues) embedded in cellular microenvironments show a critical impact on stem cell fate. Despite the capability of traditional hydrogels to mimic the feature of extracellular matrix (ECM) and tune their physicochemical properties via diverse approaches, their relatively large size not only induces biased results, but also hinders high-throughput screening and analysis. In this paper, a microgel model is proposed to recapitulate the role of 3D mechanical microenvironment on stem cell behaviors especially chondrogenesis in vitro. The small diameter of microgels brings the high surface area to volume ratio and then the enlarged diffusion area and shortened diffusion distance of soluble molecules, leading to uniform distribution of nutrients and negligible biochemical gradient inside microgels. To construct ECM-like microenvironment with tunable mechanical strength, three gelatin/hyaluronic acid hybrid microgels with low, medium and high crosslinking densities, i.e., Gel-HA(L), Gel-HA(M) and Gel-HA(H), are fabricated in microfluidic devices by Michael addition reaction between thiolated gelatin (Gel-SH) and ethylsulfated hyaluronic acid (HA-VS) with different substitution degrees of vinyl sulfone groups. Our results show that mouse bone marrow mesenchymal stem cell (BMSC) proliferation, distribution and chondrogenesis are all closely dependent on mechanical microenvironments in microgels. Noteworthily, BMSCs show a clear trend of differentiating into hyaline cartilage in Gel-HA(L) and fibrocartilage in Gel-HA(M) and Gel-HA(H). Whole transcriptome RNA sequencing reveals that mechanical microenvironment of microgels affects BMSC differentiation via TGF-β/Smad signaling pathway, Hippo signaling pathway and Integrin/YAP/TAZ signaling pathway. We believe this microgel model provides a new way to further explore the interaction between cells and 3D microenvironment. STATEMENT OF SIGNIFICANCE: In recent years, hydrogels have been frequently used to construct 3D microenvironment for cells. However, their relatively large size not only brings biased experimental results, but also limits high-throughput screening and analysis. Herein we propose a gelatin/hyaluronic acid microgel model to explore the effects of 3D cellular mechanical microenvironment (biophysical cues) on BMSC behaviors especially chondrogenesis, which can minimize the interference of biochemical gradients. Our results reveal that BMSC differentiation into either hyaline cartilage or fibrocartilage can be regulated via tailoring the mechanical properties of microgels. Whole transcriptome RNA sequencing proves that "TGF-β/Smad signaling pathway", "Hippo signaling pathway" and "Integrins/YAP/ TAZ signaling pathway" are activated or inhibited in this process.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hongji Wen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hanhao Huang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Minhua Liang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China.
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
9
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Abstract
Neutrophil chemotaxis plays a vital role in human immune system. Compared with traditional cell migration assays, the emergence of microfluidics provides a new research platform of cell chemotaxis study due to the advantages of visualization, precise control of chemical gradient, and small consumption of reagents. A series of microfluidic devices have been fabricated to study the behavior of neutrophils exposed on controlled, stable, and complex profiles of chemical concentration gradients. In addition, microfluidic technology offers a promising way to integrate the other functions, such as cell culture, separation and analysis into a single chip. Therefore, an overview of recent developments in microfluidic-based neutrophil chemotaxis studies is presented. Meanwhile, the strength and drawbacks of these devices are compared.
Collapse
|
11
|
Chemotactic Responses of Jurkat Cells in Microfluidic Flow-Free Gradient Chambers. MICROMACHINES 2020; 11:mi11040384. [PMID: 32260431 PMCID: PMC7231302 DOI: 10.3390/mi11040384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022]
Abstract
Gradients of soluble molecules coordinate cellular communication in a diverse range of multicellular systems. Chemokine-driven chemotaxis is a key orchestrator of cell movement during organ development, immune response and cancer progression. Chemotaxis assays capable of examining cell responses to different chemokines in the context of various extracellular matrices will be crucial to characterize directed cell motion in conditions which mimic whole tissue conditions. Here, a microfluidic device which can generate different chemokine patterns in flow-free gradient chambers while controlling surface extracellular matrix (ECM) to study chemotaxis either at the population level or at the single cell level with high resolution imaging is presented. The device is produced by combining additive manufacturing (AM) and soft lithography. Generation of concentration gradients in the device were simulated and experimentally validated. Then, stable gradients were applied to modulate chemotaxis and chemokinetic response of Jurkat cells as a model for T lymphocyte motility. Live imaging of the gradient chambers allowed to track and quantify Jurkat cell migration patterns. Using this system, it has been found that the strength of the chemotactic response of Jurkat cells to CXCL12 gradient was reduced by increasing surface fibronectin in a dose-dependent manner. The chemotaxis of the Jurkat cells was also found to be governed not only by the CXCL12 gradient but also by the average CXCL12 concentration. Distinct migratory behaviors in response to chemokine gradients in different contexts may be physiologically relevant for shaping the host immune response and may serve to optimize the targeting and accumulation of immune cells to the inflammation site. Our approach demonstrates the feasibility of using a flow-free gradient chamber for evaluating cross-regulation of cell motility by multiple factors in different biologic processes.
Collapse
|
12
|
Cheng JW, Sip CG, Lindstedt PR, Boitano R, Bluestein BM, Gamble LJ, Folch A. “Chip-on-a-Transwell” Devices for User-Friendly Control of the Microenvironment of Cultured Cells. ACS APPLIED BIO MATERIALS 2019; 2:4998-5011. [DOI: 10.1021/acsabm.9b00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan W. Cheng
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Christopher G. Sip
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Philip R. Lindstedt
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Ross Boitano
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Blake M. Bluestein
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Lara J. Gamble
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Albert Folch
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| |
Collapse
|
13
|
Sun J, Warden AR, Ding X. Recent advances in microfluidics for drug screening. BIOMICROFLUIDICS 2019; 13:061503. [PMID: 31768197 PMCID: PMC6870548 DOI: 10.1063/1.5121200] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 05/03/2023]
Abstract
With ever increasing drug resistance and emergence of new diseases, demand for new drug development is at an unprecedented urgency. This fact has led to extensive recent efforts to develop new drugs and novel techniques for efficient drug screening. However, new drug development is commonly hindered by cost and time span. Thus, developing more accessible, cost-effective methods for drug screening is necessary. Compared with conventional drug screening methods, a microfluidic-based system has superior advantages in sample consumption, reaction time, and cost of the operation. In this paper, the advantages of microfluidic technology in drug screening as well as the critical factors for device design are described. The strategies and applications of microfluidics for drug screening are reviewed. Moreover, current limitations and future prospects for a drug screening microdevice are also discussed.
