1
|
Bakhshi Sichani S, Khorshid M, Yongabi D, Urbán CT, Schreurs M, Verstrepen KJ, Lettinga MP, Schöning MJ, Lieberzeit P, Wagner P. Design of a Multiparametric Biosensing Platform and Its Validation in a Study on Spontaneous Cell Detachment from Temperature Gradients. ACS Sens 2024; 9:3967-3978. [PMID: 39079008 DOI: 10.1021/acssensors.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
This article reports on a bioanalytical sensor device that hosts three different transducer principles: impedance spectroscopy, quartz-crystal microbalance with dissipation monitoring, and the thermal-current-based heat-transfer method. These principles utilize a single chip, allowing one to perform either microbalance and heat transfer measurements in parallel or heat transfer and impedance measurements. When taking specific precautions, the three measurement modalities can even be used truly simultaneously. The probed parameters are distinctly different, so that one may speak about multiparametric or "orthogonal" sensing without crosstalk between the sensing circuits. Hence, this sensor allows one to identify which of these label-free sensing principles performs best for a given bioanalytical application in terms of a high signal amplitude and signal-to-noise ratio. As a proof-of-concept, the three-parameter sensor was validated by studying the spontaneous, collective detachment of eukaryotic cells in the presence of a temperature gradient between the QCM chip and the supernatant liquid. In addition to heat transfer, detachment can also be monitored by the impedance- and QCM-related signals. These features allow for the distinguishing between different yeast strains that differ in their flocculation genes, and the sensor device enables proliferation monitoring of yeast colonies over time.
Collapse
Affiliation(s)
- Soroush Bakhshi Sichani
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Derick Yongabi
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Csongor Tibor Urbán
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Michiel Schreurs
- Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Minne Paul Lettinga
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
- Biomolecular Systems and Processes IBI-4, Institute of Biological Information Processing, Research Center Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| | - Michael J Schöning
- Institute for Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmann-Straße 1, D-52428 Jülich, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Währinger Strasse 42, AT-1090 Vienna, Austria
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
2
|
Selivanovitch E, Ostwalt A, Chao Z, Daniel S. Emerging Designs and Applications for Biomembrane Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:339-366. [PMID: 39018354 DOI: 10.1146/annurev-anchem-061622-042618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nature has inspired the development of biomimetic membrane sensors in which the functionalities of biological molecules, such as proteins and lipids, are harnessed for sensing applications. This review provides an overview of the recent developments for biomembrane sensors compatible with either bulk or planar sensing applications, namely using lipid vesicles or supported lipid bilayers, respectively. We first describe the individual components required for these sensing platforms and the design principles that are considered when constructing them, and we segue into recent applications being implemented across multiple fields. Our goal for this review is to illustrate the versatility of nature's biomembrane toolbox and simultaneously highlight how biosensor platforms can be enhanced by harnessing it.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Alexis Ostwalt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
3
|
Biermann M, Leppin C, Langhoff A, Ziemer T, Rembe C, Johannsmann D. An electrochemical quartz crystal microbalance (EQCM) based on microelectrode arrays allows to distinguish between adsorption and electrodeposition. Analyst 2024; 149:2138-2146. [PMID: 38436402 DOI: 10.1039/d3an02210b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Using a precise electrochemical quartz crystal microbalance (EQCM), it was shown that electrogravimetry can be carried out with microelectrode arrays (MEAs). MEAs were prepared on the resonator surface by coating it with a thin polymer layer containing holes, where the holes constitute the microelectrodes. The preparation procedures, their benefits, and their limitations are discussed. Microelectrode-based electrogravimetry is challenging because the reduced active area reduces the QCM signal. It is still feasible. This work is limited to linear voltage ramps (as opposed to steps). The processes chosen for demonstration were the electrodeposition/stripping of copper and the redox cycling of methyl viologen dichloride (MVC). The current trace often showed microelectrodic behavior, depending on the sweep rate. For the case of copper deposition, the mass transfer rate was proportional to the electric current. For the case of MVC, the electric current showed a plateau at the ends of the current-voltage diagram, but the mass transfer rate did not change. The difference can be explained by adsorption and desorption going into saturation at the two ends of the voltage range. Based on whether or not a microelectrodic gravimetric signal is seen, it can be stated whether the mass transfer is closely linked to the current. Further advantages of the microelectrode-based EQCM are an improved access to fast processes, reduced effects of double layer recharging, and the possibility to work at a low electrolyte support.
Collapse
Affiliation(s)
- Michael Biermann
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Straße 4, D 38678 Clausthal-Zellerfeld, Germany.
| | - Christian Leppin
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Straße 4, D 38678 Clausthal-Zellerfeld, Germany.
| | - Arne Langhoff
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Straße 4, D 38678 Clausthal-Zellerfeld, Germany.
| | - Thorben Ziemer
- Institute of Electrical Information Technology, Clausthal University of Technology, Leibnizstraße 28, D 38678 Clausthal-Zellerfeld, Germany
| | - Christian Rembe
- Institute of Electrical Information Technology, Clausthal University of Technology, Leibnizstraße 28, D 38678 Clausthal-Zellerfeld, Germany
| | - Diethelm Johannsmann
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Straße 4, D 38678 Clausthal-Zellerfeld, Germany.
| |
Collapse
|
4
|
Yagüe Relimpio A, Fink A, Bui DT, Fabritz S, Schröter M, Ruggieri A, Platzman I, Spatz JP. Bottom-up Assembled Synthetic SARS-CoV-2 Miniviruses Reveal Lipid Membrane Affinity of Omicron Variant Spike Glycoprotein. ACS NANO 2023; 17:23913-23923. [PMID: 37976416 PMCID: PMC10722588 DOI: 10.1021/acsnano.3c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The ongoing COVID-19 pandemic has been brought on by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike glycoprotein (S), which decorates the viral envelope forming a corona, is responsible for the binding to the angiotensin-converting enzyme 2 (ACE2) receptor and initiating the infection. In comparison to previous variants, Omicron S presents additional binding sites as well as a more positive surface charge. These changes hint at additional molecular targets for interactions between virus and cell, such as the cell membrane or proteoglycans on the cell surface. Herein, bottom-up assembled synthetic SARS-CoV-2 miniviruses (MiniVs), with a lipid composition similar to that of infectious particles, are implemented to study and compare the binding properties of Omicron and Alpha variants. Toward this end, a systematic functional screening is performed to study the binding ability of Omicron and Alpha S proteins to ACE2-functionalized and nonfunctionalized planar supported lipid bilayers. Moreover, giant unilamellar vesicles are used as a cell membrane model to perform competitive interaction assays of the two variants. Finally, two cell lines with and without presentation of the ACE2 receptor are used to confirm the binding properties of the Omicron and Alpha MiniVs to the cellular membrane. Altogether, the results reveal a significantly higher affinity of Omicron S toward both the lipid membrane and ACE2 receptor. The research presented here highlights the advantages of creating and using bottom-up assembled SARS-CoV-2 viruses to understand the impact of changes in the affinity of S for ACE2 in infection studies.
Collapse
Affiliation(s)
- Ana Yagüe Relimpio
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Andreas Fink
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Duc Thien Bui
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Sebastian Fabritz
- Department
for Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Martin Schröter
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Alessia Ruggieri
- Heidelberg
University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department
of Infectious Diseases, Molecular Virology, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, U.K.
| | - Joachim P. Spatz
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, U.K.
