1
|
Tian Y, Zeng X, Xing Y, Chen J, Deng S, She J, Liu F. High-Performance Planar Field-Emission Photodetector of Monolayer Tungsten Disulfide with Microtips. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304233. [PMID: 37616506 DOI: 10.1002/smll.202304233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Monolayer tungsten disulfide (ML WS2 ) is believed as an ideal photosensitive material due to its small direct bandgap, large exciton/trion binding energy, high carrier mobility, and considerable quantum conversion efficiency. Compared with other photosensitive devices, planar field emission (FE)-type photodetectors with a full-plane structure should simultaneously have rapider switching speed and lower power consumption. In this work, ML WS2 microtips are fabricated by electron beam lithography (EBL) way and used to construct a planar FE-type photodetector. By optimization design, ML WS2 with three microtips can exhibit the maximum current density as high as 52 A cm-2 (@300 V µm-1 ), and the largest photoresponsivity is up to 6.8 × 105 A W-1 under green light irradiation, superior to that of many other ML transition metal dichalcogenide (TMDC) detectors. More interestingly, ML WS2 devices with microtips can effectively solve the contradictory problem between large photoresponsivity and rapid switching speed. The excellent photoresponse performances of ML WS2 with microtips should be attributed to their high carrier mobility, sharp emission edge, ultrahigh quantum yield, and unique planar FE device structure. Our research may shed new light on exploring the fabrication technology and photosensitive mechanism of two dimensional (2D) material-based planar FE photodetectors.
Collapse
Affiliation(s)
- Yan Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiangjun Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yang Xing
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Juncong She
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
2
|
Qiu L, Zhang X, Kong X, Mitchell I, Yan T, Kim SY, Yakobson BI, Ding F. Theory of sigma bond resonance in flat boron materials. Nat Commun 2023; 14:1804. [PMID: 37002204 PMCID: PMC10066189 DOI: 10.1038/s41467-023-37442-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
In chemistry, theory of aromaticity or π bond resonance plays a central role in intuitively understanding the stability and properties of organic molecules. Here we present an analogue theory for σ bond resonance in flat boron materials, which allows us to determine the distribution of two-center two-electron and three-center two-electron bonds without quantum calculations. Based on this theory, three rules are proposed to draw the Kekulé-like bonding configurations for flat boron materials and to explore their properties intuitively. As an application of the theory, a simple explanation of why neutral borophene with ~1/9 hole has the highest stability and the effect of charge doping on borophene's optimal hole concentration is provided with the assumption of σ and π orbital occupation balance. Like the aromaticity theory for carbon materials, this theory greatly deepens our understanding on boron materials and paves the way for the rational design of various boron-based materials.
Collapse
Affiliation(s)
- Lu Qiu
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Xiuyun Zhang
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Xiao Kong
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- State Key Laboratory of Information Functional Materials, 2020 X-Lab, ShangHai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Izaac Mitchell
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Tianying Yan
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai Univeristy, Tianjin, 300350, PR China
| | - Sung Youb Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.
- Faculty of Materials Science and Engineering & Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, PR China.
| |
Collapse
|
3
|
Ao MZ, Zhang F, Ma YY, Mu YW, Li SD. Heptacoordinate transition-metal-decorated metallo-borospherenes and multiple-helix metallo-boronanotubes. NANOSCALE 2023; 15:2377-2383. [PMID: 36648220 DOI: 10.1039/d2nr05486h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The recent discovery of lanthanide-metal-decorated metallo-borospherenes LM3B18- (LM = La, Tb) marks the onset of a new class of boron-metal binary nanomaterials. Using the experimentally observed or theoretically predicted borospherenes as ligands and based on extensive first-principles theory calculations, we predict herein a series of novel chiral metallo-borospherenes C2 Ni6 ∈ B39- (1), C1 Ni6 ∈ B41+ (3), C2 Ni6 ∈ B422+ (4), C2 Ni6 ∈ B42 (5), and C2 Ni8 ∈ B56 (6) as the global minima of the systems decorated with quasi-planar heptacoordinate Ni (phNi) centers in η7-B7 heptagons on the cage surfaces, which are found to be obviously better favoured in coordination energies than hexacoordinate Ni centers in previously reported D2d Ni6 ∈ B40 (2). Detailed bonding analyses indicate that these phNi-decorated metallo-borospherenes follow the σ + π double delocalization bonding pattern, with two effective (d-p)σ coordination bonds formed between each phNi and its η7-B7 ligand, rendering spherical aromaticity and extra stability to the systems. The structural motif in elongated axially chiral Ni6 ∈ B422+ (4), Ni6 ∈ B42 (5), and Ni8 ∈ B56 (6) can be extended to form the metallic phNi-decorated boron double chain (BDC) double-helix Ni4 ∈ B28 (2, 0) (P4̄m2) (8), triple-helix Ni6 ∈ B42 (3, 0) (P3̄m1) (9), and quadruple-helix Ni8 ∈ B56 (4, 0) (P4mm) (10) metallo-boronanotubes, which can be viewed as quasi-multiple-helix DNAs composed of interconnected BDCs decorated with phNi centers in η7-B7 heptagons on the tube surfaces in the atomic ratio of Ni : B = 1 : 7.
