1
|
Zhao T, Pang X, Wang C, Wang L, Yang Y, Wang J, Jia J, Liu X, Xu S, Luo X. Plasmonic Gold Nanostar-Based Probes with Distance-Dependent Plasmon-Enhanced Fluorescence for Ultrasensitive DNA Methyltransferase Assay. Anal Chem 2024; 96:4402-4409. [PMID: 38457775 DOI: 10.1021/acs.analchem.3c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The ultrasensitive DNA methyltransferase (Dam MTase) assay is of high significance for biomedical research and clinical diagnosis because of its profound effect on gene regulation. However, detection sensitivity is still limited by shortcomings, including photobleaching and weak signal intensities of conventional fluorophores at low concentrations. Plasmonic nanostructures with ultrastrong electromagnetic fields and fluorescence enhancement capability that can overcome these intrinsic defects hold great potential for ultrasensitive bioanalysis. Herein, a silica-coated gold nanostars (Au NSTs@SiO2)-based plasmon-enhanced fluorescence (PEF) probe with 20 "hot spots" was developed for ultrasensitive detection of Dam MTase. Here, the Dam Mtase assay was achieved by detecting the byproduct PPi of the rolling circle amplification reaction. It is worth noting that, benefiting from the excellent fluorescence enhancement capability of Au NSTs originating from their 20 "hot spots", the detection limit of Dam Mtase was reduced by nearly 105 times. Moreover, the proposed Au NST-based PEF probe enabled versatile evaluation of Dam MTase inhibitors as well as endogenous Dam MTase detection in GW5100 and JM110 Escherichia coli cell lysates, demonstrating its potential in biomedical analysis.
Collapse
Affiliation(s)
- Tingting Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaozhe Pang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Congkai Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yifan Yang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junqi Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiangfei Jia
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xinxue Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shenghao Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
2
|
Lou J, Hudson MM, Ancajas CF, Best MD. Development of GTP-responsive liposomes by exchanging the metal-DPA binding site in a synthetic lipid switch. Chem Commun (Camb) 2023; 59:3285-3288. [PMID: 36826384 DOI: 10.1039/d3cc00288h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We report stimuli-responsive liposomes that selectively release encapsulated contents upon treatment with guanosine triphosphate (GTP) over a wide variety of phosphorylated metabolites, validated by fluorescence-based leakage assays. Significant changes in liposome self-assembly properties were also observed. Our results showcase the potential of this platform for triggered release applications.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Macy M Hudson
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| | | | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Mitobe R, Sasaki Y, Tang W, Zhou Q, Lyu X, Ohshiro K, Kamiko M, Minami T. Multi-Oxyanion Detection by an Organic Field-Effect Transistor with Pattern Recognition Techniques and Its Application to Quantitative Phosphate Sensing in Human Blood Serum. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22903-22911. [PMID: 35040626 DOI: 10.1021/acsami.1c21092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We herein report an organic field-effect transistor (OFET) based chemical sensor for multi-oxyanion detection with pattern recognition techniques. The oxyanions ubiquitously play versatile roles in biological systems, and accessing the chemical information they provide would potentially facilitate fundamental research in diagnosis and pharmacology. In this regard, phosphates in human blood serum would be a promising indicator for early case detection of significant diseases. Thus, the development of an easy-to-use chemical sensor for qualitative and quantitative detection of oxyanions is required in real-world scenarios. To this end, an extended-gate-type OFET has been functionalized with a metal complex consisting of 2,2'-dipicolylamine and a copper(II) ion (CuII-dpa), allowing a compact chemical sensor for oxyanion detection. The OFET combined with a uniform CuII-dpa-based self-assembled monolayer (SAM) on the extended-gate gold electrode shows a cross-reactive response, which suggests a discriminatory power for pattern recognition. Indeed, the qualitative detection of 13 oxyanions (i.e., hydrogen monophosphate, pyrophosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, terephthalate, phthalate, isophthalate, malonate, oxalate, lactate, benzoate, and acetate) has been demonstrated by only using a single OFET-based sensor with linear discriminant analysis, which has shown 100% correct classification. The OFET has been further applied to the quantification of hydrogen monophosphate in human blood serum using a support vector machine (SVM). The multiple predictions of hydrogen monophosphate at 49 and 89 μM have been successfully realized with low errors, which indicates that the OFET-based sensor with pattern recognition techniques would be a practical sensing platform for medical assays. We believe that a combination of the OFET functionalized with the SAM-based recognition scaffold and powerful pattern recognition methods can achieve multi-analyte detection from just a single sensor.
Collapse
Affiliation(s)
- Riho Mitobe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
4
|
Mikagi A, Manita K, Yoyasu A, Tsuchido Y, Kanzawa N, Hashimoto T, Hayashita T. Rapid Bacterial Recognition over a Wide pH Range by Boronic Acid-Based Ditopic Dendrimer Probes for Gram-Positive Bacteria. Molecules 2021; 27:molecules27010256. [PMID: 35011488 PMCID: PMC8746651 DOI: 10.3390/molecules27010256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
We have developed a convenient and selective method for the detection of Gram-positive bacteria using a ditopic poly(amidoamine) (PAMAM) dendrimer probe. The dendrimer that was modified with dipicolylamine (dpa) and phenylboronic acid groups showed selectivity toward Staphylococcus aureus. The ditopic dendrimer system had higher sensitivity and better pH tolerance than the monotopic PAMAM dendrimer probe. We also investigated the mechanisms of various ditopic PAMAM dendrimer probes and found that the selectivity toward Gram-positive bacteria was dependent on a variety of interactions. Supramolecular interactions, such as electrostatic interaction and hydrophobic interaction, per se, did not contribute to the bacterial recognition ability, nor did they improve the selectivity of the ditopic dendrimer system. In contrast, the ditopic PAMAM dendrimer probe that had a phosphate-sensing dpa group and formed a chelate with metal ions showed improved selectivity toward S. aureus. The results suggested that the targeted ditopic PAMAM dendrimer probe showed selectivity toward Gram-positive bacteria. This study is expected to contribute to the elucidation of the interaction between synthetic molecules and bacterial surface. Moreover, our novel method showed potential for the rapid and species-specific recognition of various bacteria.