- Max Planck
School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Priyadarshini D, Musumeci C, Bliman D, Abrahamsson T, Lindholm C, Vagin M, Strakosas X, Olsson R, Berggren M, Gerasimov JY, Simon DT. Enzymatically Polymerized Organic Conductors on Model Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37267478 DOI: 10.1021/acs.langmuir.3c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Seamless integration between biological systems and electrical components is essential for enabling a twinned biochemical-electrical recording and therapy approach to understand and combat neurological disorders. Employing bioelectronic systems made up of conjugated polymers, which have an innate ability to transport both electronic and ionic charges, provides the possibility of such integration. In particular, translating enzymatically polymerized conductive wires, recently demonstrated in plants and simple organism systems, into mammalian models, is of particular interest for the development of next-generation devices that can monitor and modulate neural signals. As a first step toward achieving this goal, enzyme-mediated polymerization of two thiophene-based monomers is demonstrated on a synthetic lipid bilayer supported on a Au surface. Microgravimetric studies of conducting films polymerized in situ provide insights into their interactions with a lipid bilayer model that mimics the cell membrane. Moreover, the resulting electrical and viscoelastic properties of these self-organizing conducting polymers suggest their potential as materials to form the basis for novel approaches to in vivo neural therapeutics.
Collapse
Affiliation(s)
- Diana Priyadarshini
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Chiara Musumeci
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - David Bliman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Tobias Abrahamsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Caroline Lindholm
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Mikhail Vagin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Roger Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Jennifer Y Gerasimov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
6
|
Lee S, Chung M. DNA-Tethered Lipid Membrane Formation via Solvent-Assisted Self-Assembly. J Phys Chem B 2023; 127:1350-1356. [PMID: 36733188 DOI: 10.1021/acs.jpcb.2c07978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA-tethered lipid bilayers have been used in many studies, based on the controllable and well-defined properties of DNA tethers. However, their application has been limited, because it is difficult to cover a wide range of surfaces and achieve electrical insulation. We implemented an existing method, where a DNA hybrid chip on a silica or glass surface supports a lipid membrane using solvent-assisted self-assembly. The formation of a continuous lipid bilayer was confirmed through the change in quartz crystal microbalance dissipation results, depending on the presence or absence of DNA hybrids. The fluidity of the DNA-tethered lipid membranes was analyzed using a fluorescence microscope. The electrochemical analysis demonstrated the versatility of this new technique, which can be used for sensor or electrode surface modification for biosensors or bioelectronics.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul 04066, Republic of Korea
| | - Minsub Chung
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul 04066, Republic of Korea
| |
Collapse
|
7
|
Gabriunaite I, Valiuniene A, Ramanavicius S, Ramanavicius A. Biosensors Based on Bio-Functionalized Semiconducting Metal Oxides. Crit Rev Anal Chem 2022; 54:549-564. [PMID: 35714203 DOI: 10.1080/10408347.2022.2088226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immobilization of biomaterials is a very important task in the development of biofuel cells and biosensors. Some semiconducting metal-oxide-based supporting materials can be used in these bioelectronics-based devices. In this article, we are reviewing some functionalization methods that are applied for the immobilization of biomaterials. The most significant attention is paid to the immobilization of biomolecules on the surface of semiconducting metal oxides. The improvement of biomaterials immobilization on metal oxides and analytical performance of biosensors by coatings based on conducting polymers, self-assembled monolayers and lipid membranes is discussed.
Collapse
Affiliation(s)
- Inga Gabriunaite
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
| | - Ausra Valiuniene
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Centre for Physical Sciences and Technology, Department of Electrochemical Material Science, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
- Centre for Physical Sciences and Technology, Department of Electrochemical Material Science, Vilnius, Lithuania
| |
Collapse
|
8
|
Yudovich S, Marzouqe A, Kantorovitsch J, Teblum E, Chen T, Enderlein J, Miller EW, Weiss S. Electrically Controlling and Optically Observing the Membrane Potential of Supported Lipid Bilayers. Biophys J 2022; 121:2624-2637. [PMID: 35619563 DOI: 10.1016/j.bpj.2022.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
Supported lipid bilayers are a well-developed model system for the study of membranes and their associated proteins, such as membrane channels, enzymes, and receptors. These versatile model membranes can be made from various components, ranging from simple synthetic phospholipids to complex mixtures of constituents, mimicking the cell membrane with its relevant physiochemical and molecular phenomena. In addition, the high stability of supported lipid bilayers allows for their study via a wide array of experimental probes. In this work, we describe a platform for supported lipid bilayers that is accessible both electrically and optically, and demonstrate direct optical observation of the transmembrane potential of supported lipid bilayers. We show that the polarization of the supported membrane can be electrically controlled and optically probed using voltage-sensitive dyes. Membrane polarization dynamics is understood through electrochemical impedance spectroscopy and the analysis of an equivalent electrical circuit model. In addition, we describe the effect of the conducting electrode layer on the fluorescence of the optical probe through metal-induced energy transfer, and show that while this energy transfer has an adverse effect on the voltage sensitivity of the fluorescent probe, its strong distance dependency allows for axial localization of fluorescent emitters with ultrahigh accuracy. We conclude with a discussion on possible applications of this platform for the study of voltage-dependent membrane proteins and other processes in membrane biology and surface science.
Collapse
Affiliation(s)
- Shimon Yudovich
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| | - Adan Marzouqe
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Joseph Kantorovitsch
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Eti Teblum
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tao Chen
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Germany
| | - Evan W Miller
- Departments of Chemistry, Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Shimon Weiss
- Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel; Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel; Departments of Chemistry and Biochemistry, Physiology, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095.
| |
Collapse
|
9
|
Mechanistic Evaluation of Antimicrobial Lipid Interactions with Tethered Lipid Bilayers by Electrochemical Impedance Spectroscopy. SENSORS 2022; 22:s22103712. [PMID: 35632121 PMCID: PMC9148023 DOI: 10.3390/s22103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023]
Abstract
There is extensive interest in developing real-time biosensing strategies to characterize the membrane-disruptive properties of antimicrobial lipids and surfactants. Currently used biosensing strategies mainly focus on tracking membrane morphological changes such as budding and tubule formation, while there is an outstanding need to develop a label-free biosensing strategy to directly evaluate the molecular-level mechanistic details by which antimicrobial lipids and surfactants disrupt lipid membranes. Herein, using electrochemical impedance spectroscopy (EIS), we conducted label-free biosensing measurements to track the real-time interactions between three representative compounds—glycerol monolaurate (GML), lauric acid (LA), and sodium dodecyl sulfate (SDS)—and a tethered bilayer lipid membrane (tBLM) platform. The EIS measurements verified that all three compounds are mainly active above their respective critical micelle concentration (CMC) values, while also revealing that GML induces irreversible membrane damage whereas the membrane-disruptive effects of LA are largely reversible. In addition, SDS micelles caused membrane solubilization, while SDS monomers still caused membrane defect formation, shedding light on how antimicrobial lipids and surfactants can be active in, not only micellar form, but also as monomers in some cases. These findings expand our mechanistic knowledge of how antimicrobial lipids and surfactants disrupt lipid membranes and demonstrate the analytical merits of utilizing the EIS sensing approach to comparatively evaluate membrane-disruptive antimicrobial compounds.
Collapse
|
10
|
Eddaif L, Felhősi I, Shaban A. In-situ electrochemical and piezogravimetric studies on the application of macrocyclic resorcinarene tetramer in the development of chemically-modified heavy metals ions detection platform in aqueous media. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Staufer O, Gupta K, Hernandez Bücher JE, Kohler F, Sigl C, Singh G, Vasileiou K, Yagüe Relimpio A, Macher M, Fabritz S, Dietz H, Cavalcanti Adam EA, Schaffitzel C, Ruggieri A, Platzman I, Berger I, Spatz JP. Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nat Commun 2022; 13:868. [PMID: 35165285 PMCID: PMC8844029 DOI: 10.1038/s41467-022-28446-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.
Collapse
Affiliation(s)
- Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany.
| | - Kapil Gupta
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Jochen Estebano Hernandez Bücher
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Fabian Kohler
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Christian Sigl
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Gunjita Singh
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Kate Vasileiou
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Ana Yagüe Relimpio
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Meline Macher
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Sebastian Fabritz
- Department for Chemical Biology, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Hendrik Dietz
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Elisabetta Ada Cavalcanti Adam
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK
- Halo Therapeutics Ltd, Science Creates, Albert Road St. Philips Central, Bristol, BS2 0XJ, UK
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrated Infectious Disease Research, University of Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Imre Berger
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol, BS8 1TQ, UK.