Collapse
Affiliation(s)
- Mei-Zhen Ao
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
- Fenyang College of Shanxi Medical University, Fenyang 032200, China.
| | - Fei Zhang
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Yuan-Yuan Ma
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Yue-Wen Mu
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Si-Dian Li
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| |
Collapse
|
4
|
Yang R, Ren X, Sun M. Optical spectra of bilayer borophene synthesized on Ag(111) film. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121711. [PMID: 35940069 DOI: 10.1016/j.saa.2022.121711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we theoretically investigated electronic structures, density of states (DOS), optical absorption, dielectric function of bilayer borophene synthesized on Ag(111) film, stimulated by the recent experimental report [Nature materials 2022, 21:35]. The results show that there is strong coupling between the Ag film and borophene layers. In the absorption spectra of BL borophene on Ag(111) substrate, there are strong absorption peaks in visible and infrared (IR) regions, which reveals strong plexciton peaks in visible and IR regions, which is contributed from the plasmonic and excitonic coupling interaction by the hybrid between Ag film and BL borophene. Raman modes of strongest vibration directly reflects the interlayer interaction of interlayer chemical bond. Our results not only provide physical insight into BL borophene synthesized on Ag(111) film, but also propose the potential applications of BL borophene in optoelectronic devices.
Collapse
Affiliation(s)
- Rui Yang
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Ren
- Beijing No. 12 High School, Beijing 100071, China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Uspenskii SA, Khaptakhanova PA. Boron nanoparticles in chemotherapy and radiotherapy: the synthesis, state-of-the-art, and prospects. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
6
|
Liu C, Bao Q, Zhao X, Li Y. Regulation of Electronic Structures to Boost Efficient Nitrogen Fixation: Synergistic Effects between Transition Metals and Boron Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30626-30638. [PMID: 35737968 DOI: 10.1021/acsami.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Borophene possesses outstanding physical and chemical properties and thus demonstrates great application potential in catalysis. However, the lack of a controllable strategy for regulating the electronic structures of borophene for efficient catalysis limits the exploration of this material for a "black-box" model. Herein, taking advantage of the synergistic effects between metals and boron nanotubes (BNT), we report a core-shell structure that encapsulates early transition-metal nanowires into BNT (TMs@BNT) to improve the inherent electronic structures of primitive borophene for an efficient electrochemical nitrogen reduction reaction (eNRR). These filled BNT with disconnected π conjugation and vacant boron (B) pz orbitals enable the regulation of electronic states of B atoms in spatial extent and occupancy that has a great effect on the adsorption strength of intermediates. Using first-principles calculations, we demonstrate that the *N2H adsorption energy (ΔE*N2H) is strongly correlated with the intrinsic activity trends and that the variation of ΔE*N2H is attributed to the distribution of 2p states and charge of B atoms. Finally, we utilize the coupling of the d 2p states between B atoms and metals to obtain a quantitative explanation for synergistic effects and conclude that metals with a lower d-band center (εTM d) raise the average 2p state energy (ε̅2p) of B through two-level quantum coupling, which is the physical origin of this interaction. Therefore, two candidates (Mo@BNT and W@BNT) with lower εTM d are screened, benefiting from their high eNRR activity (limiting potentials of -0.75 and -0.77 V, respectively) and high selectivity. This work explores the activity origin, constructs a bridge between electronic structures and activity trends, and paves the way for future eNRR studies.
Collapse
Affiliation(s)
- Changhui Liu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Qingshan Bao
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xian Zhao
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Yanlu Li
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
7
|
Qin X, Liu J, Mu Y, Li SD. Compression-induced crimping of boron nanotubes from borophenes: a DFT study. Phys Chem Chem Phys 2022; 24:14566-14572. [PMID: 35666227 DOI: 10.1039/d2cp01824a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several borophenes have been prepared successfully, but the synthesis of boron nanotubes is still very difficult. Our results suggest that the high flexibility of borophene in combination with van der Waals interactions makes it possible to coil boron nanotubes from rippled borophenes, which is confirmed by ab initio molecular dynamics simulations. The plane structures transform into rippled structures almost without any barrier under very small compression and weak perturbations like molecular adsorption. The compression energies of the rippled structures increase linearly and slowly with the increase of the compression. This suggests how the geometry of the borophene evolves with compression. Based on the evaluation of the free energy of hydrogen adsorption, a stronger compression suggests the improved hydrogen evolution performance of the borophene and even makes it better than Pt catalysts. Meanwhile, good hydrogen evolution performance is also suggested for boron nanotubes. Our results suggest a novel preparation method for boron nanotubes from borophenes and a possible way to improve their hydrogen evolution performance.