Collapse
Affiliation(s)
- Ayame Mikagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Koichi Manita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Asuka Yoyasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Nobuyuki Kanzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
- Correspondence: ; Tel.: +81-3-3238-3372
| |
Collapse
|
5
|
Chen H, Zhou Z, Li Z, He X, Shen J. Highly sensitive fluorescent sensor based on coumarin organic dye for pyrophosphate ion turn-on biosensing in synovial fluid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119792. [PMID: 33887510 DOI: 10.1016/j.saa.2021.119792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Highly sensitive fluorescence detection of pyrophosphate ion (PPi) is in urgent demand but remains a great obstacle, ascribing to scarcity of high-performance materials with promising optical property and high affinity. Herein, we report the design and fabrication of a coumarin-based organic dye (DCCH-TPD) containing both hydrazide group and terpyridine moiety for PPi biosensing through Cu2+-induced photo-electron transfer (PET) effect and target analyte-switched competitive coordination reaction. Individual DCCH-TPD was found to be highly emissive, and displayed a turn-off response toward Cu2+ due to formation of Cu2+@DCCH-TPD and PET effect. The recognition of Cu2+@DCCH-TPD by PPi leads to generation of Cu2+@PPi complex, which greatly reduces the amount of Cu2+ coordinated with DCCH-TPD, subsequently decreasing PET effect. Significantly enhanced fluorescence is recorded and the fluorescence intensity is closely relied on PPi concentration. Thus, highly sensitive detection of PPi is achieved, and the detection limit was calculated to be 0.075 μM. Furthermore, the proposed sensor presented good selectivity, and excellent practical ability for application in arthritic fluid.
Collapse
Affiliation(s)
- Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Xiaojun He
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, PR China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, PR China.
| |
Collapse
|
6
|
Kanagaraj K, Xiao C, Rao M, Fan C, Borovkov V, Cheng G, Zhou D, Zhong Z, Su D, Yu X, Yao J, Hao T, Wu W, Chruma JJ, Yang C. A Quinoline-Appended Cyclodextrin Derivative as a Highly Selective Receptor and Colorimetric Probe for Nucleotides. iScience 2020; 23:100927. [PMID: 32169819 PMCID: PMC7066246 DOI: 10.1016/j.isci.2020.100927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Abstract
The design and development of specific recognition and sensing systems for biologically important anionic species has received growing attention in recent years, as they play significant roles in biology, pharmacy, and environmental sciences. Herein, a new supramolecular sensing probe L1 was developed for highly selective differentiation of nucleotides. L1 displayed extremely marked absorption and emission differentiation upon binding with nucleotide homologs of AMP, ADP, and ATP, due to the divergent spatial orientations of guests upon binding, which allowed for a naked-eye colorimetric differentiation for nucleotides. A differentiating mechanism was unambiguously rationalized by using various spectroscopic studies and theoretical calculations. Furthermore, we successfully demonstrated that L1 can be applied to the real-time monitoring of the enzyme-catalyzed phosphorylation/dephosphorylation processes and thus demonstrated an unprecedented visualizable strategy for selectively differentiating the structurally similar nucleotides and real-time monitoring of biological processes via fluorescent and colorimetric changes.
Collapse
Affiliation(s)
- Kuppusamy Kanagaraj
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Chao Xiao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Chunying Fan
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Victor Borovkov
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Dayang Zhou
- Comprehensive Analysis Center, ISIR, Osaka University, Japan
| | - Zhihui Zhong
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Dan Su
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Xingke Yu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Jiabin Yao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Taotao Hao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Jason J Chruma
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
Asthana SK, Pandey A, Kumar A, Upadhyay KK. An incisive optical recognition of monohydrogen phosphate by a fluorescein-based chemodosimeter. NEW J CHEM 2020. [DOI: 10.1039/c9nj03023a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein devised an incisive chromofluorogenic chemodosimeter (FLH) for detecting HPO42− over other phosphates, viz. H2PO4−, PO43−, and PPi.