- Halo Therapeutics Ltd, Science Creates, Albert Road St. Philips Central, Bristol, BS2 0XJ, UK.
| | - Joachim P Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.
- Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK.
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Jayaram AK, Pappa AM, Ghosh S, Manzer ZA, Traberg WC, Knowles TPJ, Daniel S, Owens RM. Biomembranes in bioelectronic sensing. Trends Biotechnol 2021; 40:107-123. [PMID: 34229865 DOI: 10.1016/j.tibtech.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Cell membranes are integral to the functioning of the cell and are therefore key to drive fundamental understanding of biological processes for downstream applications. Here, we review the current state-of-the-art with respect to biomembrane systems and electronic substrates, with a view of how the field has evolved towards creating biomimetic conditions and improving detection sensitivity. Of particular interest are conducting polymers, a class of electroactive polymers, which have the potential to create the next step-change for bioelectronics devices. Lastly, we discuss the impact these types of devices could have for biomedical applications.
Collapse
Affiliation(s)
- A K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0JH, UK
| | - A M Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - S Ghosh
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - Z A Manzer
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - W C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - T P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0JH, UK
| | - S Daniel
- RF Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14850, USA
| | - R M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK.
| |
Collapse
|
13
|
Asai N, Matsumoto N, Yamashita I, Shimizu T, Shingubara S, Ito T. Detailed analysis of liposome adsorption and its rupture on the liquid-solid interface monitored by LSPR and QCM-D integrated sensor. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Johannsmann D, Langhoff A, Leppin C. Studying Soft Interfaces with Shear Waves: Principles and Applications of the Quartz Crystal Microbalance (QCM). SENSORS (BASEL, SWITZERLAND) 2021; 21:3490. [PMID: 34067761 PMCID: PMC8157064 DOI: 10.3390/s21103490] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
The response of the quartz crystal microbalance (QCM, also: QCM-D for "QCM with Dissipation monitoring") to loading with a diverse set of samples is reviewed in a consistent frame. After a brief introduction to the advanced QCMs, the governing equation (the small-load approximation) is derived. Planar films and adsorbates are modeled based on the acoustic multilayer formalism. In liquid environments, viscoelastic spectroscopy and high-frequency rheology are possible, even on layers with a thickness in the monolayer range. For particulate samples, the contact stiffness can be derived. Because the stress at the contact is large, the force is not always proportional to the displacement. Nonlinear effects are observed, leading to a dependence of the resonance frequency and the resonance bandwidth on the amplitude of oscillation. Partial slip, in particular, can be studied in detail. Advanced topics include structured samples and the extension of the small-load approximation to its tensorial version.
Collapse
Affiliation(s)
- Diethelm Johannsmann
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Straße 4, 38678 Clausthal-Zellerfeld, Germany
| | - Arne Langhoff
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Straße 4, 38678 Clausthal-Zellerfeld, Germany
| | - Christian Leppin
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Straße 4, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
15
|
Dyett BP, Yu H, Lakic B, De Silva N, Dahdah A, Bao L, Blanch EW, Drummond CJ, Conn CE. Delivery of antimicrobial peptides to model membranes by cubosome nanocarriers. J Colloid Interface Sci 2021; 600:14-22. [PMID: 34000474 DOI: 10.1016/j.jcis.2021.03.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides (AMPs), which typically disrupt the bacterial wall prompting leakage or lysis of the cell, form a growing contingent in the arsenal against antibiotic resistant bacteria. The effectiveness of AMPs is, however, hampered by their low solubility, general chemical and physical instability, and short half-life in vivo. Lipid nanocarriers such as cubosomes are effective at encapsulating and protecting proteins while simultaneously showing promise in delivery applications. Here, the efficacy of cubosome mediated delivery of AMPs is evaluated by the in-situ surface characterization of model membranes with varying composition. The cubosomes were observed to initially fuse with the membranes, with subsequent membrane disruption observed after approximately 20 - 60 min. The time for the disruption was sensitive to the charge of the cubosome as well as the composition of the bilayer. More physiologically relevant bilayers including lipids with phospho-(1'-rac-glycerol) (PG) or phosphoethanolamine (PE) headgroups were more vulnerable than those of neat phosphocholine (PC). Notably, disruption to the bilayer occurred an order of magnitude faster for encapsulated AMP compared to free AMP.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Biserka Lakic
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Nilamuni De Silva
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Anthony Dahdah
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Lei Bao
- School of Engineering, STEM College, RMIT University, Victoria, Australia
| | - Ewan W Blanch
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Victoria, Australia.
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Victoria, Australia.
| |
Collapse
|
16
|
Fujino Y, Nakamura R, Han HW, Yamashita I, Shimizu T, Shingubara S, Ito T. Electrochemical impedance spectroscopy study of liposome adsorption and rupture on self-assembled monolayer: Effect of surface charge. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Gutiérrez-Pineda E, Andreozzi P, Diamanti E, Anguiano R, Ziolo RF, Moya SE, José Rodríguez-Presa M, Gervasi CA. Effects of valinomycin doping on the electrical and structural properties of planar lipid bilayers supported on polyelectrolyte multilayers. Bioelectrochemistry 2020; 138:107688. [PMID: 33227594 DOI: 10.1016/j.bioelechem.2020.107688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022]
Abstract
Supported Lipid Bilayers (SLBs) on Polyelectrolyte Multilayers (PEMs) have large potential as models for developing sensor devices. SLBs can be designed with receptors and channels, which benefit from the biological environment of the lipid layers, to create a sensing interface for ions and biomarkers. PEMs assembled by the Layer-by-Layer (LBL) technique and used as supports for a lipid bilayer enable an easy integration of the bilayer on almost any surface and device. For electrochemical sensors, LBL assembly enables nanoscale tunable separation of the lipid bilayer from the electrode surface, avoiding undesired effects of the electrode surface on the lipid bilayers. We study the fabrication of valinomycin-doped SLBs on PEMs as a model system for biophysical studies and for selective ion sensing. SLBs are fabricated from dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylserine (DOPS) 50:50 vesicles doped with valinomycin, as a K+-selective carrier. SLBs were deposited on electrodes coated with poly(allyl amine hydrochloride) (PAH) and poly(styrene sodium sulfonate) (PSS) multilayers. Lipid bilayer formation was monitored by using Quartz Crystal Microbalance with Dissipation (QCMD) technique and Atomic Force Microscopy (AFM). Electrochemical impedance spectroscopy (EIS) and potentiometric measurements were performed to assess K+ selectivity over other ions and the potential of valinomycin-doped SLBs for K+-sensing.