Collapse
Affiliation(s)
- Jiahui Sun
- State Key Laboratory of Oncogenes and Related Genes, Institute for
Personalized Medicine and School of Biomedical Engineering, Shanghai Jiao Tong
University, Shanghai 200030, China
| | - Antony R. Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for
Personalized Medicine and School of Biomedical Engineering, Shanghai Jiao Tong
University, Shanghai 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for
Personalized Medicine and School of Biomedical Engineering, Shanghai Jiao Tong
University, Shanghai 200030, China
| |
Collapse
|
14
|
Oliveira NM, Vilabril S, Oliveira MB, Reis RL, Mano JF. Recent advances on open fluidic systems for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:851-863. [DOI: 10.1016/j.msec.2018.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
|
15
|
Liu Y, Yang Q, Cao L, Xu F. Analysis of Leukocyte Behaviors on Microfluidic Chips. Adv Healthc Mater 2019; 8:e1801406. [PMID: 30672149 DOI: 10.1002/adhm.201801406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/05/2019] [Indexed: 01/17/2023]
Abstract
The orchestration of massive leukocytes in the immune system protects humans from invading pathogens and abnormal cells in the body. So far, researches focusing on leukocyte behaviors are performed based on both in vivo and in vitro models. The in vivo animal models are usually less controllable due to their extreme complexity and nonignorable species issue. Therefore, many researchers turn to in vitro models. With the advances in micro/nanofabrication, the microfluidic chip has emerged as a novel platform for model construction in multiple biomedical research fields. Specifically, the microfluidic chip is used to study leukocyte behaviors, due to its incomparable advantages in high throughput, precise control, and flexible integration. Moreover, the small size of the microstructures on the microfluidic chip can better mimic the native microenvironment of leukocytes, which contributes to a more reliable recapitulation. Herein are reviewed the recent advances in microfluidic chip-based leukocyte behavior analysis to provide an overview of this field. Detailed discussions are specifically focused on host defense against pathogens, immunodiagnosis, and immunotherapy studies on microfluidic chips. Finally, the current technical challenges are discussed, as well as possible innovations in this field to improve the related applications.
Collapse
Affiliation(s)
- Yan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| |
Collapse
|
16
|
Dettinger P, Frank T, Etzrodt M, Ahmed N, Reimann A, Trenzinger C, Loeffler D, Kokkaliaris KD, Schroeder T, Tay S. Automated Microfluidic System for Dynamic Stimulation and Tracking of Single Cells. Anal Chem 2018; 90:10695-10700. [PMID: 30059208 DOI: 10.1021/acs.analchem.8b00312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic environments determine cell fate decisions and function. Understanding the relationship between extrinsic signals on cellular responses and cell fate requires the ability to dynamically change environmental inputs in vitro, while continuously observing individual cells over extended periods of time. This is challenging for nonadherent cells, such as hematopoietic stem and progenitor cells, because media flow displaces and disturbs such cells, preventing culture and tracking of single cells. Here, we present a programmable microfluidic system designed for the long-term culture and time-lapse imaging of nonadherent cells in dynamically changing cell culture conditions without losing track of individual cells. The dynamic, valve-controlled design permits targeted seeding of cells in up to 48 independently controlled culture chambers, each providing sufficient space for long-term cell colony expansion. Diffusion-based media exchange occurs rapidly and minimizes displacement of cells and eliminates shear stress. The chip was successfully tested with long-term culture and tracking of primary hematopoietic stem and progenitor cells, and murine embryonic stem cells. This system will have important applications to analyze dynamic signaling inputs controlling fate choices.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Tino Frank
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Martin Etzrodt
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Christoph Trenzinger
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Konstantinos D Kokkaliaris
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Savaş Tay
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland.,Institute for Molecular Engineering , The University of Chicago , 5640 S. Ellis Ave , Chicago , Illinois 60637 , United States
| |
Collapse
|
17
|
Qasaimeh MA, Pyzik M, Astolfi M, Vidal SM, Juncker D. Neutrophil Chemotaxis in Moving Gradients. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mohammad A. Qasaimeh
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Division of Engineering; New York University Abu Dhabi; Abu Dhabi 129188 UAE
- Department of Mechanical and Aerospace Engineering; New York University; NY 11201 USA
| | - Michal Pyzik
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
- Division of Gastroenterology; Department of Medicine; Brigham &Women's Hospital; Harvard Medical School; Boston MA 02115 USA
| | - Mélina Astolfi
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
| | - Silvia M. Vidal
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
| | - David Juncker
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Genome Quebec Innovation Centre; McGill University; Montréal QC H3A 0G1 Canada
- Department of Neurology and Neurosurgery; McGill University; Montréal QC H3A 1A4 Canada
| |
Collapse
|
18
|
Construction of Tumor Tissue Array on An Open-Access Microfluidic Chip. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(17)61064-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Mishra S, Vazquez M. A Gal-MµS Device to Evaluate Cell Migratory Response to Combined Galvano-Chemotactic Fields. BIOSENSORS-BASEL 2017; 7:bios7040054. [PMID: 29160793 PMCID: PMC5746777 DOI: 10.3390/bios7040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023]
Abstract
Electric fields have been studied extensively in biomedical engineering (BME) for numerous regenerative therapies. Recent studies have begun to examine the biological effects of electric fields in combination with other environmental cues, such as tissue-engineered extracellular matrices (ECM), chemical gradient profiles, and time-dependent temperature gradients. In the nervous system, cell migration driven by electrical fields, or galvanotaxis, has been most recently studied in transcranial direct stimulation (TCDS), spinal cord repair and tumor treating fields (TTF). The cell migratory response to galvano-combinatory fields, such as magnetic fields, chemical gradients, or heat shock, has only recently been explored. In the visual system, restoration of vision via cellular replacement therapies has been limited by low numbers of motile cells post-transplantation. Here, the combinatory application of electrical fields with other stimuli to direct cells within transplantable biomaterials and/or host tissues has been understudied. In this work, we developed the Gal-MµS device, a novel microfluidics device capable of examining cell migratory behavior in response to single and combinatory stimuli of electrical and chemical fields. The formation of steady-state, chemical concentration gradients and electrical fields within the Gal-MµS were modeled computationally and verified experimentally within devices fabricated via soft lithography. Further, we utilized real-time imaging within the device to capture cell trajectories in response to electric fields and chemical gradients, individually, as well as in combinatory fields of both. Our data demonstrated that neural cells migrated longer distances and with higher velocities in response to combined galvanic and chemical stimuli than to either field individually, implicating cooperative behavior. These results reveal a biological response to galvano-chemotactic fields that is only partially understood, as well as point towards novel migration-targeted treatments to improve cell-based regenerative therapies.