Collapse
Affiliation(s)
- Xueqin Qin
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | - Jia Liu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | - Yuewen Mu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | - Si-Dian Li
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| |
Collapse
|
8
|
Tao Y, Wu X, Zhang D. Synthesis and solar blind photosensitivity of crystalline boron nanowires. NANOTECHNOLOGY 2022; 33:235601. [PMID: 35189611 DOI: 10.1088/1361-6528/ac56f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Herein, single crystalline boron nanowires (BNWs) have been synthesized by chemical vapor transport using boron element as boron source, iodine as transport agent, and Au as catalyst. The results demonstrate that BNWs can be all formed at 600 °C-950 °C for 2 h, and possess rhombohedral crystal structure (β-boron). The NWs have diameters from several to hundreds of nanometers, and lengths from several to hundreds of microns. A single nanowire has been fabricated to field effect transistor (FET) which shows excellent solar blind photosensitivity and selectivity. The photo/dark current ratio and photoresponsitity is 1.14 and 97.6 mA W-1at a bias of 5 V under light illumination of 254 nm with 0.42 mW cm-2, respectively, and both the rising and decay time of the on-off currents are 4.6 s and 10.3 s, respectively. When the FET is used as a personal breath sensor, the ratio of exsufflating and inhaling currents is 2.7, rising and decay time of the breath currents are 0.4 s and 2.2 s, respectively. So the BNWs are important sense materials.
Collapse
Affiliation(s)
- Yourong Tao
- Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xingcai Wu
- Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dunming Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
9
|
Anis I, Saleem Dar M, Rather GM, Dar MA. Exploring the structure and electronic properties of germanium doped boron clusters using density functional theory based global optimization method. NEW J CHEM 2022. [DOI: 10.1039/d2nj00227b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations to investigate the effect of single and double germanium atom doping on the geometric structure and electronic properties of boron clusters with 10 to 20 atoms.
Collapse
Affiliation(s)
- Insha Anis
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, 192122, India
| | - Mohd. Saleem Dar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Ghulam Mohammad Rather
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, 192122, India
| | - Manzoor Ahmad Dar
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, 192122, India
| |
Collapse
|
10
|
Lu J, Hou X, Xiao B, Xu X, Mi J, Zhang P. Computational screening of transition-metal doped boron nanotubes as efficient electrocatalysts for water splitting. RSC Adv 2022; 12:6841-6847. [PMID: 35424632 PMCID: PMC8981768 DOI: 10.1039/d1ra09381a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
The search for efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is of utmost importance for the production of hydrogen and oxygen via water splitting. In this work, the catalytic performance of the OER and HER on transition metal doped boron nanotubes (BNTs) was investigated using density functional theory. It was found that the doped transition metal atoms determine the catalytic activity of the BNTs. Rhodium-doped BNTs exhibited excellent OER activity, while cobalt-doped BNTs displayed great catalytic activity toward the HER. Volcano relationships were found between the catalytic activity and the adsorption strength of reaction intermediates. Rhodium- and cobalt-doped BNTs exhibited great OER and HER catalytic activity due to the favorable adsorption strength of reaction intermediates. This work sheds light on the design of novel electrocatalysts for water splitting and provides helpful guidelines for the future development of advanced electrocatalysts. Rhodium-doped BNTs demonstrated excellent OER activity, while cobalt-doped BNTs exhibited the best catalytic activity toward the HER among 12 different transition metal-doped BNTs.![]()
Collapse
Affiliation(s)
- Jiajie Lu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiuli Hou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Xuejian Xu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianli Mi
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peng Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
11
|
Yan L, Ku R, Zou J, Zhou L, Zhao J, Jiang X, Wang BT. Prediction of superconductivity in bilayer borophenes. RSC Adv 2021; 11:40220-40227. [PMID: 35494119 PMCID: PMC9044785 DOI: 10.1039/d1ra08014h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of single-layer borophene is suppressed by the strains or doping from its substrates. Intriguingly, bilayer (BL) borophenes can be stabilized by appropriate pillar density and hexagonal holes density, rather than being supported by Ag(111) or Cu(111) substrates. Thus, we studied the two most stable structures, namely BL-B8 and BL-B30, stabilized by the above-mentioned two methods. Within density functional theory and Bardeen-Cooper-Schrieffer theory framework, their stability, electron structures, and phonon properties, as well as possible superconductivity are systematically scrutinized. The metallic BL-B8 and BL-B30 exhibit intrinsic superconducting features with superconductivity transition temperatures (T c) of 11.9 and 4.9 K, respectively. The low frequency (below 400 cm-1) consisting of out-of-plane vibrations of boron atoms plays crucial rule in their superconductivity. In particular, a Kohn anomaly appears at the Γ point in BL-B8, leading to substantial electron-phonon coupling. Here, our findings will provide instructive clues for experimentally determining the superconductivity of borophene and will broaden the two-dimensional superconductor family.