Collapse
Affiliation(s)
- Eduart Gutiérrez-Pineda
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Universidad Nacional de La Plata - CONICET Sucursal, 4 Casilla de Correo 16, 1900 La Plata, Argentina; Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia (UNAD), Bucaramanga, Santander, 680001 Colombia.
| | - Patrizia Andreozzi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20009 San Sebastián, Spain
| | - Eleftheria Diamanti
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20009 San Sebastián, Spain
| | - Ramiro Anguiano
- Departamento de Materiales Avanzados, Centro de Investigación en Química Aplicada (CIQA), Blvd., Enrique Reyna Hermosillo No.140, 25294 Saltillo, Mexico
| | - Ronald F Ziolo
- Departamento de Materiales Avanzados, Centro de Investigación en Química Aplicada (CIQA), Blvd., Enrique Reyna Hermosillo No.140, 25294 Saltillo, Mexico
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182 C, 20009 San Sebastián, Spain.
| | - María José Rodríguez-Presa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Universidad Nacional de La Plata - CONICET Sucursal, 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - Claudio A Gervasi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Universidad Nacional de La Plata - CONICET Sucursal, 4 Casilla de Correo 16, 1900 La Plata, Argentina; Área Electroquímica, Facultad de Ingeniería, Universidad Nacional de La Plata, calle 1 y 47, 1900 La Plata, Argentina.
| |
Collapse
|
18
|
Juan-Colás J, Dresser L, Morris K, Lagadou H, Ward RH, Burns A, Tear S, Johnson S, Leake MC, Quinn SD. The Mechanism of Vesicle Solubilization by the Detergent Sodium Dodecyl Sulfate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11499-11507. [PMID: 32870686 DOI: 10.1021/acs.langmuir.0c01810] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane solubilization by sodium dodecyl sulfate (SDS) is indispensable for many established biotechnological applications, including viral inactivation and protein extraction. Although the ensemble thermodynamics have been thoroughly explored, the underlying molecular dynamics have remained inaccessible, owing to major limitations of traditional measurement tools. Here, we integrate multiple advanced biophysical approaches to gain multiangle insight into the time-dependence and fundamental kinetic steps associated with the solubilization of single submicron sized vesicles in response to SDS. We find that the accumulation of SDS molecules on intact vesicles triggers biphasic solubilization kinetics comprising an initial vesicle expansion event followed by rapid lipid loss and micellization. Our findings support a general mechanism of detergent-induced membrane solubilization, and we expect that the framework of correlative biophysical technologies presented here will form a general platform for elucidating the complex kinetics of membrane perturbation induced by a wide variety of surfactants and disrupting agents.
Collapse
Affiliation(s)
- José Juan-Colás
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, U.K
| | - Lara Dresser
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Katie Morris
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Hugo Lagadou
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Rebecca H Ward
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Amy Burns
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Steve Tear
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Steven Johnson
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
- Department of Biology, University of York, Heslington, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Steven D Quinn
- Department of Physics, University of York, Heslington, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
19
|
Czernohlavek C, Schuster B. Formation and characteristics of mixed lipid/polymer membranes on a crystalline surface-layer protein lattice. Biointerphases 2020; 15:011002. [PMID: 31948239 PMCID: PMC7116081 DOI: 10.1116/1.5132390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The implementation of self-assembled biomolecules on solid materials, in particular, sensor and electrode surfaces, gains increasing importance for the design of stable functional platforms, bioinspired materials, and biosensors. The present study reports on the formation of a planar hybrid lipid/polymer membrane on a crystalline surface layer protein (SLP) lattice. The latter acts as a connecting layer linking the biomolecules to the inorganic base plate. In this approach, chemically bound lipids provided hydrophobic anchoring moieties for the hybrid lipid/polymer membrane on the recrystallized SLP lattice. The rapid solvent exchange technique was the method of choice to generate the planar hybrid lipid/polymer membrane on the SLP lattice. The formation process and completeness of the latter were investigated by quartz crystal microbalance with dissipation monitoring and by an enzymatic assay using the protease subtilisin A, respectively. The present data provide evidence for the formation of a hybrid lipid/polymer membrane on an S-layer lattice with a diblock copolymer content of 30%. The hybrid lipid/polymer showed a higher stiffness compared to the pure lipid bilayer. Most interestingly, both the pure and hybrid membrane prevented the proteolytic degradation of the underlying S-layer protein by the action of subtilisin A. Hence, these results provide evidence for the formation of defect-free membranes anchored to the S-layer lattice.
Collapse
Affiliation(s)
- Christian Czernohlavek
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
20
|
Su H, Liu HY, Pappa AM, Hidalgo TC, Cavassin P, Inal S, Owens RM, Daniel S. Facile Generation of Biomimetic-Supported Lipid Bilayers on Conducting Polymer Surfaces for Membrane Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43799-43810. [PMID: 31659897 DOI: 10.1021/acsami.9b10303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Membrane biosensors that can rapidly sense pathogen interaction and disrupting agents are needed to identify and screen new drugs to combat antibiotic resistance. Bioelectronic devices have the capability to read out both ionic and electrical signals, but their compatibility with biological membranes is somewhat limited. Supported lipid bilayers (SLBs) have served as useful biomimetics for a myriad of research topics involving biological membranes. However, SLBs are traditionally made on inert, rigid, inorganic surfaces. Here, we demonstrate a versatile and facile method for generating SLBs on a conducting polymer device using a solvent-assisted lipid bilayer (SALB) technique. We use this bioelectronic device to form both mammalian and bacterial membrane mimetics to sense the membrane interactions with a bacterial toxin (α-hemolysin) and an antibiotic compound (polymyxin B), respectively. Our results show that we can form high quality bilayers of both types and sense these particular interactions with them, discriminating between pore formation, in the case of α-hemolysin, and disruption of the bilayer, in the case of polymyxin B. The SALB formation method is compatible with many membrane compositions that will not form via common vesicle fusion methods and works well in microfluidic devices. This, combined with the massive parallelization possible for the fabrication of electronic devices, can lead to miniaturized multiplexed devices for rapid data acquisition necessary to identify antibiotic targets that specifically disrupt bacterial, but not mammalian membranes, or identify bacterial toxins that strongly interact with mammalian membranes.
Collapse
Affiliation(s)
- Hui Su
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Han-Yuan Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K
| | - Tania Cecilia Hidalgo
- Biological and Environmental Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal , Makkah Province 23955-6900 , Saudi Arabia
| | - Priscila Cavassin
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K
| | - Sahika Inal
- Biological and Environmental Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal , Makkah Province 23955-6900 , Saudi Arabia
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
21
|
Mirtaheri E, Dolatmoradi A, El-Zahab B. Thermally Assisted Acoustofluidic Separation Based on Membrane Protein Content. Anal Chem 2019; 91:13953-13961. [PMID: 31590489 DOI: 10.1021/acs.analchem.9b03485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The over- and under-expression of certain proteins in extracellular vesicles has been observed in many physiological and pathological conditions; however, a simple method to sort vesicles based on contrast in protein content is yet to be developed. We herein present a nonaffinity-based method for rapid and inexpensive isolation of lipid vesicles based on their membrane protein content. Based on a composition-specific thermophysical property change of vesicles at different protein contents, an acoustic property change that enabled an acoustophoretic separation was observed. This change was demonstrated in a thermally modulated acoustofluidic device in the form of a shift in vesicle migration from the nodal plane to antinodal plane at a specific temperature known as the acoustic contrast temperature (TΦ). Using phosphatidylcholine vesicles containing the membrane proteins gramicidin D, alamethicin, and melittin at molar contents ranging from 0.001% to 10%, we observed that increasing the membrane protein content brought about conformational changes in the membrane which afforded the vesicles distinctive acoustic properties. Then, by establishing an acoustic contrast temperature window, vesicles with the same protein but different molar content were successfully separated. The efficiency of the separation was studied for various vesicle mixtures and a separation efficiency as high as 97% was accomplished. In order to confirm the technique's applicability for biological samples, sheep red blood cells with various melittin peptide contents similarly demonstrated the depressing effects of melittin on membrane bending modulus and depressed the TΦ of the cells. This method holds promise for a myriad of applications in the biomedical field, especially in bioanalytical research.