Collapse
Affiliation(s)
- Shawn Mishra
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| | - Maribel Vazquez
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| |
Collapse
|
20
|
Zhuang P, Sun AX, An J, Chua CK, Chew SY. 3D neural tissue models: From spheroids to bioprinting. Biomaterials 2017; 154:113-133. [PMID: 29120815 DOI: 10.1016/j.biomaterials.2017.10.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) in vitro neural tissue models provide a better recapitulation of in vivo cell-cell and cell-extracellular matrix interactions than conventional two-dimensional (2D) cultures. Therefore, the former is believed to have great potential for both mechanistic and translational studies. In this paper, we review the recent developments in 3D in vitro neural tissue models, with a particular focus on the emerging bioprinted tissue structures. We draw on specific examples to describe the merits and limitations of each model, in terms of different applications. Bioprinting offers a revolutionary approach for constructing repeatable and controllable 3D in vitro neural tissues with diverse cell types, complex microscale features and tissue level responses. Further advances in bioprinting research would likely consolidate existing models and generate complex neural tissue structures bearing higher fidelity, which is ultimately useful for probing disease-specific mechanisms, facilitating development of novel therapeutics and promoting neural regeneration.
Collapse
Affiliation(s)
- Pei Zhuang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Alfred Xuyang Sun
- Department of Neurology, National Neuroscience Institute, 20 College Road, Singapore 169856, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Chee Kai Chua
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
21
|
Lin D, Li P, Lin J, Shu B, Wang W, Zhang Q, Yang N, Liu D, Xu B. Orthogonal Screening of Anticancer Drugs Using an Open-Access Microfluidic Tissue Array System. Anal Chem 2017; 89:11976-11984. [PMID: 29053257 DOI: 10.1021/acs.analchem.7b02021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Screening for potential drug combinations presents significant challenges to the current microfluidic cell culture systems, due to the requirement of flexibility in liquid handling. To overcome this limitation, we present here an open-access microfluidic tissue array system specifically designed for drug combination screening. The microfluidic chip features a key structure in which a nanoporous membrane is sandwiched by a cell culture chamber array layer and a corresponding media reservoir array layer. The microfluidic approach takes advantage of the characteristics of the nanoporous membrane: on one side, this membrane permits the flow of air but not liquid, thus acting as a flow-stop valve to enable automatic cell distribution; on the other side, it allows diffusion-based media exchange and thus mimics the endothelial layer. In synergy with a liquid-transferring platform, the open-access microfluidic system enables complex multistep operations involving long-term cell culture, medium exchange, multistep drug treatment, and cell-viability testing. By using the microfluidic protocol, a 10 × 10 tissue array was constructed in 90 s, followed by schedule-dependent drug testing. Morphological and immunohistochemical assays indicated that the resultant tumor tissue was faithful to that in vivo. Drug-testing assays showed that the incorporation of the nanoporous membrane further decreased killing efficacy of the anticancer agents, indicating its function as an endothelial layer. Robustness of the microfluidic system was demonstrated by implementing a three-factor, three-level orthogonal screening of anticancer drug combinations, with which 67% of the testing (9 vs. 27) was saved. Experimental results demonstrated that the microfluidic tissue system presented herein is flexible and easy-to-use, thus providing an ideal tool for performing complex multistep cell assays with high efficiencies.
Collapse
Affiliation(s)
- Dongguo Lin
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| | - Peiwen Li
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China
| | - Jinqiong Lin
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China
| | - Bowen Shu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| | - Weixin Wang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China
| | - Qiong Zhang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China
| | - Na Yang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| | - Dayu Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou 510180, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of South China University of Technology , Guangzhou 510180, China.,Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province , Guangzhou 510180, China
| |
Collapse
|
22
|
Kadilak AL, Rehaag JC, Harrington CA, Shor LM. A 3D-printed microbial cell culture platform with in situ PEGDA hydrogel barriers for differential substrate delivery. BIOMICROFLUIDICS 2017; 11:054109. [PMID: 29034053 PMCID: PMC5624803 DOI: 10.1063/1.5003477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/06/2017] [Indexed: 05/05/2023]
Abstract
Additive manufacturing, or 3D-printing techniques have recently begun to enable simpler, faster, and cheaper production of millifluidic devices at resolutions approaching 100-200 μm. At this resolution, cell culture devices can be constructed that more accurately replicate natural environments compared with conventional culturing techniques. A number of microfluidics researchers have begun incorporating additive manufacturing into their work, using 3D-printed devices in a wide array of chemical, fluidic, and even some biological applications. Here, we describe a 3D-printed cell culture platform and demonstrate its use in culturing Pseudomonas putida KT2440 bacteria for 44 h under a differential substrate gradient. Polyethylene glycol diacrylate (PEGDA) hydrogel barriers are patterned in situ within a 3D-printed channel. Transport of the toluidine blue tracer dye through the hydrogel barriers is characterized. Nutrients and oxygen were delivered to cells in the culture region by diffusion through the PEGDA hydrogel barriers from adjacent media or saline perfusion channels. Expression of green fluorescent protein by P. putida KT2440 enabled real time visualization of cell density within the 3D-printed channel, and demonstrated cells were actively expressing protein over the course of the experiment. Cells were observed clustering near hydrogel barrier boundaries where fresh substrate and oxygen were being delivered via diffusive transport, but cells were unable to penetrate the barrier. The device described here provides a versatile and easy to implement platform for cell culture in readily controlled gradient microenvironments. By adjusting device geometry and hydrogel properties, this platform could be further customized for a wide variety of biological applications.