Collapse
Affiliation(s)
- Sharad Kumar Asthana
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Abha Pandey
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Ajit Kumar
- Department of Applied Sciences & Humanities
- National Institute of Foundry & Forge Technology
- Ranchi-834003
- India
| | - K. K. Upadhyay
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
8
|
|
9
|
Luo X, Li X, Wang Y, Xie X, Yang L. A Novel Reversible Fluorescent Probe for Sequential Detection of Aluminium Ion and PPi and Bioimaging in Living Cells. ChemistrySelect 2019. [DOI: 10.1002/slct.201902204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaohan Luo
- College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Xiaoyu Li
- College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Yong Wang
- College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Xinmei Xie
- Pharmaceutical InstituteHenan University Kaifeng 475004 China
| | - Li Yang
- College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| |
Collapse
|
10
|
Lee WL, Hsu TW, Hung WC, Fang JM. A copper(ii)-dipicolylamine-coumarin sensor for maltosyltransferase assay. Dalton Trans 2019; 48:8026-8029. [PMID: 31070632 DOI: 10.1039/c9dt01339c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu(ii)-[di(2-methylpyridyl)methylamino]coumarin fluorescence turn-on sensor (Cu-1b) is designed to detect phosphate ions with Kass = 1.4 × 105 M-1 in HEPES buffer. Cu-1b is applied to probe the GlgE-catalyzed maltose-transfer reaction of α-maltose-1-phosphate to α-1,4-glucan with concomitant release of phosphate ions in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Wei-Li Lee
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Wei-Cheng Hung
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan. and The Genomics Research Centre, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
11
|
Zhao C, Chen J, Cao D, Wang J, Ma W. Novel coumarin-based containing denrons selective fluorescent chemosesor for sequential recognition of Cu2+ and PPi. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Villamil-Ramos R, Gómez-Tagle P, Aguilar-Cordero JC, Yatsimirsky AK. Spectrophotometric, fluorimetric and electrochemical selective pyrophosphate/ATP sensing based on the dimethyltin(IV)-tiron system. Anal Chim Acta 2019; 1057:51-59. [PMID: 30832918 DOI: 10.1016/j.aca.2019.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Sensing of pyrophosphate anion (PPi) in the presence of nucleotide triphosphates allows the real time monitoring of the polymerase chain reaction. To get a deeper understanding of the factors involved in PPi/nucleotide triphosphate discrimination, a detailed study on the performance of a dimethyltin (IV)-catecholate complex capable of both separate fluorimetric or electrochemical detection of PPi in the presence of adenosine triphosphate (ATP) has been undertaken. Dimethyltin (IV) tightly binds PPi or ATP, and forms a stable 1:1 complex with tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid) in water. The complexation equilibria with all components are characterized quantitatively by potentiometric and spectroscopic titrations. Pyrophosphate anion can be detected owing to its ability to release free tiron from the complex by measuring either a fluorimetric or an electrochemical signal. On the contrary, ATP does not displace tiron but causes an interference with PPi in the fluorimetric detection method due to the formation of a ternary Me2Sn(IV)-tiron-ATP complex with optical properties intermediate between those of free and bound tiron. In the electrochemical (square wave voltammetry) method, the ternary ATP complex shows a separate peak which does not coincide with the peaks of neither free nor bound tiron, thus making possible the simultaneous detection of ATP in addition to PPi.
Collapse
Affiliation(s)
- Raúl Villamil-Ramos
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma Del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Paola Gómez-Tagle
- Facultad de Química, Universidad Nacional Autónoma de México, 04510, México, D.F, Mexico
| | | | - Anatoly K Yatsimirsky
- Facultad de Química, Universidad Nacional Autónoma de México, 04510, México, D.F, Mexico.
| |
Collapse
|
13
|
Raj P, Singh A, Singh A, Singh A, Garg N, Kaur N, Singh N. Pyrophosphate Prompted Aggregation-Induced Emission: Chemosensor Studies, Cell Imaging, Cytotoxicity, and Hydrolysis of the Phosphoester Bond with Alkaline Phosphatase. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Pushap Raj
- Department of Chemistry; Indian Institute Technology Ropar; 140001 Punjab India
| | - Amanpreet Singh
- Department of Chemistry; Indian Institute Technology Ropar; 140001 Punjab India
| | - Ajnesh Singh
- Department of Applied Sciences and Humanities; Jawaharlal Nehru Govt. Engineering College; 175018 India
| | - Ashutosh Singh
- School of Basic Sciences; Indian Institute of Technology Mandi; 175005 India
| | - Neha Garg
- School of Basic Sciences; Indian Institute of Technology Mandi; 175005 India
| | - Navneet Kaur
- Department of Chemistry; Panjab University Chandigarh; 160014 Chandigarh India
| | - Narinder Singh
- Department of Chemistry; Indian Institute Technology Ropar; 140001 Punjab India
| |
Collapse
|
14
|
A coumarin based highly selective fluorescent chemosensor for sequential recognition of Cu2+ and PPi. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Zhang ST, Li P, Kou X, Xiao D. Highly Selective and Sensitive Luminescent Turn-On Probe for Pyrophosphate Detection in Aqueous Solution. ChemistrySelect 2018. [DOI: 10.1002/slct.201801215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shi-Ting Zhang
- College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Panpan Li
- Department of Architecture and Environment; Sichuan University; Chengdu 610064 China
| | - Xingming Kou
- College of Chemistry; Sichuan University; Chengdu 610064 China
| | - Dan Xiao
- College of Chemistry; Sichuan University; Chengdu 610064 China
| |
Collapse
|
16
|
Mikata Y, Ohnishi R, Nishijima R, Matsumoto A, Konno H. Pyrophosphate-Induced Intramolecular Excimer Formation in Dinuclear Zinc(II) Complexes with Tetrakisquinoline Ligands. Inorg Chem 2018; 57:7724-7734. [PMID: 29905465 DOI: 10.1021/acs.inorgchem.8b00726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dinuclear Zn2+ complexes with HTQHPN ( N,N,N' ,N'-tetrakis(2-quinolylmethyl)-2-hydroxy-1,3-propanediamine) derivatives have been prepared, and their pyrophosphate (PPi, P2O74-) sensing properties were examined. The ligand library includes six HTQHPN derivatives with electron-donating/withdrawing substituents, an extended aromatic ring, and six-membered chelates upon zinc binding. Complexation of ligand with 2 equiv of Zn2+ promotes small to moderate fluorescence enhancement around 380 nm, but in the cases of HTQHPN, HT(6-FQ)HPN ( N,N,N' ,N'-tetrakis(6-fluoro-2-quinolylmethyl)-2-hydroxy-1,3-propanediamine), and HT(8Q)HPN ( N,N,N' ,N'-tetrakis(8-quinolylmethyl)-2-hydroxy-1,3-propanediamine), subsequent addition of PPi induced a significant fluorescence increase around 450 nm. This fluorescence enhancement in the long-wavelength region is attributed to the conformational change of the bis-(quinolylmethyl)amine moiety which promotes intramolecular excimer formation between adjacent quinolines upon binding with PPi. The structures of PPi- and phosphate-bound dizinc complexes were revealed by X-ray crystallography utilizing phenyl-substituted analogues. The zinc complex with HT(8Q)HPN exhibits the highest signal enhancement ( IPPi/ I0 = 12.5) and selectivity toward PPi sensing ( IATP/ IPPi = 20% and IADP/ IPPi = 25%). The fluorescence enhancement turned to decrease gradually after the addition of more than 1 equiv of PPi due to the removal of zinc ion from the ligand-zinc-PPi ternary complex, allowing the accurate determination of PPi concentrations at the fluorescence maximum composition. The practical application of the present method was demonstrated monitoring the enzymatic activity of pyrophosphatase.