Collapse
Affiliation(s)
- Elnaz Mirtaheri
- Department of Mechanical and Materials Engineering , Florida International University , Miami , Florida 33174 , United States
| | - Ata Dolatmoradi
- Department of Mechanical and Materials Engineering , Florida International University , Miami , Florida 33174 , United States.,Department of Bioengineering and Therapeutic Sciences , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Bilal El-Zahab
- Department of Mechanical and Materials Engineering , Florida International University , Miami , Florida 33174 , United States
| |
Collapse
|
22
|
Kustanovich K, Yantchev V, Doosti BA, Gözen I, Jesorka A. A microfluidics-integrated impedance/surface acoustic resonance tandem sensor. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
23
|
Juhaniewicz-Dębińska J, Konarzewska D, Sęk S. Effect of Interfacial Water on the Nanomechanical Properties of Negatively Charged Floating Bilayers Supported on Gold Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9422-9429. [PMID: 31241963 DOI: 10.1021/acs.langmuir.9b01311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Floating lipid bilayers composed of phosphatidylglycerols and cardiolipin were deposited on gold electrodes premodified with 1-thio-β-d-glucose monolayer by spreading of small unilamellar vesicles. The resulting lipid membrane was homogeneous, and its thickness was ∼5.0 nm. Electrochemical characterization combined with surface-enhanced infrared absorption spectroscopy revealed that negative polarization of the electrode leads to accumulation of water molecules in the interfacial region between lipid membrane and the thioglucose film. Moreover, the buildup of water layer was demonstrated to affect the nanomechanical properties of the membrane. The latter was manifested by well-pronounced decrease of Young's modulus of the lipid bilayer correlating with increasing hydration. This effect was ascribed to the decoupling of the membrane from supporting thioglucose film due to the accumulation of interfacial water. As a result, the effective stiffness of the supporting layer is lower and it alters the nanomechanical behavior of lipid membrane. Our results provide strong experimental proof for the correlation between elastic properties of floating lipid membrane and the amount of water accumulated in the submembrane region.
Collapse
Affiliation(s)
- Joanna Juhaniewicz-Dębińska
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Dorota Konarzewska
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Sławomir Sęk
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| |
Collapse
|
24
|
Mihailescu M, Sorci M, Seckute J, Silin VI, Hammer J, Perrin BS, Hernandez JI, Smajic N, Shrestha A, Bogardus KA, Greenwood AI, Fu R, Blazyk J, Pastor RW, Nicholson LK, Belfort G, Cotten ML. Structure and Function in Antimicrobial Piscidins: Histidine Position, Directionality of Membrane Insertion, and pH-Dependent Permeabilization. J Am Chem Soc 2019; 141:9837-9853. [PMID: 31144503 DOI: 10.1021/jacs.9b00440] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic α-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4, and H11), but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic character associated with histidines affect the permeabilization properties of p1 and p3. First, we show that the permeabilization ability of p3, but not p1, is strongly inhibited at pH 6.0 when the conserved histidines are partially charged and H17 is predominantly neutral. Second, our neutron diffraction measurements performed at low water content and neutral pH indicate that the average conformation of p1 is highly tilted, with its C-terminus extending into the opposite leaflet. In contrast, p3 is surface bound with its N-terminal end tilted toward the bilayer interior. The deeper membrane insertion of p1 correlates with its behavior at full hydration: an enhanced ability to tilt, bury its histidines and C-terminus, induce membrane thinning and defects, and alter membrane conductance and viscoelastic properties. Furthermore, its pH-resiliency relates to the neutral state favored by H17. Overall, these results provide mechanistic insights into how differences in the histidine content and amphipathicity of peptides can elicit different directionality of membrane insertion and pH-dependent permeabilization. This work features complementary methods, including dye leakage assays, NMR-monitored titrations, X-ray and neutron diffraction, oriented CD, molecular dynamics, electrochemical impedance spectroscopy, surface plasmon resonance, and quartz crystal microbalance with dissipation.
Collapse
Affiliation(s)
- Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research , University of Maryland , Rockville , Maryland 20850 , United States
| | - Mirco Sorci
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Jolita Seckute
- Department of Molecular Biology and Genetics , Cornell University , Ithaca , New York 14853 , United States
| | - Vitalii I Silin
- Institute for Bioscience and Biotechnology Research , University of Maryland , Rockville , Maryland 20850 , United States
| | - Janet Hammer
- Department of Biomedical Sciences , Ohio University , Athens , Ohio 45701 , United States
| | - B Scott Perrin
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Jorge I Hernandez
- Department of Bioengineering , Clemson University , Clemson , South Carolina 29634 , United States
| | - Nedzada Smajic
- Department of Chemistry , Hamilton College , Clinton , New York 13323 , United States
| | - Akritee Shrestha
- Department of Chemistry , Hamilton College , Clinton , New York 13323 , United States
| | - Kimberly A Bogardus
- Department of Chemistry , Hamilton College , Clinton , New York 13323 , United States
| | - Alexander I Greenwood
- Department of Applied Science , College of William and Mary , Williamsburg , Virginia 23185 , United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory , Tallahassee , Florida 32310 , United States
| | - Jack Blazyk
- Department of Biomedical Sciences , Ohio University , Athens , Ohio 45701 , United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics , Cornell University , Ithaca , New York 14853 , United States
| | - Georges Belfort
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Myriam L Cotten
- Department of Applied Science , College of William and Mary , Williamsburg , Virginia 23185 , United States
| |
Collapse
|
25
|
Kocsis I, Sorci M, Vanselous H, Murail S, Sanders SE, Licsandru E, Legrand YM, van der Lee A, Baaden M, Petersen PB, Belfort G, Barboiu M. Oriented chiral water wires in artificial transmembrane channels. SCIENCE ADVANCES 2018; 4:eaao5603. [PMID: 29582016 PMCID: PMC5866074 DOI: 10.1126/sciadv.aao5603] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/09/2018] [Indexed: 05/13/2023]
Abstract
Aquaporins (AQPs) feature highly selective water transport through cell membranes, where the dipolar orientation of structured water wires spanning the AQP pore is of considerable importance for the selective translocation of water over ions. We recently discovered that water permeability through artificial water channels formed by stacked imidazole I-quartet superstructures increases when the channel water molecules are highly organized. Correlating water structure with molecular transport is essential for understanding the underlying mechanisms of (fast) water translocation and channel selectivity. Chirality adds another factor enabling unique dipolar oriented water structures. We show that water molecules exhibit a dipolar oriented wire structure within chiral I-quartet water channels both in the solid state and embedded in supported lipid bilayer membranes (SLBs). X-ray single-crystal structures show that crystallographic water wires exhibit dipolar orientation, which is unique for chiral I-quartets. The integration of I-quartets into SLBs was monitored with a quartz crystal microbalance with dissipation, quantizing the amount of channel water molecules. Nonlinear sum-frequency generation vibrational spectroscopy demonstrates the first experimental observation of dipolar oriented water structures within artificial water channels inserted in bilayer membranes. Confirmation of the ordered confined water is obtained via molecular simulations, which provide quantitative measures of hydrogen bond strength, connectivity, and the stability of their dipolar alignment in a membrane environment. Together, uncovering the interplay between the dipolar aligned water structure and water transport through the self-assembled I-quartets is critical to understanding the behavior of natural membrane channels and will accelerate the systematic discovery for developing artificial water channels for water desalting.
Collapse
Affiliation(s)
- Istvan Kocsis
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugene Bataillon CC047, Montpellier F-34095, France
| | - Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180–3590, USA
| | - Heather Vanselous
- Department of Chemistry and Chemical Biology, Cornell University, B46 Baker Laboratory, Ithaca, NY 14853, USA
| | - Samuel Murail
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris F-75005, France
| | - Stephanie E. Sanders
- Department of Chemistry and Chemical Biology, Cornell University, B46 Baker Laboratory, Ithaca, NY 14853, USA
| | - Erol Licsandru
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugene Bataillon CC047, Montpellier F-34095, France
| | - Yves-Marie Legrand
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugene Bataillon CC047, Montpellier F-34095, France
| | - Arie van der Lee
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugene Bataillon CC047, Montpellier F-34095, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris F-75005, France
| | - Poul B. Petersen
- Department of Chemistry and Chemical Biology, Cornell University, B46 Baker Laboratory, Ithaca, NY 14853, USA
- Corresponding author. (P.B.P.); (G.B.); (M.B.)
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180–3590, USA
- Corresponding author. (P.B.P.); (G.B.); (M.B.)