Collapse
Affiliation(s)
- Andrea L Kadilak
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, USA
| | - Jessica C Rehaag
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, USA
| | - Cameron A Harrington
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, USA
| | | |
Collapse
|
23
|
Ezra Tsur E, Zimerman M, Maor I, Elrich A, Nahmias Y. Microfluidic Concentric Gradient Generator Design for High-Throughput Cell-Based Studies. Front Bioeng Biotechnol 2017; 5:21. [PMID: 28447031 PMCID: PMC5388772 DOI: 10.3389/fbioe.2017.00021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/17/2017] [Indexed: 01/22/2023] Open
Abstract
Gradients of diffusible signaling molecules play important role in various processes, ranging from cell differentiation to toxicological evaluation. Microfluidic technology provides an accurate control of tempospatial conditions. However, current microfluidic platforms are not designed to handle multiple gradients and cell populations simultaneously. Here, we demonstrate a rapidly adaptable microfluidic design able to expose multiple cell populations to an array of chemical gradients. Our design is based on pressure-equilibrated concentric channels and a pressure-dissipating control layer, facilitating the seeding of multiple cell populations in a single device. The design was numerically evaluated and experimentally validated. The device consists of 8 radiating stimuli channels and 12 circular cell culture channels, creating an array of 96 different continuous gradients that can be simultaneously monitored over time.
Collapse
Affiliation(s)
- Elishai Ezra Tsur
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Neuro-Biomorphic Engineering Lab, Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Michal Zimerman
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Maor
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avner Elrich
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Menachery A, Kumawat N, Qasaimeh MA. Merging orthogonal microfluidic flows to generate multi-profile concentration gradients. RSC Adv 2017. [DOI: 10.1039/c7ra09692e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This work describes a novel microfluidic device capable of generating multi-profile gradients that include sigmoidal, parabolic, and exponential concentration variations across its main channel.
Collapse
Affiliation(s)
- A. Menachery
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - N. Kumawat
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - M. A. Qasaimeh
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
- Department of Mechanical and Aerospace Engineering
| |
Collapse
|
25
|
Tatárová Z, Abbuehl JP, Maerkl S, Huelsken J. Microfluidic co-culture platform to quantify chemotaxis of primary stem cells. LAB ON A CHIP 2016; 16:1934-45. [PMID: 27137768 DOI: 10.1039/c6lc00236f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Functional analysis of primary tissue-specific stem cells is hampered by their rarity. Here we describe a greatly miniaturized microfluidic device for the multiplexed, quantitative analysis of the chemotactic properties of primary, bone marrow-derived mesenchymal stem cells (MSC). The device was integrated within a fully customized platform that both increased the viability of stem cells ex vivo and simplified manipulation during multidimensional acquisition. Since primary stem cells can be isolated only in limited number, we optimized the design for efficient cell trapping from low volume and low concentration cell suspensions. Using nanoliter volumes and automated microfluidic controls for pulsed medium supply, our platform is able to create stable gradients of chemoattractant secreted from mammalian producer cells within the device, as was visualized by a secreted NeonGreen fluorescent reporter. The design was functionally validated by a CXCL/CXCR ligand/receptor combination resulting in preferential migration of primary, non-passaged MSC. Stable gradient formation prolonged assay duration and resulted in enhanced response rates for slowly migrating stem cells. Time-lapse video microscopy facilitated determining a number of migratory properties based on single cell analysis. Jackknife-resampling revealed that our assay requires only 120 cells to obtain statistically significant results, enabling new approaches in the research on rare primary stem cells. Compartmentalization of the device not only facilitated such quantitative measurements but will also permit future, high-throughput functional screens.
Collapse
Affiliation(s)
- Z Tatárová
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne CH-1015, Switzerland.
| | | | | | | |
Collapse
|
26
|
Irimia D, Ellett F. Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. J Leukoc Biol 2016; 100:291-304. [PMID: 27194799 DOI: 10.1189/jlb.5ru0216-056r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an indispensable component of the immune response, and leukocytes provide the first line of defense against infection. Although the major stereotypic leukocyte behaviors in response to infection are well known, the complexities and idiosyncrasies of these phenotypes in conditions of disease are still emerging. Novel tools are indispensable for gaining insights into leukocyte behavior, and in the past decade, microfluidic technologies have emerged as an exciting development in the field. Microfluidic devices are readily customizable, provide tight control of experimental conditions, enable high precision of ex vivo measurements of individual as well as integrated leukocyte functions, and have facilitated the discovery of novel leukocyte phenotypes. Here, we review some of the most interesting insights resulting from the application of microfluidic approaches to the study of the inflammatory response. The aim is to encourage leukocyte biologists to integrate these new tools into increasingly more sophisticated experimental designs for probing complex leukocyte functions.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| | - Felix Ellett
- BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Uzel SG, Amadi OC, Pearl TM, Lee RT, So PT, Kamm RD. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:612-22. [PMID: 26619365 PMCID: PMC4752442 DOI: 10.1002/smll.201501905] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Indexed: 05/09/2023]
Abstract
Biochemical gradients are ubiquitous in biology. At the tissue level, they dictate differentiation patterning or cell migration. Recapitulating in vitro the complexity of such concentration profiles with great spatial and dynamic control is crucial in order to understand the underlying mechanisms of biological phenomena. Here, a microfluidic design capable of generating diffusion-driven, simultaneous or sequential, orthogonal linear concentration gradients in a 3D cell-embedded scaffold is described. Formation and stability of the orthogonal gradients are demonstrated by computational and fluorescent dextran-based characterizations. Then, system utility is explored in two biological systems. First, stem cells are subjected to orthogonal gradients of morphogens in order to mimic the localized differentiation of motor neurons in the neural tube. Similarly to in vivo, motor neurons preferentially differentiate in regions of high concentration of retinoic acid and smoothened agonist (acting as sonic hedgehog), in a concentration-dependent fashion. Then, a rotating gradient is applied to HT1080 cancer cells and the change in migration direction is investigated as the cells adapt to a new chemical environment. The response time of ≈4 h is reported. These two examples demonstrate the versatility of this new design that can also prove useful in many applications including tissue engineering and drug screening.
Collapse
Affiliation(s)
- Sebastien G.M. Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
| | - Ovid C. Amadi
- Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts 02139
- Department of Stem Cell and Regenerative Biology, Harvard University, and Brigham and Women's Hospital, Cambridge, Massachusetts 02138
| | - Taylor M. Pearl
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, and Brigham and Women's Hospital, Cambridge, Massachusetts 02138
| | - Peter T.C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139
| |
Collapse
|
28
|
|
29
|
Hu C, Lin YS, Chen H, Liu J, Nie F. Concentration gradient generator for H460 lung cancer cell sensitivity to resist the cytotoxic action of curcumin in microenvironmental pH conditions. RSC Adv 2016. [DOI: 10.1039/c6ra20804e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We proposed and demonstrated a concentration gradient generator (CGG) to resist H460 lung cancer cells using curcumin in microenvironmental pH conditions.