Collapse
Affiliation(s)
- Yuji Mikata
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science , Nara Women's University , Nara 630-8506 , Japan.,KYOUSEI Science Center , Nara Women's University , Nara 630-8506 , Japan.,Department of Chemistry, Faculty of Science , Nara Women's University , Nara 630-8506 , Japan
| | - Risa Ohnishi
- Department of Chemistry, Faculty of Science , Nara Women's University , Nara 630-8506 , Japan
| | - Risa Nishijima
- Department of Chemistry, Faculty of Science , Nara Women's University , Nara 630-8506 , Japan
| | - Arimasa Matsumoto
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science , Nara Women's University , Nara 630-8506 , Japan
| | - Hideo Konno
- National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
17
|
Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP. Molecules 2018. [PMID: 29534528 PMCID: PMC6017074 DOI: 10.3390/molecules23030635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The construction of supramolecular recognition systems based on specific host–guest interactions has been studied in order to design selective chemical sensors. In this study, guest-responsive receptors for ATP have been designed with cyclodextrins (CyDs) as a basic prototype of the turn-on type fluorescent indicator. We synthesized dipicolylamine (DPA)-modified CyD–Cu2+ complexes (Cu·1α, Cu·1β, and Cu·1γ), and evaluated their recognition capabilities toward phosphoric acid derivatives in water. The UV-Vis absorption and fluorescence spectra revealed that Cu·1β selectively recognized ATP over other organic and inorganic phosphates, and that β-CyD had the most suitable cavity size for complexation with ATP. The 1D and 2D NMR analyses suggested that the ATP recognition was based on the host–guest interaction between the adenine moiety of ATP and the CyD cavity, as well as the recognition of phosphoric moieties by the Cu2+–DPA complex site. The specific interactions between the CyD cavity and the nucleobases enabled us to distinguish ATP from other nucleoside triphosphates, such as guanosine triphosphate (GTP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). This study clarified the basic mechanisms of molecular recognition by modified CyDs, and suggested the potential for further application of CyDs in the design of highly selective supramolecular recognition systems for certain molecular targets in water.
Collapse
|
18
|
Synthesis of new triazole based imidazo[1,2-a]pyrazine-benzimidazole conjugates: H-bonding assisted FRET efficient ratiometric detection of pyrophosphate. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Gupta N, Singhal D, Singh AK, Singh N, Singh UP. A highly selective chromogenic sensor for Mn 2+, turn-off fluorometric for Hg 2+ ion, and turn-on fluorogenic sensor for F - ion with the practical application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 176:38-46. [PMID: 28064137 DOI: 10.1016/j.saa.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/24/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
A colorimetric and fluorometric probe (E)-2-((8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)methylene)hydrazinecarbothioamide based on thiosemicarbazide and julolidine moieties has been synthesised in pure crystalline form and characterized by 1H NMR, UV-vis, elemental analysis and single crystal XRD. The probe functioned as multitarget ion sensor, detect biologically important metal ions Hg2+ and Mn2+ in dual channel mode. Meanwhile, in mixed solvent media DMF/H2O [8:2], probe displayed selectivity for Hg2+ over other cations by the emission spectrum. Interestingly probe has been explored to recognize F- anion in DMF through ESIPT mechanism. The 1:1 binding stoichiometry of probe with Hg2+ and Mn2+ is confirmed by Job's plot through emission titration and UV-vis titration respectively. Probe is selective and sensitive to Hg2+ and Mn2+ with detection limit as low as 15μM and 0.2μM respectively. The sensing mechanism for selective ions was also scrutinized using 1H NMR experiments and computational studies.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667, India
| | - Divya Singhal
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667, India
| | - Ashok Kumar Singh
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667, India.