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugene Bataillon CC047, Montpellier F-34095, France
- Corresponding author. (P.B.P.); (G.B.); (M.B.)
| |
Collapse
|
26
|
Flynn KR, Sutti A, Martin LL, Leigh Ackland M, Torriero AAJ. Critical effects of polar fluorescent probes on the interaction of DHA with POPC supported lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1135-1142. [PMID: 29338975 DOI: 10.1016/j.bbamem.2018.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 01/16/2023]
Abstract
The understanding of lipid bilayer structure and function has been advanced by the application of molecular fluorophores. However, the effects of these probe molecules on the physicochemical properties of membranes being studied are poorly understood. A quartz crystal microbalance with dissipation monitoring instrument was used in this work to investigate the impact of two commonly used fluorescent probes, 1‑palmitoyl‑2‑{12‑[(7‑nitro‑2‑1,3‑benzoxadiazol‑4‑yl)amino]dodecanoyl}‑sn‑glycero‑3‑phosphocholine (NBD-PC) and 1,2‑dipalmitoyl‑sn‑glycero‑3‑phosphoethanolamine‑n‑(lissamine rhodamine‑B‑sulfonyl) (Lis-Rhod PE), on the formation and physicochemical properties of a 1‑palmitoyl‑2‑oleoyl‑sn‑glycero‑3‑phosphocholine supported lipid bilayer (POPC-SLB). The interaction of the POPC-SLB and fluorophore-modified POPC-SLB with docosahexaenoic acid, DHA, was evaluated. The incorporation of DHA into the POPC-SLB was observed to significantly decrease in the presence of the Lis-Rhod PE probe compared with the POPC-SLB. In addition, it was observed that the small concentration of DHA incorporated into the POPC:NBD-PC SLB can produce rearrangement processes followed by the lost not only of DHA but also of POPC or NBD-PC molecules or both during the washing step. This work has significant implications for the interpretation of data employing fluorescent reporter molecules within SLBs.
Collapse
Affiliation(s)
- Kiera R Flynn
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Alessandra Sutti
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | | | - M Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Angel A J Torriero
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| |
Collapse
|
27
|
Kojima T. Combined Reflectometric Interference Spectroscopy and Quartz Crystal Microbalance Detect Differential Adsorption of Lipid Vesicles with Different Phase Transition Temperatures on SiO2, TiO2, and Au Surfaces. Anal Chem 2017; 89:13596-13602. [DOI: 10.1021/acs.analchem.7b04105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taisuke Kojima
- Department of Biomedical Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
28
|
Bailey CM, Tripathi A, Shukla A. Effects of Flow and Bulk Vesicle Concentration on Supported Lipid Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11986-11997. [PMID: 28949544 DOI: 10.1021/acs.langmuir.7b02764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Supported lipid bilayers (SLBs) have been used extensively in a variety of biotechnology applications and fundamental studies exploring lipid behavior. Despite their widespread use, various physicochemical parameters have yet to be thoroughly investigated for their impact on SLB formation. In this work, we have studied the importance of flow in inducing the rupture of surface adsorbed chicken egg-derived l-α-phosphatidylcholine (egg PC) vesicles on silica and gold surfaces via quartz crystal microbalance with dissipation monitoring (QCM-D). On silica at 25 °C, egg PC vesicles were found to adsorb in a flattened configuration (∼13 nm thick, compared to bulk vesicle diameters of ∼165 nm) but only undergo a transition to a stable SLB under flow conditions. In the absence of flow, an increase in system temperature to 37 °C was able to promote vesicle rupture and SLB formation on silica with a 10 times lower rupture time, compared to rupture under continuous flow (175 μL/min flow rate). Gold surfaces, with their increased hydrophobicity, led to less vesicle flattening once adsorbed (structures ∼60 nm thick), and did not support vesicle rupture or SLB formation, even at flow rates of up to 650 μL/min. We also showed that, under continuous flow conditions, vesicle adsorption rates on silica surfaces follow Langmuir kinetics, with an inverse dependence on bulk vesicle concentration, while an empirical power law dependence of vesicle rupture time on bulk vesicle concentration was observed. Ultimately, this work elicits fundamental insight into the importance of flow and bulk vesicle concentration in the adsorbed vesicle rupture process during SLB formation using QCM-D.
Collapse
Affiliation(s)
- Christina M Bailey
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University , Providence, Rhode Island 02912, United States
| | - Anubhav Tripathi
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University , Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
29
|
Ferhan AR, Jackman JA, Cho NJ. Probing Spatial Proximity of Supported Lipid Bilayers to Silica Surfaces by Localized Surface Plasmon Resonance Sensing. Anal Chem 2017; 89:4301-4308. [PMID: 28293950 DOI: 10.1021/acs.analchem.7b00370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
On account of high surface sensitivity, localized surface plasmon resonance (LSPR) sensors have proven widely useful for studying lipid membrane configurations at solid-liquid interfaces. Key measurement capabilities include distinguishing adsorbed vesicles from supported lipid bilayers (SLBs) as well as profiling the extent of deformation among adsorbed vesicles. Such capabilities rely on detecting geometrical changes in lipid membrane configuration on a length scale that is comparable to the decay length of the LSPR-induced electromagnetic field enhancement (∼5-20 nm). Herein, we report that LSPR sensors are also capable of probing nanoscale (∼1 nm) variations in the distance between SLBs and underlying silica-coated surfaces. By tuning the electrostatic properties of lipid membranes, we could modulate the bilayer-substrate interaction and corresponding separation distance, as verified by simultaneous LSPR and quartz crystal microbalance-dissipation (QCM-D) measurements. Theoretical calculations of the expected variation in the LSPR measurement response agree well with experimental results and support that the LSPR measurement response is sensitive to subtle variations in the bilayer-substrate separation distance.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
30
|
Chen M, Ma J, Wang Z, Zhang X, Wu Z. Insights into iron induced fouling of ion-exchange membranes revealed by a quartz crystal microbalance with dissipation monitoring. RSC Adv 2017. [DOI: 10.1039/c7ra05510b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanisms of multivalent iron interacting with ion-exchange membranes (IEMs) is crucial for the prediction of membrane fouling as well as the development of control strategies.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory of Pollution Control and Resources Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai
- PR China
| | - Jinxing Ma
- School of Civil and Environmental Engineering
- University of New South Wales
- Sydney
- Australia
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai
- PR China
| | - Xingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai
- PR China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resources Reuse
- College of Environmental Science and Engineering
- Tongji University
- Shanghai
- PR China
| |
Collapse
|
31
|
Wu C, Sun Z, Liu LS. Quantitative control of CaCO3 growth on quartz crystal microbalance sensors as a signal amplification method. Analyst 2017; 142:2547-2551. [DOI: 10.1039/c7an00335h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative control of mass growth on QCM sensor surfaces was realized, providing a potential signal amplification method.
Collapse
Affiliation(s)
- Congcong Wu
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
- China
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers
| | - Zhaomei Sun
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
- China
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers
| | - Li-Shang Liu
- Shandong Province Key Laboratory of Detection Technology of Tumor Markers
- College of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- China
| |
Collapse
|
32
|
Murray B, Pearson CS, Aranjo A, Cherupalla D, Belfort G. Mechanism of Four de Novo Designed Antimicrobial Peptides. J Biol Chem 2016; 291:25706-25715. [PMID: 27738105 DOI: 10.1074/jbc.m116.733816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/11/2016] [Indexed: 11/06/2022] Open
Abstract
As pathogenic bacteria become resistant to traditional antibiotics, alternate approaches such as designing and testing new potent selective antimicrobial peptides (AMP) are increasingly attractive. However, whereas much is known regarding the relationship between the AMP sequence and potency, less research has focused on developing links between AMP properties, such as design and structure, with mechanisms. Here we use four natural AMPs of varying known secondary structures and mechanisms of lipid bilayer disruption as controls to determine the mechanisms of four rationally designed AMPs with similar secondary structures and rearranged amino acid sequences. Using a Quartz Crystal Microbalance with Dissipation, we were able to differentiate between molecular models of AMP actions such as barrel-stave pore formation, toroidal pore formation, and peptide insertion mechanisms by quantifying differential frequencies throughout an oscillating supported lipid bilayer. Barrel-stave pores were identified by uniform frequency modulation, whereas toroidal pores possessed characteristic changes in oscillation frequency throughout the bilayer. The resulting modes of action demonstrate that rearrangement of an amino acid sequence of the AMP resulted in identical overall mechanisms, and that a given secondary structure did not necessarily predict mechanism. Also, increased mass addition to Gram-positive mimetic membranes from AMP disruption corresponded with lower minimum inhibitory concentrations against the Gram-positive Staphylococcus aureus.