Collapse
Affiliation(s)
- Chunfei Hu
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Yu-Sheng Lin
- Division of Nanobionic Research
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Hongmei Chen
- Division of Nanobionic Research
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Jingjing Liu
- Division of Nanobionic Research
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Fuqiang Nie
- Division of Nanobionic Research
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
30
|
Rink I, Rink J, Helmer D, Sachs D, Schmitz K. A Haptotaxis Assay for Leukocytes Based on Surface-Bound Chemokine Gradients. THE JOURNAL OF IMMUNOLOGY 2015; 194:5549-58. [DOI: 10.4049/jimmunol.1500148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/31/2015] [Indexed: 11/19/2022]
|
31
|
Cambier T, Honegger T, Vanneaux V, Berthier J, Peyrade D, Blanchoin L, Larghero J, Théry M. Design of a 2D no-flow chamber to monitor hematopoietic stem cells. LAB ON A CHIP 2015; 15:77-85. [PMID: 25338534 DOI: 10.1039/c4lc00807c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hematopoietic stem cells (HSCs) are the most commonly used cell type in cell-based therapy. However, the investigation of their behavior in vitro has been limited by the difficulty of monitoring these non-adherent cells under classical culture conditions. Indeed, fluid flow moves cells away from the video-recording position and prevents single cell tracking over long periods of time. Here we describe a large array of 2D no-flow chambers allowing the monitoring of single HSCs for several days. The chamber design has been optimized to facilitate manufacturing and routine use. The chip contains a single inlet and 800 chambers. The chamber medium can be renewed by diffusion within a few minutes. This allowed us to stain live human HSCs with fluorescent primary antibodies in order to reveal their stage in the hematopoiesis differentiation pathway. Thus we were able to correlate human HSCs' growth rate, polarization and migration to their differentiation stage.
Collapse
Affiliation(s)
- Théo Cambier
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA, INRA, CNRS, Université Grenoble-Alpes, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Moussavi-Harami SF, Pezzi HM, Huttenlocher A, Beebe DJ. Simple microfluidic device for studying chemotaxis in response to dual gradients. Biomed Microdevices 2015; 17:9955. [PMID: 25893484 PMCID: PMC4768479 DOI: 10.1007/s10544-015-9955-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chemotaxis is a fundamental biological process where complex chemotactic gradients are integrated and prioritized to guide cell migration toward specific locations. To understand the mechanisms of gradient dependent cell migration, it is important to develop in vitro models that recapitulate key attributes of the chemotactic cues present in vivo. Current in vitro tools for studying cell migration are not amenable to easily study the response of neutrophils to dual gradients. Many of these systems require external pumps and complex setups to establish and maintain the gradients. Here we report a simple yet innovative microfluidic device for studying cell migration in the presence of dual chemotactic gradients through a 3-dimensional substrate. The device is tested and validated by studying the migration of the neutrophil-like cell line PLB-985 to gradients of fMLP. Furthermore, the device is expanded and used with heparinised whole blood, whereupon neutrophils were observed to migrate from whole blood towards gradients of fMLP eliminating the need for any neutrophil purification or capture steps.
Collapse
Affiliation(s)
- S F Moussavi-Harami
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
33
|
Kim SH, Lee GH, Park JY, Lee SH. Microplatforms for gradient field generation of various properties and biological applications. ACTA ACUST UNITED AC 2014; 20:82-95. [PMID: 25510472 DOI: 10.1177/2211068214562247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Well-designed microfluidic platforms can be excellent tools to eliminate bottleneck problems or issues that have arisen in biological fields by providing unprecedented high-resolution control of mechanical and chemical microenvironments for cell culture. Among such microtechnologies, the precise generation of biochemical concentration gradients has been highly regarded in the biorelated scientific fields; even today, the principles and mechanisms for gradient generation continue to be refined, and the number of applications for this technique is growing. Here, we review the current status of the concentration gradient generation technologies achieved in various microplatforms and how they have been and will be applied to biological issues, particularly those that have arisen from cancer research, stem cell research, and tissue engineering. We also provide information about the advances and future challenges in the technological aspects of microscale concentration gradient generation.
Collapse
Affiliation(s)
- Sung-Hwan Kim
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Gi-Hun Lee
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Hoon Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Junkin M, Tay S. Microfluidic single-cell analysis for systems immunology. LAB ON A CHIP 2014; 14:1246-60. [PMID: 24503696 DOI: 10.1039/c3lc51182k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The immune system constantly battles infection and tissue damage, but exaggerated immune responses lead to allergies, autoimmunity and cancer. Discrimination of self from foreign and the fine-tuning of immunity are achieved by information processing pathways, whose regulatory mechanisms are little understood. Cell-to-cell variability and stochastic molecular interactions result in diverse cellular responses to identical signaling inputs, casting doubt on the reliability of traditional population-averaged analyses. Furthermore, dynamic molecular and cellular interactions create emergent properties that change over multiple time scales. Understanding immunity in the face of complexity and noisy dynamics requires time-dependent analysis of single-cells in a proper context. Microfluidic systems create precisely defined microenvironments by controlling fluidic and surface chemistries, feature sizes, geometries and signal input timing, and thus enable quantitative multi-parameter analysis of single cells. Such qualities allow observable dynamic environments approaching in vivo levels of biological complexity. Seamless parallelization of functional units in microfluidic devices allows high-throughput measurements, an essential feature for statistically meaningful analysis of naturally variable biological systems. These abilities recapitulate diverse scenarios such as cell-cell signaling, migration, differentiation, antibody and cytokine production, clonal selection, and cell lysis, thereby enabling accurate and meaningful study of immune behaviors in vitro.