| | - Neetu Singh
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667, India
| | - U P Singh
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667, India
| |
Collapse
|
20
|
Asthana SK, Kumar A, Neeraj, Shweta, Hira SK, Manna PP, Upadhyay KK. Brightening Quinolineimines by Al 3+ and Subsequent Quenching by PPi/PA in Aqueous Medium: Synthesis, Crystal Structures, Binding Behavior, Theoretical and Cell Imaging Studies. Inorg Chem 2017; 56:3315-3323. [PMID: 28251852 DOI: 10.1021/acs.inorgchem.6b02752] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent years have witnessed an upsurge of Al3+ selective optical sensors involving simple Schiff bases to other complex organic frameworks. However, more than ∼95% of such reports lack crystallographic evidence, and proposals of binding sites for Al3+ are based upon spectroscopic evidence only. We herein synthesized and fully characterized a quinolineimine derivative (CMO) and explored its potential toward efficient detection of Al3+ with crystallographic evidence. The ongoing nonradiative photoinduced electron transfer (PET) and excited state intramolecular proton transfer (ESIPT) processes in CMO got inhibited via the chelation enhanced fluorescence (CHEF) effects induced by Al3+, and consequently turn-on fluorescence response was observed with 18-fold emission enhancements. The theoretical calculations performed were in good consonance with experimental results. We also explored further the applicability of the CMO·Al3+ complex toward highly sensitive and selective detection of inorganic phosphate (PPi) and an explosive picric acid (PA) via fluorescence quenching processes through two different chemical routes. The bioimaging of Al3+ and PPi were carried out in the living human cancer cells (MCF-7).
Collapse
Affiliation(s)
- Sharad Kumar Asthana
- Department of Chemistry, Institute of Science, Banaras Hindu University , Varanasi-221005, India
| | - Ajit Kumar
- Department of Applied Sciences & Humanities, National Institute of Foundry & Forge Technology , Ranchi-834003, Jharkhand, India
| | - Neeraj
- Department of Chemistry, Institute of Science, Banaras Hindu University , Varanasi-221005, India
| | - Shweta
- Department of Chemistry, Institute of Science, Banaras Hindu University , Varanasi-221005, India
| | - Sumit Kumar Hira
- Department of Zoology, Burdwan University , Burdwan-713104, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, India
| | - K K Upadhyay
- Department of Chemistry, Institute of Science, Banaras Hindu University , Varanasi-221005, India
| |
Collapse
|
21
|
Chang IJ, Choi MG, Jeong YA, Lee SH, Chang SK. Colorimetric determination of Cu2+ in simulated wastewater using naphthalimide-based Schiff base. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.12.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Cui Y, Niu C, Na N, Ouyang J. Core–shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence. J Mater Chem B 2017; 5:5329-5335. [DOI: 10.1039/c7tb01084b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A core–shell gold nanocube has been prepared for point mutation detection based on the PEF process.
Collapse
Affiliation(s)
- Yanyun Cui
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Caixia Niu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
23
|
Aulsebrook ML, Biswas S, Leaver FM, Grace MR, Graham B, Barrios AM, Tuck KL. A luminogenic lanthanide-based probe for the highly selective detection of nanomolar sulfide levels in aqueous samples. Chem Commun (Camb) 2017; 53:4911-4914. [DOI: 10.1039/c7cc01764b] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel bimetallic terbium(iii)/copper(ii) complex for the luminescent detection of hydrogen sulfide in aqueous samples is described.
Collapse
Affiliation(s)
| | - Suvendu Biswas
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | | | | | - Bim Graham
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Amy M. Barrios
- Department of Medicinal Chemistry
- University of Utah College of Pharmacy
- Salt Lake City
- USA
| | | |
Collapse
|
24
|
Chen C, Zhao D, Sun J, Yang X. Colorimetric Logic Gate for Pyrophosphate and Pyrophosphatase via Regulating the Catalytic Capability of Horseradish Peroxidase. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29529-29535. [PMID: 27714993 DOI: 10.1021/acsami.6b10712] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
By regulating the catalytic capability of horseradish peroxidase (HRP), an artful colorimetric assay platform for pyrophosphate (PPi) and pyrophosphatase (PPase) was unprecedentedly designed. In this work, Cu(I), generated by reducing Cu(II) in the presence of ascorbate, could inhibit HRP's catalytic capability of transforming colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB). The robust coordination between PPi and Cu(II) is able to discourage the reduction of Cu(II) to Cu(I) effectively, thus restoring the original catalytic capability of HRP and regenerating blue-colored oxTMB. Upon PPase introduction, PPi would be hydrolyzed into orthophosphate, which could release Cu(II) free from the Cu(II)-PPi complex, and thus in turn allows the catalytic capability of HRP to be inhibited by Cu(I). HRP was activated or deactivated to different degrees depending on PPi or PPase levels, which could be indicated by using HRP-triggered catalytic system as a signal amplifier, thus paving a way for PPi and PPase sensing. Based on the colorimetric sensor for PPi and PPase, an "INH" logic gate was rationally constructed. With the merits of high sensitivity and selectivity, cost-effectiveness, and simplification, our proposed analytical system has also been verified to have potential to be utilized for enzyme inhibitor screening and diagnosis of PPase-related diseases.