Collapse
Affiliation(s)
- Luo Yan
- Institute of High Energy Physics, Chinese Academy of Science (CAS) Beijing 10049 China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
- Spallation Neutron Source Science Center Dongguan 523803 China
| | - Ruiqi Ku
- School of Physics, Harbin Institute of Technology Harbin 150001 China
| | - Jing Zou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
| | - Liujiang Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 China
| | - Jijun Zhao
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education Dalian 116024 China
| | - Xue Jiang
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education Dalian 116024 China
| | - Bao-Tian Wang
- Institute of High Energy Physics, Chinese Academy of Science (CAS) Beijing 10049 China
- Spallation Neutron Source Science Center Dongguan 523803 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan Shanxi 030006 China
| |
Collapse
|
12
|
Qian YY, Zheng B, Xie Y, He J, Chen JM, Yang L, Lu X, Yu HT. Imparting α-Borophene with High Work Function by Fluorine Adsorption: A First-Principles Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11027-11040. [PMID: 34498881 DOI: 10.1021/acs.langmuir.1c01598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasing the work function of borophene over a large range is crucial for the development of borophene-based anode materials for highly efficient electronic devices. In this study, the effect of fluorine adsorption on the structures and stabilities, particularly on the work function, of α-borophene (BBP), was systematically investigated via first-principles density functional theory. The calculations indicated that BBP was well-stabilized by fluorine adsorption and the work functions of metallic fluorine-adsorbed BBPs (Fn-BBPs) sharply increased with increasing fluorine content. Moreover, the work function of F-BBP was close to that of the frequently used anode material Au and even, for other Fn-BBPs, higher than that of Pt. Furthermore, we have comprehensively discussed the factors, including substrate deformation, charge transfer, induced dipole moment, and Fermi and vacuum energy levels, affecting the improvement of work function. Particularly, we have demonstrated that the charge redistribution of the substrate induced by the bonding interaction between fluorine and the matrix predominantly contributes to the observed increase in the work function. Additionally, the effect of fluorine adsorption on the increase in the work function of BBP was significantly stronger than that of silicene or graphene. Our results concretely support the fact that Fn-BBPs can be extremely attractive anode materials for electronic device applications.
Collapse
Affiliation(s)
- Yin-Yin Qian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jing He
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jia-Min Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hai-Tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
13
|
Mazaheri A, Javadi M, Abdi Y. Chemical Vapor Deposition of Two-Dimensional Boron Sheets by Thermal Decomposition of Diborane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8844-8850. [PMID: 33565849 DOI: 10.1021/acsami.0c22580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) boron sheets (borophenes) are promising materials for the next generation of electronic devices because of their metallic conductivity. Molecular beam epitaxy has remained the main approach for the growth of borophene, which considerably restricts large-scale production of 2D boron sheets. The high melting point of boron and the growth of borophenes at moderate temperatures posed a significant challenge for the synthesis of borophenes. Employing diborane (B2H6) pyrolysis as a pure boron source, we report, for the first time, the growth of atomic-thickness borophene sheets by chemical vapor deposition (CVD). A methodical study on the effect of temperature, deposition rate, and pressure on the growth of 2D boron sheets is provided and detailed analyses about the morphology and crystalline phase of borophene sheets are presented. The CVD-borophene layers display an average thickness of 4.2 Å, χ3 crystalline structure, and metallic conductivity. We also present experimental evidence supporting the formation of stacked bilayer and trilayer borophene sheets. Our method paves the way for empirical investigations on borophenes.
Collapse
Affiliation(s)
- Ali Mazaheri
- Nanophysics Research Laboratory, Department of Physics, University of Tehran, Tehran 14395-547, Iran
| | - Mohammad Javadi
- Nanophysics Research Laboratory, Department of Physics, University of Tehran, Tehran 14395-547, Iran
| | - Yaser Abdi
- Nanophysics Research Laboratory, Department of Physics, University of Tehran, Tehran 14395-547, Iran
| |
Collapse
|
14
|
Shen Y, Han Y, Zhan R, Zhao P, Zhang Y, Liu F, Chen J, She J, Xu N, Deng S. Study on Pyramidal Molybdenum Nanostructures Cold Cathode with Large-Current Properties Based on Self-Assembly Growth Method. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35354-35364. [PMID: 32654476 DOI: 10.1021/acsami.0c09345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to develop a field emission cold cathode for power vacuum electronic device applications, it is important to realize the properties of large-current and high current density. This requires the design and preparation of cold cathode materials with good crystallization, suitable geometric structure, and good contact interface. In this study, we report a pyramidal molybdenum nanostructure with single crystalline nature, which was self-assembly grown by a thermal evaporation method. We also report the optimization of the nanostructure, successfully sharpening its top end and reducing the thickness of the intermediate layer between the structure and the substrate (from 31.4 to 3.1 nm). By this way, the pyramidal molybdenum nanostructure exhibits high conductivity of about 1.8 × 105 Ω-1 cm-1. The cold cathode composed by these nanostructures shows a large-current field emission performance, with the largest emission current of 47.62 mA as well as the highest current density of 2.38 A cm-2, under a pulsed electric field as high as 28 V μm-1. The proposed pyramidal molybdenum nanostructures provide a candidate for the large-current cold cathode of the power electronic devices.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yuchen Han
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Peng Zhao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yu Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Juncong She
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
15
|