Collapse
Affiliation(s)
- Brian Murray
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - C Seth Pearson
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Alexa Aranjo
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Dinesh Cherupalla
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Georges Belfort
- From the Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
33
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
34
|
Frey C, Eifert A, Schütz H, Barth H, Mizaikoff B, Kranz C. Macroscopic and microscopic electrochemical investigation of Clostridium botulinum C2IIa embedded in supported lipid membranes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Interaction of Cecropin B with Zwitterionic and Negatively Charged Lipid Bilayers Immobilized at Gold Electrode Surface. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Zhao F, Holmberg JP, Abbas Z, Frost R, Sirkka T, Kasemo B, Hassellöv M, Svedhem S. TiO2 nanoparticle interactions with supported lipid membranes – an example of removal of membrane patches. RSC Adv 2016. [DOI: 10.1039/c6ra05693h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Different levels of model systems are needed for effect studies of engineered nanoparticles and the development of nanoparticle structure–activity relationships in biological systems.
Collapse
Affiliation(s)
- Fang Zhao
- Dept. of Applied Physics
- Chalmers University of Technology
- SE-412 96 Göteborg
- Sweden
| | - Jenny Perez Holmberg
- Dept. of Chemistry and Molecular Biology
- University of Gothenburg
- SE-412 96 Göteborg
- Sweden
| | - Zareen Abbas
- Dept. of Chemistry and Molecular Biology
- University of Gothenburg
- SE-412 96 Göteborg
- Sweden
| | - Rickard Frost
- Dept. of Applied Physics
- Chalmers University of Technology
- SE-412 96 Göteborg
- Sweden
| | - Tora Sirkka
- Dept. of Applied Physics
- Chalmers University of Technology
- SE-412 96 Göteborg
- Sweden
| | - Bengt Kasemo
- Dept. of Applied Physics
- Chalmers University of Technology
- SE-412 96 Göteborg
- Sweden
| | - Martin Hassellöv
- Dept. of Chemistry and Molecular Biology
- University of Gothenburg
- SE-412 96 Göteborg
- Sweden
| | - Sofia Svedhem
- Dept. of Applied Physics
- Chalmers University of Technology
- SE-412 96 Göteborg
- Sweden
| |
Collapse
|
37
|
Lind TK, Wacklin H, Schiller J, Moulin M, Haertlein M, Pomorski TG, Cárdenas M. Formation and Characterization of Supported Lipid Bilayers Composed of Hydrogenated and Deuterated Escherichia coli Lipids. PLoS One 2015; 10:e0144671. [PMID: 26658241 PMCID: PMC4676697 DOI: 10.1371/journal.pone.0144671] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/20/2015] [Indexed: 01/26/2023] Open
Abstract
Supported lipid bilayers are widely used for sensing and deciphering biomolecular interactions with model cell membranes. In this paper, we present a method to form supported lipid bilayers from total lipid extracts of Escherichia coli by vesicle fusion. We show the validity of this method for different types of extracts including those from deuterated biomass using a combination of complementary surface sensitive techniques; quartz crystal microbalance, neutron reflection and atomic force microscopy. We find that the head group composition of the deuterated and the hydrogenated lipid extracts is similar (approximately 75% phosphatidylethanolamine, 13% phosphatidylglycerol and 12% cardiolipin) and that both samples can be used to reconstitute high-coverage supported lipid bilayers with a total thickness of 41 ± 3 Å, common for fluid membranes. The formation of supported lipid bilayers composed of natural extracts of Escherichia coli allow for following biomolecular interactions, thus advancing the field towards bacterial-specific membrane biomimics.
Collapse
Affiliation(s)
- Tania Kjellerup Lind
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- European Spallation Source ESS AB, Lund, Sweden
| | - Hanna Wacklin
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- European Spallation Source ESS AB, Lund, Sweden
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Martine Moulin
- Institut Laue-Langevin, Life Science Group, Grenoble, France
| | | | - Thomas Günther Pomorski
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marité Cárdenas
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Malmoe University, Department of Biomedical Sciences, Health & Society, 20500 Malmoe, Sweden
| |
Collapse
|
38
|
Yorulmaz S, Jackman JA, Hunziker W, Cho NJ. Supported Lipid Bilayer Platform To Test Inhibitors of the Membrane Attack Complex: Insights into Biomacromolecular Assembly and Regulation. Biomacromolecules 2015; 16:3594-602. [PMID: 26444518 DOI: 10.1021/acs.biomac.5b01060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complement activation plays an important role in innate immune defense by triggering formation of the membrane attack complex (MAC), which is a biomacromolecular assembly that exhibits membrane-lytic activity against foreign invaders including various pathogens and biomaterials. Understanding the details of MAC structure and function has been the subject of extensive work involving bulk liposome and erythrocyte assays. However, it is difficult to characterize the mechanism of action of MAC inhibitor drug candidates using the conventional assays. To address this issue, we employ a biomimetic supported lipid bilayer platform to investigate how two MAC inhibitors, vitronectin and clusterin, interfere with MAC assembly in a sequential addition format, as monitored by the quartz crystal microbalance-dissipation (QCM-D) technique. Two experimental strategies based on modular assembly were selected, precincubation of inhibitor and C5b-7 complex before addition to the lipid bilayer or initial addition of inhibitor followed by the C5b-7 complex. The findings indicate that vitronectin inhibits membrane association of C5b-7 via a direct interaction with C5b-7 and via competitive membrane association onto the supported lipid bilayer. On the other hand, clusterin directly interacts with C5b-7 such that C5b-7 is still able to bind to the lipid bilayer, and clusterin affects the subsequent binding of other complement proteins involved in the MAC assembly. Taken together, the findings in this study outline a biomimetic approach based on supported lipid bilayers to explore the interactions between complement proteins and inhibitors, thereby offering insight into MAC assembly and regulation.
Collapse
Affiliation(s)
- Saziye Yorulmaz
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore.,Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, Singapore 637553, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research , Singapore 138673, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore.,Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, Singapore 637553, Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research , Singapore 138673, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore 117599, Singapore.,Singapore Eye Research Institute, Singapore 168751, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore.,Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, Singapore 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
39
|
Gupta G, Staggs K, Mohite AD, Baldwin JK, Iyer S, Mukundan R, Misra A, Antoniou A, Dattelbaum AM. Fluid and Resistive Tethered Lipid Membranes on Nanoporous Substrates. J Phys Chem B 2015; 119:12868-76. [DOI: 10.1021/acs.jpcb.5b04482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Antonia Antoniou
- School
of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | |
Collapse
|
40
|
Wang L, Roth JS, Han X, Evans SD. Photosynthetic Proteins in Supported Lipid Bilayers: Towards a Biokleptic Approach for Energy Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3306-3318. [PMID: 25727786 DOI: 10.1002/smll.201403469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/11/2015] [Indexed: 06/04/2023]
Abstract
In nature, plants and some bacteria have evolved an ability to convert solar energy into chemical energy usable by the organism. This process involves several proteins and the creation of a chemical gradient across the cell membrane. To transfer this process to a laboratory environment, several conditions have to be met: i) proteins need to be reconstituted into a lipid membrane, ii) the proteins need to be correctly oriented and functional and, finally, iii) the lipid membrane should be capable of maintaining chemical and electrical gradients. Investigating the processes of photosynthesis and energy generation in vivo is a difficult task due to the complexity of the membrane and its associated proteins. Solid, supported lipid bilayers provide a good model system for the systematic investigation of the different components involved in the photosynthetic pathway. In this review, the progress made to date in the development of supported lipid bilayer systems suitable for the investigation of membrane proteins is described; in particular, there is a focus on those used for the reconstitution of proteins involved in light capture.