Collapse
Affiliation(s)
- Chuanxia Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Dan Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| |
Collapse
|
25
|
Liu Y, Hu Y, Lee S, Lee D, Yoon J. Fluorescent and Colorimetric Chemosensors for Anions, Metal Ions, Reactive Oxygen Species, Biothiols, and Gases. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yifan Liu
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Ying Hu
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Songyi Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Dayoung Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| |
Collapse
|
26
|
Goh H, Ko YG, Nam TK, Singh A, Singh N, Jang DO. A benzimidazole-based fluorescent chemosensor for Cu2+ recognition and its complex for sensing H2PO4− by a Cu2+ displacement approach in aqueous media. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Kataev EA, Shumilova TA, Fiedler B, Anacker T, Friedrich J. Understanding Stacking Interactions between an Aromatic Ring and Nucleobases in Aqueous Solution: Experimental and Theoretical Study. J Org Chem 2016; 81:6505-14. [PMID: 27314892 DOI: 10.1021/acs.joc.6b01130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stacking interactions between aromatic compounds and nucleobases are crucial in recognition of nucleotides and nucleic acids, but a comprehensive understanding of the strength and selectivity of these interactions in aqueous solution has been elusive. To this end, model complexes have been designed and analyzed by experiment and theory. For the first time, stacking free energies between five nucleobases and anthracene were determined experimentally from thermodynamic double mutant cycles. Three different experimental methods were proposed and evaluated. The dye prefers to bind nucleobases in the order (kcal/mol): G (1.3) > T (0.9) > U (0.8) > C (0.5) > A (0.3). The respective trend of interaction free energies extracted from DFT calculations correlates to that obtained experimentally. Analysis of the data suggests that stacking interactions dominate over hydrophobic effects in an aqueous solution and can be predicted with DFT calculations.
Collapse
Affiliation(s)
- Evgeny A Kataev
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Tatiana A Shumilova
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Benjamin Fiedler
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Tony Anacker
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Joachim Friedrich
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| |
Collapse
|
28
|
Kasai Y, Kobayashi H, Tsuchido Y, Hashimoto T, Kanzawa N, Hayashita T. Staphylococcus aureusDetection by Fluorescent Silica Nanoparticles Modified with Metal–Dipicolylamine Complexes. CHEM LETT 2016. [DOI: 10.1246/cl.160261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Lim B, Lee J. A Peptoid-Based Fluorescent Sensor for Cyanide Detection. Molecules 2016; 21:339. [PMID: 26978334 PMCID: PMC6273317 DOI: 10.3390/molecules21030339] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/06/2023] Open
Abstract
Peptoids, N-substituted glycine oligomers, are versatile peptidomimetics with diverse biomedical applications. However, strategies to the development of novel fluorescent peptoids as chemical sensors have not been extensively explored, yet. Here, we synthesized a novel peptoid-based fluorescent probe in which a coumarin moiety was incorporated via copper(I)-catalyzed azide-alkyne cycloaddition reaction. Fluorescence of the newly generated coumarin-peptoid was dramatically quenched upon coordination of the Cu(2+) ion, and the resulting peptoid-Cu(2+) complex exhibited significant Turn-ON fluorescence following the addition of CN(-). The rapid and reversible response, combined with cyanide selectivity of the synthesized peptoid, reflects a multistep photo-process and supports its utility as a new type of CN(-) sensor.
Collapse
Affiliation(s)
- Bumhee Lim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
30
|
Malik AH, Hussain S, Tanwar AS, Layek S, Trivedi V, Iyer PK. An anionic conjugated polymer as a multi-action sensor for the sensitive detection of Cu(2+) and PPi, real-time ALP assaying and cell imaging. Analyst 2016; 140:4388-92. [PMID: 26040847 DOI: 10.1039/c5an00905g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A Cu(2+) ensemble polyfluorene derivative, poly[5,5'-(((9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(oxy))diisophthalate] sodium salt (PFT), displays unprecedented selectivity for PPi (LOD = 2.26 ppb) in aqueous solution as well as in random urine samples at physiological pH vis-a-vis monitoring ALP activity. Furthermore, intracellular imaging of Cu(2+) and PPi in mouse macrophage (J774A.1) and human breast cancer cells (MDA-MB231) was achieved to confirm the viability of PFT in biological systems.
Collapse
Affiliation(s)
- Akhtar H Malik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | | | | | | | | | |
Collapse
|
31
|
Kaur H, Singh J, Chopra S, Kaur N. Calix[4]arene based dipodal receptor nanohybrids for selective determination of chloride ions in aqueous media. Talanta 2016; 146:122-9. [DOI: 10.1016/j.talanta.2015.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 01/25/2023]
|
32
|
Jiao SY, Li K, Zhang W, Liu YH, Huang Z, Yu XQ. Cd(II)-terpyridine-based complex as a ratiometric fluorescent probe for pyrophosphate detection in solution and as an imaging agent in living cells. Dalton Trans 2015; 44:1358-65. [PMID: 25421139 DOI: 10.1039/c4dt03022b] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The terpyridine anthracene ligand was synthesized and characterized. is a ratiometric fluorescent probe for Cd(2+) with a recognition mechanism based on intramolecular charge transfer (ICT). An complex was isolated, and its structure was established using single-crystal XRD. The complex was able to serve as a novel reversible chemosensing ensemble to allow ratiometric response to pyrophosphate (PPi) in aqueous media. Moreover, the fluorescence imaging in living cells from these two emission channels suggested that was a ratiometric probe for Cd(2+), and the in situ generated complex was also a ratiometric ensemble for PPi detection in living cells.