Shen Y, Han Y, Zhan R, Chen X, Wen S, Huang W, Sun F, Wei Y, Chen H, Wu J, Chen J, Xu N, Deng S. Pyramid-Shaped Single-Crystalline Nanostructure of Molybdenum with Excellent Mechanical, Electrical, and Optical Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24218-24230. [PMID: 32374587 DOI: 10.1021/acsami.0c02351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Specific geometric morphology and improved crystalline properties are of great significance for the development of materials in micro-nano scale. However, for high-melting molybdenum (Mo), it is difficult to get high-quality structures exhibiting a single-crystalline nature and preconceived morphology simultaneously. In this paper, a pyramid-shaped single-crystalline Mo nanostructure was prepared through a thermal evaporation technique, as well as a series of experimental controls. Based on detailed characterizations, the growth mechanism was demonstrated to follow a sequential process that includes MoO2 decomposition and Mo deposition, single-crystalline islands formation, layered nucleation, and competitive growth. Furthermore, the product was measured to show excellent physical properties. The prepared nanostructures exhibited strong nano-indentation hardness, elastic modulus, and tensile strength in mechanical measurements, which are much higher than those of the Mo bulks. In the measurement of electronic characteristics, the individual structures indicated very good electrical transport properties, with a conductance of ∼0.16 S. The prepared film with an area of 0.02 cm2 showed large-current electron emission properties with a maximum current of 33.6 mA and a current density of 1.68 A cm-2. Optical properties of the structures were measured to show obvious electromagnetic field localization and enhancement, which enabled it to have good surface enhanced Raman scattering (SERS) activity as a substrate material. The corresponding structure-response relationships were further discussed. The reported physical properties profit from the basic features of the Mo nanostructures, including the micro-nano scale, the single-crystalline nature in each grain, as well as the pyramid-shaped top morphology. The findings may provide a potential material for the research and application of micro-nano electrons and photons.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yuchen Han
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xuexian Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shiya Wen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wuchao Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Fengsheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
16
|
Zheng B, Xie Y, Deng Y, Wang Z, Lou Y, Qian Y, He J, Yu H. Highly Effective Work Function Reduction of α‐Borophene via Caesium Decoration: A First‐Principles Investigation. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Ying‐yi Deng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Zhao‐qi Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- College of Physics Sichuan University Chengdu 610065 P. R. China
| | - Yuan‐qing Lou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Yin‐yin Qian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Jing He
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Hai‐tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
17
|
Ma D, Wang R, Zhao J, Chen Q, Wu L, Li D, Su L, Jiang X, Luo Z, Ge Y, Li J, Zhang Y, Zhang H. A self-powered photodetector based on two-dimensional boron nanosheets. NANOSCALE 2020; 12:5313-5323. [PMID: 32080700 DOI: 10.1039/d0nr00005a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Owing to their intriguing characteristics, the ongoing pursuit of emerging mono-elemental two-dimensional (2D) nanosheets beyond graphene is an exciting research area for next-generation applications. Herein, we demonstrate that highly crystalline 2D boron (B) nanosheets can be efficiently synthesized by employing a modified liquid phase exfoliation method. Moreover, carrier dynamics has been systematically investigated by using femtosecond time-resolved transient absorption spectroscopy, demonstrating an ultrafast recovery speed during carrier transfer. Based on these results, the optoelectronic performance of the as-synthesized 2D B nanosheets has been investigated by applying them in photoelectrochemical (PEC)-type and field effect transistor (FET)-type photodetectors. The experimental results revealed that the as-fabricated PEC device not only exhibited a favourable self-powered capability, but also a high photoresponsivity of 2.9-91.7 μA W-1 in the UV region. Besides, the FET device also exhibited a tunable photoresponsivity in the range of 174-281.3 μA W-1 under the irradiation of excited light at 405 nm. We strongly believe that the current work shall pave the path for successful utilization of 2D B nanosheets in electronic and optoelectronic devices. Moreover, the proposed method can be utilized to explore other mono-elemental 2D nanomaterials.
Collapse
Affiliation(s)
- Dingtao Ma
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| | - Rui Wang
- Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China. and Department of Electronic Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jinlai Zhao
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China and Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Qianyuan Chen
- School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
| | - Leiming Wu
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| | - Delong Li
- Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Liumei Su
- Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Xiantao Jiang
- Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Zhengqian Luo
- Department of Electronic Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yanqi Ge
- Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Jianqing Li
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| | - Yupeng Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
18
|
Li H, Hao Y, Sun D, Zhou D, Liu G, Wang H, Li Q. Mechanical properties and superconductivity in two-dimensional B 2O under extreme strain. Phys Chem Chem Phys 2019; 21:25859-25864. [PMID: 31737883 DOI: 10.1039/c9cp04826j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the particular characteristics of layered materials, searching for new two-dimensional (2D) structures has become the foundation of future device manufacture. Using first-principles calculations and theoretical analysis, we identified a new monolayer B2O and systematically investigated its fundamental mechanical and electronic properties, especially under strain. Due to the complicated puckered hinge structure of monolayer B2O, it possesses an intrinsic negative Poisson's ratio of -0.021. Moreover, we found that the superconducting state of monolayer B2O can be improved, where strain plays an effective role in regulating the properties of the 2D material. The current results elucidate the structure and corresponding properties of monolayer B2O, which may stimulate related fundamental research and potential nanoscale applications.