Collapse
Affiliation(s)
- Michael Junkin
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland.
| | | |
Collapse
|
35
|
A microfluidic device mimicking acinar concentration gradients across the liver acinus. Biomed Microdevices 2014; 15:767-80. [PMID: 23563756 DOI: 10.1007/s10544-013-9762-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The acinus-mimicking microfluidic chip, which simulates the in vivo condition of the liver, was developed and reported in this paper. The gradient microenvironment of the liver acinus is replicated within this proposed microfluidic chip. The advantage of this acinus-mimicking chip is capable of adjusting the concentration gradient in a relatively short period of time at around 10 s. At the same instance the non-linear concentration gradient can be presented in the various zones within this microfluidic chip. The other advantage of this proposed design is in the convenience of allowing the direct injection of the cells into the chip. The environment within the chip is multi-welled and gel-free with high cell density. The multi-row pillar microstructure located at the entrance of the top and bottom flow channels is designed to be able to balance the pressure of the perfusion medium. Through this mechanism the shear stress experienced by the cultured cells can be minimized to reduce the potential damage flow from the perfusion process. The fluorescence staining and the observations of the cell morphology verify the life and death of the cells. The shear stress experienced by the cells in the various zones within the chip can be effectively mapped. The serum glutamic oxaloacetic transaminase (SGOT) collected from the supernatants was used to determine the effects of the degassing process and the shear stress of the medium flow on the cultured cells.
Collapse
|
36
|
Wang Z, Lee I, Jeon TJ, Kim SM. Micro-/nanofluidic device for tunable generation of a concentration gradient: application to Caenorhabditis elegans chemotaxis. Anal Bioanal Chem 2014; 406:2679-86. [DOI: 10.1007/s00216-014-7663-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/24/2022]
|
37
|
Wu J, Wu X, Lin F. Recent developments in microfluidics-based chemotaxis studies. LAB ON A CHIP 2013; 13:2484-99. [PMID: 23712326 DOI: 10.1039/c3lc50415h] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
38
|
Mitra B, Jindal R, Lee S, Xu Dong D, Li L, Sharma N, Maguire T, Schloss R, Yarmush ML. Microdevice integrating innate and adaptive immune responses associated with antigen presentation by dendritic cells. RSC Adv 2013; 3:16002-16010. [PMID: 29682279 DOI: 10.1039/c3ra41308j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic cells are the principal antigen presenting cells that are responsible for acquiring and transporting antigen from the peripheral tissue to the secondary lymphoid tissue. There they present it to T cells which ultimately initiate an antigen specific immune response. In vivo, the migration of dendritic cells (DCs) and T cell activation are intimately linked. However, ex vivo systems that facilitate integrated evaluation of DC chemotaxis and resulting T cell activation by migrated DCs are lacking. In this work, we have developed a microfabricated platform that integrates DC chemotaxis with T cell activation. The basic design of the microdevice includes two layers of PDMS, with the top layer comprising the chemotaxis compartment and the bottom layer containing a T cell compartment. In the chemotaxis compartment, the DCs are subjected to a chemokine gradient, and their migratory response is evaluated. In the T cell compartment, rapid DC-induced activation of T cells is evaluated by measuring the level of calcium in T cells. We demonstrate the efficacy of our approach by evaluating the integrated response of mature DCs, whereby the overall T cell activation response is governed both by the chemotaxis and the T cell activation potential of mature DCs relative to immature DCs. Our system provides a powerful platform for systematically probing various aspects of antigen induced immune responses - DC maturation, migration and T cell activation - in an integrated fashion.
Collapse
Affiliation(s)
- Bhaskar Mitra
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 08854, Piscataway, NJ
| | - Rohit Jindal
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 08854, Piscataway, NJ.,Center for Engineering in Medicine and the Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, MA, 02114
| | - Serom Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 08854, Piscataway, NJ
| | - Dave Xu Dong
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 08854, Piscataway, NJ
| | - Lulu Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 08854, Piscataway, NJ
| | - Nripen Sharma
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 08854, Piscataway, NJ
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 08854, Piscataway, NJ
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 08854, Piscataway, NJ
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 08854, Piscataway, NJ.,Center for Engineering in Medicine and the Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, MA, 02114
| |
Collapse
|
39
|
Abstract
Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. We developed a simple and ubiquitous model predicting fluid flow in suspended microfluidic systems and show that it encompasses many known capillary phenomena. Suspended microfluidics was used to create arrays of collagen membranes, mico Dots (μDots), in a horizontal plane separating two fluidic chambers, demonstrating a transwell platform able to discern collective or individual cellular invasion. Further, we demonstrated that μDots can also be used as a simple multiplexed 3D cellular growth platform. Using the μDot array, we probed the combined effects of soluble factors and matrix components, finding that laminin mitigates the growth suppression properties of the matrix metalloproteinase inhibitor GM6001. Based on the same fluidic principles, we created a suspended microfluidic metabolite extraction platform using a multilayer biphasic system that leverages the accessibility of open microchannels to retrieve steroids and other metabolites readily from cell culture. Suspended microfluidics brings the high degree of fluidic control and unique functionality of closed microfluidics into the highly accessible and robust platform of open microfluidics.
Collapse
|
40
|
Hamon M, Jambovane S, Bradley L, Khademhosseini A, Hong JW. Cell-based dose responses from open-well microchambers. Anal Chem 2013; 85:5249-54. [PMID: 23570236 DOI: 10.1021/ac400743w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-based assays play a critical role in discovery of new drugs and facilitating research in cancer, immunology, and stem cells. Conventionally, they are performed in Petri dishes, tubes, or well plates, using milliliters of reagents and thousands of cells to obtain one data point. Here, we are introducing a new platform to realize cell-based assay capable of increased throughput and greater sensitivity with a limited number of cells. We integrated an array of open-well microchambers into a gradient generation system. Consequently, cell-based dose responses were examined with a single device. We measured IC50 values of three cytotoxic chemicals, Triton X-100, H2O2, and cadmium chloride, as model compounds. The present system is highly suitable for the discovery of new drugs and studying the effect of chemicals on cell viability or mortality with limited samples and cells.
Collapse
Affiliation(s)
- Morgan Hamon
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | | | | | | | | |
Collapse
|
41
|
Xu H, Heilshorn SC. Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:585-95. [PMID: 23109183 PMCID: PMC3984949 DOI: 10.1002/smll.201202208] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Indexed: 05/24/2023]
Abstract
In vivo studies have suggested that gradients of CXCL12 (aka stromal cell-derived factor 1α) may be critical for neural stem cell (NSC) migration during brain development and neural tissue regeneration. However, traditional in vitro chemotaxis tools are limited by unstable concentration gradients and the inability to decouple cell migration directionality and speed. These limitations have restricted the reproducible and quantitative analysis of neuronal migration, which is required for mechanism-based studies. Using a microfluidic gradient generator, nestin and Sox-2 positive human embryonic NSC chemotaxis is quantified within a linear and stable CXCL12 gradient. While untreated NSCs are not able to chemotax within CXCL12 gradients, pre-treatment of the cells with brain-derived neurotrophic factor (BDNF) results in significant chemotactic, directional migration. BDNF pre-treatment has no effect on cell migration speed, which averages about 1 μm min(-1). Quantitative analysis determines that CXCL12 concentrations above 9.0 nM are above the minimum activation threshold, while concentrations below 14.7 nM are below the saturation threshold. Interestingly, although inhibitor studies with AMD 3100 revealed that CXCL12 chemotaxis requires receptor CXCR4 activation, BDNF pre-treatment is found to have no profound effects on the mRNA levels or surface presentation of CXCR4 or the putative CXCR7 scavenger receptor. The microfluidic study of NSC migration within stable chemokine concentration profiles provides quantitative analysis as well as new insight into the migratory mechanism underlying BDNF-induced chemotaxis towards CXCL12.