Collapse
Affiliation(s)
- Shu-Yan Jiao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | | | | | | | | | | |
Collapse
|
33
|
Kim S, Eom MS, Yoo S, Han MS. Development of a highly selective colorimetric pyrophosphate probe based on a metal complex and gold nanoparticles: change in selectivity induced by metal ion tuning of the metal complex. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of Supramolecular Anion Recognition. Chem Rev 2015; 115:8038-155. [PMID: 25996028 DOI: 10.1021/acs.chemrev.5b00099] [Citation(s) in RCA: 876] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Claudia Caltagirone
- ‡Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy
| | - Wim Van Rossom
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip A Gale
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
35
|
Maity SB, Banerjee S, Sunwoo K, Kim JS, Bharadwaj PK. A fluorescent chemosensor for Hg(2+) and Cd(2+) ions in aqueous medium under physiological pH and its applications in imaging living cells. Inorg Chem 2015; 54:3929-36. [PMID: 25855889 DOI: 10.1021/acs.inorgchem.5b00106] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new BODIPY derivative with 2,2'-(ethane-1,2-diylbis(oxy))bis(N,N-bis(pyridine-2-ylmethyl)aniline unit as the metal receptor has been designed and synthesized. The dye selectively detects either Cd(2+) or Hg(2+) ions in the presence of hosts of other biologically important and environmentally relevant metal ions in aqueous medium at physiological pH. Binding of metal ions causes a change in the emission behavior of the dye from weakly fluorescent to highly fluorescent. Confocal microscopic experiments validate that the dye can be used to identify changes in either Hg(2+) or Cd(2+) levels in living cells.
Collapse
Affiliation(s)
- Shubhra B Maity
- †Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saikat Banerjee
- †Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kyoung Sunwoo
- ‡Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Jong Seung Kim
- ‡Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Parimal K Bharadwaj
- †Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
36
|
Anbu S, Kamalraj S, Paul A, Jayabaskaran C, Pombeiro AJL. The phenanthroimidazole-based dizinc(ii) complex as a fluorescent probe for the pyrophosphate ion as generated in polymerase chain reactions and pyrosequencing. Dalton Trans 2015; 44:3930-3. [DOI: 10.1039/c4dt03590a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phenanthroimidazole-based dizinc(II) complex is an efficient fluorescent probe for the pyrophosphate ion (PPi) in water with a very low detection limit, and also used to detect PPi released from DNA polymerization chain reaction.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Centro de Química Estrutural
- Complexo I
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | - Subban Kamalraj
- Department of Biochemistry
- Indian Institute of Science
- Bangalore-560 012
- India
| | - Anup Paul
- Centro de Química Estrutural
- Complexo I
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | | | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Complexo I
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| |
Collapse
|
37
|
Ghosh K, Tarafdar D, Samadder A, Khuda-Bukhsh AR. Pyridinum-based flexible tripodal cleft: a case of fluorescence sensing of ATP and dihydrogenphosphate under different conditions and cell imaging. RSC Adv 2015. [DOI: 10.1039/c5ra04023j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pyridinium-based chemosensor 1 built on tris(aminomethyl)amine (tren) has been designed, synthesized and established as a chemosensor for ATP over ADP, AMP and a series of other anions in aqueous CH3CN at pH 6.5.
Collapse
Affiliation(s)
- Kumaresh Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| | | | - Asmita Samadder
- Department of Zoology
- University of Kalyani
- Kalyani-741235
- India
| | | |
Collapse
|
38
|
Ghosh K, Panja S. Coumarin-based supramolecular gelator: a case of selective detection of F− and HP2O73−. RSC Adv 2015. [DOI: 10.1039/c4ra16342g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Coumarin-based small molecular gelator 1 forms stable, fluorescent gel from CHCl3–petroleum ether (1 : 1, v/v). The gel is selectively disintegrated in the presence of F− and hydrogen pyrophosphate.
Collapse
|
39
|
Kambam S, Ren X, Zheng C, Wang F, Wang Y, Chen H, Yin J, Xie J, Chen X. The synthesis of UDP-selective fluorescent probe and its imaging application in living cells. Bioorg Med Chem Lett 2014; 25:262-5. [PMID: 25499877 DOI: 10.1016/j.bmcl.2014.11.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/04/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
Abstract
A perylene-based probe was developed for uridine diphosphate (UDP) sensing and cell imaging. The probe presented about 4-fold fluorescence enhancement in the presence or absence of 100equiv UDP. The selectivity toward UDP over other phosphor-containing anions was observed. The selective UDP sensing was speculated to be related to the binding affinities of Zn(2+) ions in sensor with the uridine and phosphate moieties of UDP. Furthermore, this probe was also applied to image of UDP in living cells.