Collapse
Affiliation(s)
- Hefei Li
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, Innovation Center for Computational Physics Method and Software, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Shen Y, Xing Y, Wang H, Xu N, Gong L, Wen J, Chen X, Zhan R, Chen H, Zhang Y, Liu F, Chen J, She J, Deng S. An in situ characterization technique for electron emission behavior under a photo-electric-common-excitation field: study on the vertical few-layer graphene individuals. NANOTECHNOLOGY 2019; 30:445202. [PMID: 31349235 DOI: 10.1088/1361-6528/ab3609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The in situ characterization on the individuals offers an effective way to explore the dynamic behaviors and underlying physics of materials at the nanoscale, and this is of benefit for actual applications. In the field of vacuum micro-nano electronics, the existing in situ techniques can obtain the material information such as structure, morphology and composition in the process of electron emission driven by a single source of excitation. However, the relevant process and mechanism become more complicated when two or more excitation sources are commonly acted on the emitters. In this paper, we present an in situ nano characterization technique to trigger and record the electron emission behavior under the photo-electric-common-excitation multiple physical fields. Specifically, we probed into the in situ electron emission from an individual vertical few-layer graphene (vFLG) emitter under a laser-plus-electrostatic driving field. Electrons were driven out from the vFLG's emission edge, operated in situ under an external electrostatic field coupled with a 785 nm continuous-wave laser-triggered optical field. The incident light has been demonstrated to significantly improve the electron emission properties of graphene, which were recorded as an obvious decrease of the turn-on voltage, a higher emission current by factor of 35, as well as a photo-response on-off ratio as high as 5. More importantly, during their actual electron emission process, a series of in situ characterizations such as SEM observation and Raman spectra were used to study the structure, composition and even real-time Raman frequency changes of the emitters. These information can further reveal the key factors for the electron emission properties, such as field enhancement, work function and real-time surface temperature. Thereafter, the emission mechanism of vFLG in this study has been semi-quantitatively demonstrated to be the two concurrent processes of photon-assisted thermal enhanced field emission and photo field emission.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tian Y, Guo Z, Zhang T, Lin H, Li Z, Chen J, Deng S, Liu F. Inorganic Boron-Based Nanostructures: Synthesis, Optoelectronic Properties, and Prospective Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E538. [PMID: 30987178 PMCID: PMC6523509 DOI: 10.3390/nano9040538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/16/2022]
Abstract
Inorganic boron-based nanostructures have great potential for field emission (FE), flexible displays, superconductors, and energy storage because of their high melting point, low density, extreme hardness, and good chemical stability. Until now, most researchers have been focused on one-dimensional (1D) boron-based nanostructures (rare-earth boride (REB₆) nanowires, boron nanowires, and nanotubes). Currently, two-dimensional (2D) borophene attracts most of the attention, due to its unique physical and chemical properties, which make it quite different from its corresponding bulk counterpart. Here, we offer a comprehensive review on the synthesis methods and optoelectronics properties of inorganic boron-based nanostructures, which are mainly concentrated on 1D rare-earth boride nanowires, boron monoelement nanowires, and nanotubes, as well as 2D borophene and borophane. This review paper is organized as follows. In Section I, the synthesis methods of inorganic boron-based nanostructures are systematically introduced. In Section II, we classify their optical and electrical transport properties (field emission, optical absorption, and photoconductive properties). In the last section, we evaluate the optoelectronic behaviors of the known inorganic boron-based nanostructures and propose their future applications.
Collapse
Affiliation(s)
- Yan Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zekun Guo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Tong Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Haojian Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zijuan Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
21
|
The Growth Methods and Field Emission Studies of Low-Dimensional Boron-Based Nanostructures. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9051019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on the morphology characteristics, low-dimensional (LD) nanostructures with high aspect ratio can be usually divided into nanowire, nanocone, nanotube, nanorod, nanoribbon, nanobelt and so on. Among numerous LD nanostructures, boron-based nanostructures attracted much interest in recent years because they have high melting-point, large electric and thermal conductivity, and low work function. Compared to traditional thermal emission, field emission (FE) has notable advantages, such as lower power dissipation, longer working life, room-temperature operation, higher brightness and faster switching speed. Most studies reveal they have lower turn-on and threshold fields as well as high current density, which are believed as ideal cold cathode nanomaterials. In this review, we will firstly introduce the growth methods of LD boron-based nanostructures (boron monoelement and rare-earth metal hexaboride). Then, we will discuss their FE properties and applications. At last, the conclusions and outlook will be summarized based on the above studies.