Collapse
Affiliation(s)
- Lei Wang
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Johannes S Roth
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
41
|
Construction of P-glycoprotein incorporated tethered lipid bilayer membranes. Biochem Biophys Rep 2015; 2:115-122. [PMID: 29124152 PMCID: PMC5668657 DOI: 10.1016/j.bbrep.2015.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 11/26/2022] Open
Abstract
To investigate drug–membrane protein interactions, an artificial tethered lipid bilayer system was constructed for the functional integration of membrane proteins with large extra-membrane domains such as multi-drug resistance protein 1 (MDR1). In this study, a modified lipid (i.e., 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG)) was utilized as a spacer molecule to elevate lipid membrane from the sensor surface and generate a reservoir underneath. Concentration of DSPE-PEG molecule significantly affected the liposome binding/spreading and lipid bilayer formation, and 0.03 mg/mL of DSPE-PEG provided optimum conditions for membrane protein integration. Further, the incorporation of MDR1 increased the local rigidity on the platform. Antibody binding studies showed the functional integration of MDR1 protein into lipid bilayer platform. The platform allowed to follow MDR!-statin-based drug interactions in vitro. Each binding event and lipid bilayer formation was monitored in real-time using Surface Plasmon Resonance and Quartz Crystal Microbalance–Dissipation systems, and Atomic Force Microscopy was used for visualization experiments. An artificial lipid bilayer system for large integral membrane proteins. Multi-drug resistance protein embedded in lipid bilayers was used as a model system. Interaction between pravastatin and a membrane protein was examined in vitro system. Characterization by surface sensitive methods such as SPR, QCM, liqAFM.
Collapse
|
42
|
Möller I, Seeger S. Solid supported lipid bilayers from artificial and natural lipid mixtures – long-term stable, homogeneous and reproducible. J Mater Chem B 2015; 3:6046-6056. [DOI: 10.1039/c5tb00437c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We show the assembly of reproducible, long-term stable, homogeneous solid supported lipid bilayers under flow conditions by the vesicle deposition method from various artificial and natural lipid mixtures.
Collapse
Affiliation(s)
- Isabelle Möller
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Stefan Seeger
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| |
Collapse
|
43
|
Mashaghi A, Mashaghi S, Reviakine I, Heeren RMA, Sandoghdar V, Bonn M. Label-free characterization of biomembranes: from structure to dynamics. Chem Soc Rev 2014; 43:887-900. [PMID: 24253187 DOI: 10.1039/c3cs60243e] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We review recent progress in the study of the structure and dynamics of phospholipid membranes and associated proteins, using novel label-free analytical tools. We describe these techniques and illustrate them with examples highlighting current capabilities and limitations. Recent advances in applying such techniques to biological and model membranes for biophysical studies and biosensing applications are presented, and future prospects are discussed.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:241-53. [PMID: 24743917 PMCID: PMC4053608 DOI: 10.1007/s00249-014-0958-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 11/11/2022]
Abstract
Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.
Collapse
|
45
|
Lipid bilayers supported on bare and modified gold – Formation, characterization and relevance of lipid rafts. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Kett PJN, Casford MTL, Davies PB. Sum Frequency Generation Vibrational Spectroscopy of Cholesterol in Hybrid Bilayer Membranes. J Phys Chem B 2013; 117:6455-65. [DOI: 10.1021/jp403584j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Peter J. N. Kett
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Michael T. L. Casford
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Paul B. Davies
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
47
|
Liu F, Li F, Nordin AN, Voiculescu I. A novel cell-based hybrid acoustic wave biosensor with impedimetric sensing capabilities. SENSORS 2013; 13:3039-55. [PMID: 23459387 PMCID: PMC3658730 DOI: 10.3390/s130303039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/28/2013] [Accepted: 02/20/2013] [Indexed: 11/16/2022]
Abstract
A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate with two gold electrodes on opposite sides. For integration of the QCM with the ECIS technique a semicircular counter electrode was fabricated near the upper electrode on the same side of the quartz crystal. Bovine aortic endothelial live cells (BAECs) were successfully cultured on this hybrid biosensor. Finite element modeling of the bulk acoustic wave resonator using COMSOL simulations was performed. Simultaneous gravimetric and impedimetric measurements performed over a period of time on the same cell culture were conducted to validate the device's sensitivity. The time necessary for the BAEC cells to attach and form a compact monolayer on the biosensor was 35~45 minutes for 1.5 × 10(4) cells/cm2 BAECs; 60 minutes for 2.0 × 10(4) cells/cm2 BAECs; 70 minutes for 3.0 × 10(4) cells/cm2 BAECs; and 100 minutes for 5.0 × 104 cells/cm2 BAECs. It was demonstrated that this time is the same for both gravimetric and impedimetric measurements. This hybrid biosensor will be employed in the future for water toxicity detection.
Collapse
Affiliation(s)
- Fei Liu
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA; E-Mail:
| | - Fang Li
- Mechanical Engineering Department, New York Institute of Technology, Old Westbury, NY 11568, USA; E-Mail:
| | - Anis Nurashikin Nordin
- Electrical and Computer Engineering, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia; E-Mail:
| | - Ioana Voiculescu
- Mechanical Engineering Department, City College of New York, New York, NY 10031, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-650-5210; Fax: +1-212-650-8013
| |
Collapse
|
48
|
Kunze A, Bally M, Höök F, Larson G. Equilibrium-fluctuation-analysis of single liposome binding events reveals how cholesterol and Ca2+ modulate glycosphingolipid trans-interactions. Sci Rep 2013; 3:1452. [PMID: 23486243 PMCID: PMC3596795 DOI: 10.1038/srep01452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/01/2013] [Indexed: 12/18/2022] Open
Abstract
Carbohydrate-carbohydrate interactions (CCIs) are of central importance for several biological processes. However, the ultra-weak nature of CCIs generates difficulties in studying this interaction, thus only little is known about CCIs. Here we present a highly sensitive equilibrium-fluctuation-analysis of single liposome binding events to supported lipid bilayers (SLBs) based on total internal reflection fluorescence (TIRF) microscopy that allows us to determine apparent kinetic rate constants of CCIs. The liposomes and SLBs both contained natural Le(x) glycosphingolipids (Galβ4(Fucα3)GlcNAcβ3Galβ4Glcβ1Cer), which were employed to mimic cell-cell contacts. The kinetic parameters of the self-interaction between Le(x)-containing liposomes and SLBs were measured and found to be modulated by bivalent cations. Even more interestingly, upon addition of cholesterol, the strength of the CCIs increases, suggesting that this interaction is strongly influenced by a cholesterol-dependent presentation and/or spatial organization of glycosphingolipids in cell membranes.
Collapse
Affiliation(s)
- Angelika Kunze
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Göteborg, Sweden
| | - Marta Bally
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Göteborg, Sweden
| |
Collapse
|
49
|
Bandarenka AS. Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy. Analyst 2013; 138:5540-54. [DOI: 10.1039/c3an00791j] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Speight RE, Cooper MA. A Survey of the 2010 Quartz Crystal Microbalance Literature. J Mol Recognit 2012; 25:451-73. [DOI: 10.1002/jmr.2209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Robert E. Speight
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| |
Collapse
|