Collapse
Affiliation(s)
- Srinivasulu Kambam
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xintong Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Cheng Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
40
|
Nugent JW, Lee H, Lee HS, Reibenspies JH, Hancock RD. The Effect of π Contacts between Metal Ions and Fluorophores on the Fluorescence of PET Sensors: Implications for Sensor Design for Cations and Anions. Inorg Chem 2014; 53:9014-26. [DOI: 10.1021/ic5008632] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Joseph W. Nugent
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Hyunjung Lee
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Hee-Seung Lee
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Joseph H. Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Robert D. Hancock
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| |
Collapse
|
41
|
Goswami S, Das AK, Pakhira B, Basu Roy S, Maity AK, Saha P, Sarkar S. Pyrophosphate selective fluorescent chemosensors: cascade recognition of nuclear stain mimicking DAPI. Dalton Trans 2014; 43:12689-97. [DOI: 10.1039/c4dt01262c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Bartovsky P, Ribes A, Agostini A, Benito A, Martínez-Máñez R. Delivery modulation in silica mesoporous supports via functionalization in the pore outlets with a Zn(II)–bis(2-pyridylmethyl)amine complex. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
43
|
Yu W, Qiang J, Yin J, Kambam S, Wang F, Wang Y, Chen X. Ammonium-Bearing Dinuclear Copper(II) Complex: A Highly Selective and Sensitive Colorimetric Probe for Pyrophosphate. Org Lett 2014; 16:2220-3. [DOI: 10.1021/ol5007339] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wenxiang Yu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jian Qiang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Jun Yin
- Key
Laboratory of Pesticide and Chemical Biology, Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Srinivasulu Kambam
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Fang Wang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yong Wang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Xiaoqiang Chen
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
44
|
Noipa T, Ngamdee K, Tuntulani T, Ngeontae W. Cysteamine CdS quantum dots decorated with Fe3+ as a fluorescence sensor for the detection of PPi. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:17-23. [PMID: 24036302 DOI: 10.1016/j.saa.2013.08.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
A new sensitive and selective fluorescence sensor for the detection of pyrophosphate (PPi) in aqueous media based on the Fe(3+) decorated cysteamine CdS QDs ([Cys-CdS QDs]-Fe(3+)) was proposed. The presence of PPi can induce the fluorescence quenching of [Cys-CdS QDs]-Fe(3+) due to the high formation constants between the phosphate group and Fe(3+). Because the complex between Fe(3+) and PPi acts as an efficient quencher, the concentration of PPi can be evaluated by tracking the degree of fluorescence quenching. The fabricated sensor was optimized to obtain the best sensor selectivity and sensitivity. Under optimal conditions, a linear relationship between the fluorescence response and the concentration of PPi was established in the range of 0.5-10 μM. The limits of detection and quantitation for PPi were found to be 0.11 and 2.78 μM, respectively. Furthermore, the proposed sensor exhibited high selectivity toward PPi relative to other common anions. The proposed sensor was successfully applied to the detection of PPi in urine samples with satisfactory results.
Collapse
Affiliation(s)
- Tuanjai Noipa
- Materials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | |
Collapse
|
45
|
Ghosh K, Tarafdar D, Samadder A, Khuda-Bukhsh AR. A benzimidazolium-based new flexible cleft built on the piperazine unit: a case of selective fluorometric sensing of ATP. RSC Adv 2014. [DOI: 10.1039/c4ra11683f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A benzimidazole-based compound 1 which is highly selective and sensitive towards ATP over ADP and AMP in CH3CN/H2O (1 : 1, v/v, using 10 mM HEPES buffer, pH 6.4) has been designed and synthesized. Compound 1 can detect the presence of ATP in Human cervical cancer cells (HeLa).
Collapse
Affiliation(s)
- Kumaresh Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235, India
| | | | - Asmita Samadder
- Department of Zoology
- University of Kalyani
- Kalyani-741235, India
| | | |
Collapse
|
46
|
Gogoi A, Das G. NIR sensing of Zn(ii) and subsequent dihydrogen phosphate detection by a benzothiazole functionalized ninhydrin based receptor. RSC Adv 2014. [DOI: 10.1039/c4ra10556g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Zn2+ responsive (NIR) benzothiazole functionalized ninhydrin based receptor selectively sense H2PO4− ion.
Collapse
Affiliation(s)
- Abhijit Gogoi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039, India
| | - Gopal Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039, India
| |
Collapse
|
47
|
A benzimidazole-based Co3+ complex for electrochemical and spectroscopic recognition of I− and in semi-aqueous media. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
A simple click generated probe for highly selective sequential recognition of Cu(II) and pyrophosphate. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
49
|
Li X, Gao X, Shi W, Ma H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 2013; 114:590-659. [PMID: 24024656 DOI: 10.1021/cr300508p] [Citation(s) in RCA: 1195] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | |
Collapse
|
50
|
Das P, Chandar NB, Chourey S, Agarwalla H, Ganguly B, Das A. Role of metal ion in specific recognition of pyrophosphate ion under physiological conditions and hydrolysis of the phosphoester linkage by alkaline phosphatase. Inorg Chem 2013; 52:11034-41. [PMID: 24020456 DOI: 10.1021/ic401243h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Complexes synthesized from Zn(II), Cu(II), and Cd(II), using a dipicolyl amine derivative (L), showed unique specificity toward pyrophosphate ion (PPi or P4O7(4-)) among all other common anionic analytes, including different biologically significant phosphate ion (PO4(3-), H2PO4(2-)) or phosphate-ion-based nucleotides, such as AMP, ADP, ATP, and CTP. However, the relative affinities of PPi toward these three metal complexes were found to vary and follow the order K(a)(L.Zn-PPi) > are given in units of (a)(L.Cu-PPi) ≥ K(a)(L.Cd-PPi). Luminescence responses of the receptor L were substantial on binding to Zn(2+) and Cd(2+), while relatively a much smaller luminescence response was observed in the presence of Cu(2+). Luminescence responses of L.M-PPi (M is Zn(2+), Cd(2+), and Cu(2+)) were further modified on binding to the PPi ion. This could be utilized for quantitative detection of PPi in physiological condition as well as for developing a real time "turn-on" (for L.Zn and L.Cu) and "turn-off" (for L.Cd) fluorescence assay for evaluating the enzymatic activity of alkaline phosphatase (ALP). Experimental results revealed how the subtle differences in the binding affinities between PPi and M in L.M (M is Zn(2+), Cd(2+), and Cu(2+)), could influence the cleavage of the phosphoester linkage in PPi by ALP. The DFT calculations further revealed that the hydrolytic cleavage of the metal ion coordinated phosphoester bond is kinetically faster than that for free PPi and thus, rationalized the observed difference in the cleavage of the phosphoester bond by an important mammalian enzyme such as ALP in the presence of different metal complexes.
Collapse
Affiliation(s)
- Priyadip Das
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | | | | | | | | | | |
Collapse
|