Collapse
|
22
|
Abstract
The electronic band structure, namely energy band surfaces and densities-of-states (DoS), of a hypothetical flat and ideally perfect, i.e., without any type of holes, boron sheet with a triangular network is calculated within a quasi-classical approach. It is shown to have metallic properties as is expected for most of the possible structural modifications of boron sheets. The Fermi curve of the boron flat sheet is found to be consisted of 6 parts of 3 closed curves, which can be approximated by ellipses representing the quadric energy-dispersion of the conduction electrons. The effective mass of electrons at the Fermi level in a boron flat sheet is found to be too small compared with the free electron mass m 0 and to be highly anisotropic. Its values distinctly differ in directions Γ–K and Γ–M: m Γ – K / m 0 ≈ 0.480 and m Γ – M / m 0 ≈ 0.052 , respectively. The low effective mass of conduction electrons, m σ / m 0 ≈ 0.094 , indicates their high mobility and, hence, high conductivity of the boron sheet. The effects of buckling/puckering and the presence of hexagonal or other type of holes expected in real boron sheets can be considered as perturbations of the obtained electronic structure and theoretically taken into account as effects of higher order.
Collapse
|
23
|
Tkachenko NV, Steglenko D, Fedik N, Boldyreva NM, Minyaev RM, Minkin VI, Boldyrev AI. Superoctahedral two-dimensional metallic boron with peculiar magnetic properties. Phys Chem Chem Phys 2019; 21:19764-19771. [DOI: 10.1039/c9cp03786a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel two-dimensional ferromagnetic stable boron material has been predicted and exhaustively studied with DFT methods. Its magnetism can be described by the presence of two unpaired delocalized bonding elements inside each distorted octahedron.
Collapse
Affiliation(s)
| | - Dmitriy Steglenko
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russian Federation
| | - Nikita Fedik
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
- Institute of Physical and Organic Chemistry
| | - Natalia M. Boldyreva
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russian Federation
| | - Ruslan M. Minyaev
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russian Federation
| | - Vladimir I. Minkin
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov-on-Don
- Russian Federation
| | - Alexander I. Boldyrev
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
- Institute of Physical and Organic Chemistry
| |
Collapse
|
24
|
Shao X, Qu X, Liu S, Yang L, Yang J, Liu X, Zhong X, Sun S, Vaitheeswaran G, Lv J. Structure evolution of chromium-doped boron clusters: toward the formation of endohedral boron cages. RSC Adv 2019; 9:2870-2876. [PMID: 35520514 PMCID: PMC9060308 DOI: 10.1039/c8ra09143a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/17/2019] [Indexed: 11/21/2022] Open
Abstract
The electron-deficient nature of boron endows isolated boron clusters with a variety of interesting structural and bonding properties that can be further enriched through metal doping. In the current work, we report the structural and electronic properties of a series of chromium-doped boron clusters. The global minimum structures for CrBn clusters with an even number of n ranging from 8 to 22 are proposed through extensive first-principles swarm-intelligence structure searches. Half-sandwich structures are found to be preferred for CrB8, CrB10, CrB12 and CrB14 clusters and to transform to a drum-like structure at CrB16 cluster. Endohedral cage structures with the Cr atom located at the center are energetically most favorable for CrB20 and CrB22 clusters. Notably, the endohedral CrB20 cage has a high symmetry of D2d and a large HOMO–LUMO gap of 4.38 eV, whose stability is attributed to geometric fit and formation of an 18-electron closed-shell configuration. The current results advance our understanding of the structure and bonding of metal-doped boron clusters. The effect of chromium doping on the structure evolution of small-sized boron clusters.![]()
Collapse
|
25
|
Geng D, Yang HY. Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800865. [PMID: 30063268 DOI: 10.1002/adma.201800865] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Indexed: 05/23/2023]
Abstract
Since the discovery of graphene just over a decade ago, 2D materials have been a central focus of materials research and engineering because of their unique properties and potential of revealing intriguing new phenomena. In the past few years, transition metal dichalcogenides (TMDs) have also attracted considerable attention because of the intrinsically opened bandgap. The exceptional properties and potential applications of graphene and TMDs have inspired explosive efforts to discover novel 2D materials. Here, emerging novel 2D materials are summarized and recent progress in the preparation, characterization, and application of 2D materials is highlighted. The experimental realization methods for these materials are emphasized, while the large-area growth and controlled patterning for industrial productions are discussed. Finally, the remaining challenges and potential applications of 2D materials are outlined.