Collapse
|
42
|
Kim SH, Hwang SMI, Lee JM, Kang JH, Chung IY, Chung BG. Epithelial-to-mesenchymal transition of human lung alveolar epithelial cells in a microfluidic gradient device. Electrophoresis 2013; 34:441-7. [PMID: 23161566 DOI: 10.1002/elps.201200386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/28/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells undergo phenotypic transitions to fibrotic cells, is induced by stimulants including transforming growth factor-beta1 (TGF-β1). In the present study, we developed a microfluidic gradient device to reproduce EMT in A549 human lung alveolar epithelial cells in response to TGF-β1 gradients. The device was directly mounted on the cells that had grown in cell culture plates and produced a stable concentration gradient of TGF-β1 with negligible shear stress, thereby providing a favorable environment for the anchorage-dependent cells. A549 cells elongated with the characteristic spindle-shaped morphological changes with upregulation of alpha-smooth muscle actin, a mesenchyme marker, in a gradient-dependent manner, suggestive of EMT progression. We observed that at higher TGF-β1 concentrations ranging from 5 to 10 ng/mL, the cultures in the microfluidic device allowed to quantitatively pick up subtle differences in the EMT cellular response as compared with plate cultures. These results suggest that the microfluidic gradient device would accurately determine the optimal concentrations of TGF-β1, given that epithelial cells of different tissue origins greatly vary their responses to TGF-β1. Therefore, this microfluidic device could be a powerful tool to monitor EMT induced by a variety of environmental stresses including cigarette smoke with high sensitivity.
Collapse
Affiliation(s)
- Su Hwan Kim
- Department of Bionano Engineering, Hanyang University, Ansan, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Wright GA, Costa L, Terekhov A, Jowhar D, Hofmeister W, Janetopoulos C. On-chip open microfluidic devices for chemotaxis studies. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:816-28. [PMID: 22846851 PMCID: PMC3995343 DOI: 10.1017/s1431927612000475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microfluidic devices can provide unique control over both the chemoattractant gradient and the migration environment of the cells. Our work incorporates laser-machined micro and nanofluidic channels into bulk fused silica and cover slip-sized silica wafers. We have designed “open” chemotaxis devices that produce passive chemoattractant gradients without an external micropipette system. Since the migration area is unobstructed, cells can be easily loaded and strategically placed into the devices with a standard micropipette. The reusable monolithic glass devices have integral ports that can generate multiple gradients in a single experiment. We also used cover slip microfluidics for chemotaxis assays. Passive gradients elicited from these cover slips could be readily adapted for high throughput chemotaxis assays.We have also demonstrated for the first time that cells can be recruited into cover slip ports eliciting passive chemoattractant gradients. This proves, in principle, that intravital cover slip configurations could deliver controlled amounts of drugs, chemicals, or pathogens as well as recruit cells for proteomic or histological analysis in living animals while under microscopic observation. Intravital cover slip fluidics will create a new paradigm for in vivo observation of biological processes.
Collapse
Affiliation(s)
- Gus A. Wright
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Lino Costa
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
| | - Alexander Terekhov
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
| | - Dawit Jowhar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - William Hofmeister
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
| | - Christopher Janetopoulos
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Corresponding author.
| |
Collapse
|
44
|
Gao D, Liu H, Jiang Y, Lin JM, Gao D, Liu H, Jiang Y. Recent developments in microfluidic devices for in vitro cell culture for cell-biology research. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Choi E, Jun I, Chang HK, Park KM, Shin H, Park KD, Park J. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients. LAB ON A CHIP 2012; 12:302-8. [PMID: 22108911 DOI: 10.1039/c1lc20777f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The in situ formation of membranes in microfluidic channels has been given attention because of their great potential in the separation of components, cell culture support for tissue engineering, and molecular transport for generation of chemical gradients. Among these, the porous membranes in microchannels are vigorously applied to generate stable chemical gradients for chemotaxis-dependent cell migration assays. Previous work on the in situ fabrication of membranes for generating the chemical gradient, however, has had several disadvantages, such as fluid leaking, uncontrollable membrane thickness, need of extra equipment, and difficulty in realizing stable interfacial layers. In this paper, we report a novel technique for the in situ formation of membranes within microchannels using enzymatically crosslinkable hydrogels and microfluidic techniques. The thickness of the membrane can be controlled quantitatively by adjusting the crosslinking reaction time and velocity of the microfluidics. By using these techniques, parallel dual hydrogel membranes were prepared within microchannels and these were used for the generation of stable concentration gradients. Moreover, the migration of Salmonella typhimurium was monitored to validate the efficacy of the chemical gradients. These results suggest that our in situ membrane system can be used as a simple platform to understand many cellular activities, including cell adhesion and migration directed by chemotaxis or complex diffusions from biological fluids in three-dimensional microstructures.
Collapse
Affiliation(s)
- Eunpyo Choi
- Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul, 121-742, Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Kunze A, Valero A, Zosso D, Renaud P. Synergistic NGF/B27 gradients position synapses heterogeneously in 3D micropatterned neural cultures. PLoS One 2011; 6:e26187. [PMID: 22022558 PMCID: PMC3192785 DOI: 10.1371/journal.pone.0026187] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/22/2011] [Indexed: 11/18/2022] Open
Abstract
Native functional brain circuits show different numbers of synapses (synaptic densities) in the cerebral cortex. Until now, different synaptic densities could not be studied in vitro using current cell culture methods for primary neurons. Herein, we present a novel microfluidic based cell culture method that combines 3D micropatterning of hydrogel layers with linear chemical gradient formation. Micropatterned hydrogels were used to encapsulate dissociated cortical neurons in laminar cell layers and neurotrophic factors NGF and B27 were added to influence the formation of synapses. Neurotrophic gradients allowed for the positioning of distinguishable synaptic densities throughout a 3D micropatterned neural culture. NGF and B27 gradients were maintained in the microfluidic device for over two weeks without perfusion pumps by utilizing a refilling procedure. Spatial distribution of synapses was examined with a pre-synaptic marker to determine synaptic densities. From our experiments, we observed that (1) cortical neurons responded only to synergistic NGF/B27 gradients, (2) synaptic density increased proportionally to synergistic NGF/B27 gradients; (3) homogeneous distribution of B27 disturbed cortical neurons in sensing NGF gradients and (4) the cell layer position significantly impacted spatial distribution of synapses.
Collapse
Affiliation(s)
- Anja Kunze
- Microsystems Laboratory (LMIS4), Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
47
|
Yang CG, Wu YF, Xu ZR, Wang JH. A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. LAB ON A CHIP 2011; 11:3305-12. [PMID: 21842069 DOI: 10.1039/c1lc20123a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An integrated microfluidic concentration gradient chip was developed for generating stepwise concentrations in high-density channels and applied to high-throughput apoptosis analysis of human uterine cervix cancer (HeLa) cells. The concentration gradient was generated by repeated splitting-and-mixing of the source solutions in a radial channel network which consists of multiple concentric circular channels and an increasing number of branch channels. The gradients were formed over hundreds of branches with predictable concentrations in each branch channel. This configuration brings about some distinctive advantages, e.g., more compact and versatile design, high-density of channels and wide concentration ranges. This concentration gradient generator was used in perfusion culture of HeLa cells and a drug-induced apoptosis assay, demonstrated by investigating the single and combined effects of two model anticancer drugs, 5-fluorouracil and Cyclophosphamide, which were divided into 65 concentrations of the two drugs respectively and 65 of their combinatorial concentrations. The gradient generation, the cell culture/stimulation and staining were performed in a single chip. The present device offers a unique platform to characterize various cellular responses in a high-throughput fashion.
Collapse
Affiliation(s)
- Chun-Guang Yang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| | | | | | | |
Collapse
|
48
|
Li X, Liu L, Wang L, Kamei KI, Yuan Q, Zhang F, Shi J, Kusumi A, Xie M, Zhao Z, Chen Y. Integrated and diffusion-based micro-injectors for open access cell assays. LAB ON A CHIP 2011; 11:2612-7. [PMID: 21655556 DOI: 10.1039/c1lc20258h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Currently, most microfluidic devices are fabricated with embedded micro-channels and other elements in a close form with outward connections. Although much functionality has been demonstrated and a large number of applications have been developed, they are not easy for routine operation in biology laboratories where most in vitro cell processing still relies on the use of culture dishes, glass slides, multi-well plates, tubes, pipettes, etc. We report here an open access device which consists of an array of isolated micro-channels plated on a large culture surface, each of them having tiny nozzles for localized drug delivery. In a diffusion dominant regime, steady gradients of molecule concentration could be obtained and varied by changing the flow rate inside the micro-channels. As assay examples, cell staining and drug-induced cell apoptosis were demonstrated, showing fast cell responses in close proximity of the nozzles.
Collapse
Affiliation(s)
- Xin Li
- Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 rue Lhomond, 75005, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sharma NS, Jindal R, Mitra B, Lee S, Li L, Maguire TJ, Schloss R, Yarmush ML. Perspectives on Non-Animal Alternatives for Assessing Sensitization Potential in Allergic Contact Dermatitis. Cell Mol Bioeng 2011; 5:52-72. [PMID: 24741377 DOI: 10.1007/s12195-011-0189-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skin sensitization remains a major environmental and occupational health hazard. Animal models have been used as the gold standard method of choice for estimating chemical sensitization potential. However, a growing international drive and consensus for minimizing animal usage have prompted the development of in vitro methods to assess chemical sensitivity. In this paper, we examine existing approaches including in silico models, cell and tissue based assays for distinguishing between sensitizers and irritants. The in silico approaches that have been discussed include Quantitative Structure Activity Relationships (QSAR) and QSAR based expert models that correlate chemical molecular structure with biological activity and mechanism based read-across models that incorporate compound electrophilicity. The cell and tissue based assays rely on an assortment of mono and co-culture cell systems in conjunction with 3D skin models. Given the complexity of allergen induced immune responses, and the limited ability of existing systems to capture the entire gamut of cellular and molecular events associated with these responses, we also introduce a microfabricated platform that can capture all the key steps involved in allergic contact sensitivity. Finally, we describe the development of an integrated testing strategy comprised of two or three tier systems for evaluating sensitization potential of chemicals.
Collapse
Affiliation(s)
- Nripen S Sharma
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rohit Jindal
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Bhaskar Mitra
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Serom Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Lulu Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Tim J Maguire
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA ; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
50
|
Huang Y, Agrawal B, Sun D, Kuo JS, Williams JC. Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration. BIOMICROFLUIDICS 2011; 5:13412. [PMID: 21522502 PMCID: PMC3082349 DOI: 10.1063/1.3555195] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/26/2011] [Indexed: 05/11/2023]
Abstract
Cell movement is highly sensitive to stimuli from the extracellular matrix and media. Receptors on the plasma membrane in cells can activate signal transduction pathways that change the mechanical behavior of a cell by reorganizing motion-related organelles. Cancer cells change their migration mechanisms in response to different environments more robustly than noncancer cells. Therefore, therapeutic approaches to immobilize cancer cells via inhibition of the related signal transduction pathways rely on a better understanding of cell migration mechanisms. In recent years, engineers have been working with biologists to apply microfluidics technology to study cell migration. As opposed to conventional cultures on dishes, microfluidics deals with the manipulation of fluids that are geometrically constrained to a submillimeter scale. Such small scales offer a number of advantages including cost effectiveness, low consumption of reagents, high sensitivity, high spatiotemporal resolution, and laminar flow. Therefore, microfluidics has a potential as a new platform to study cell migration. In this review, we summarized recent progress on the application of microfluidics in cancer and other cell migration researches. These studies have enhanced our understanding of cell migration and cancer invasion as well as their responses to subtle variations in their microenvironment. We hope that this review will serve as an interdisciplinary guidance for both biologists and engineers as they further develop the microfluidic toolbox toward applications in cancer research.
Collapse
|