Collapse
Affiliation(s)
- Dechao Geng
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
26
|
Li HR, Liu H, Zhao XY, Pei L, Chen N, Zan WY, Lu HG, Wang YK, Mu YW, Li SD. High-symmetry tubular Ta@B 183-, Ta 2@B 18, and Ta 2@B 27+ as embryos of α-boronanotubes with a transition-metal wire coordinated inside. Phys Chem Chem Phys 2018; 20:25009-25015. [PMID: 30246197 DOI: 10.1039/c8cp04602f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition-metal doping leads to dramatic structural changes and results in novel bonding patterns in small boron clusters. Based on the experimentally derived mono-ring planar C9v Ta©B92- (1) and extensive first-principles theory calculations, we present herein the possibility of high-symmetry double-ring tubular D9d Ta@B183- (2) and C9v Ta2@B18 (3) and triple-ring tubular D9h Ta2@B27+ (4), which may serve as embryos of single-walled metalloboronanotube α-Ta3@B48(3,0) (5) wrapped up from the recently observed most stable free-standing boron α-sheet on a Ag(111) substrate with a transition-metal wire (-Ta-Ta-) coordinated inside. Detailed bonding analyses indicate that, with an effective dz2-dz2 overlap on the Ta-Ta dimer along the C9 molecular axis, both Ta2@B18 (3) and Ta2@B27+ (4) follow the universal bonding pattern of σ + π double delocalization with each Ta center conforming to the 18-electron rule, providing tubular aromaticity to these Ta-doped boron complexes with magnetically induced ring currents. The IR, Raman, and UV-vis spectra of 3 and 4 are computationally simulated to facilitate their future experimental characterization.
Collapse
Affiliation(s)
- Hai-Ru Li
- Institute of Molecular Science, Shanxi University, Taiyuan, 034000, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang X, Sun Y, Ma L, Zhao X, Yao X. Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor. NANOTECHNOLOGY 2018; 29:305706. [PMID: 29738311 DOI: 10.1088/1361-6528/aac320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Borophene, a two-dimensional monolayer made of boron atoms, has attracted wide attention due to its appealing properties. Great efforts have been devoted to fine tuning its electronic and magnetic properties for desired applications. Herein, we theoretically investigate the versatile electronic and magnetic properties of bilayer borophene (BLB) intercalated by 3d transition metal (TM) atoms, TM@BLBs (TM = Ti-Fe), using ab initio calculations. Four allotropes of AA-stacking (α 1-, β-, β 12- and χ 3-) BLBs with different intercalation concentrations of TM atoms are considered. Our results show that the TM atoms are strongly bonded to the borophene layers with fairly large binding energies, around 6.31 ∼ 15.44 eV per TM atom. The BLBs with Cr and Mn intercalation have robust ferromagnetism, while for the systems decorated with Fe atoms, fruitful magnetic properties, such as nonmagnetic, ferromagnetic or antiferromagnetic, are identified. In particular, the α 1- and β-BLBs intercalated by Mn or Fe atom can be transformed into a semiconductor, half metal or graphene-like semimetal. Moreover, some heavily doped TM@BLBs expose high Curie temperatures above room temperature. The attractive properties of TM@BLBs entail an efficient way to modulate the electronic and magnetic properties of borophene sheets for advanced applications.
Collapse
Affiliation(s)
- Xiuyun Zhang
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
He X, Gan H, Du Z, Ye B, Zhou L, Tian Y, Deng S, Guo G, Lu H, Liu F, He H. Magnetoresistance Anomaly in Topological Kondo Insulator SmB 6 Nanowires with Strong Surface Magnetism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700753. [PMID: 30027028 PMCID: PMC6051400 DOI: 10.1002/advs.201700753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Topological Kondo insulators (TKIs) are a new class of topological materials in which topological surface states dominate the transport properties at low temperatures. They are also an ideal platform for studying the interplay between strong electron correlations and topological order. Here, hysteretic magnetoresistance (MR) is observed in TKI SmB6 thin nanowires at temperatures up to 8 K, revealing the strong magnetism at the surface of SmB6. It is also found that such MR anomaly exhibits an intriguing finite size effect and only appears in nanowires with diameter smaller than 58 nm. These nontrivial phenomena are discussed in terms of the latest Kondo breakdown model, which incorporates the RKKY magnetic interaction mediated by surface states with the strong electron correlation in SmB6. It would provide new insight into the nature of TKI surface states. Additionally, a non-monotonically temperature dependent positive magnetoresistance is observed at intermediate temperatures, suggesting the possible impurity-band conduction in SmB6, other than the surface state transport at low temperatures and the bulk-band transport at high temperatures.
Collapse
Affiliation(s)
- Xingshuai He
- Institute for Quantum Science and Engineering and Department of PhysicsSouth University of Science and Technology of ChinaShenzhen518055China
| | - Haibo Gan
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Zongzheng Du
- Institute for Quantum Science and Engineering and Department of PhysicsSouth University of Science and Technology of ChinaShenzhen518055China
- School of PhysicsSoutheast UniversityNanjing211189China
| | - Bicong Ye
- Institute for Quantum Science and Engineering and Department of PhysicsSouth University of Science and Technology of ChinaShenzhen518055China
| | - Liang Zhou
- Institute for Quantum Science and Engineering and Department of PhysicsSouth University of Science and Technology of ChinaShenzhen518055China
| | - Yuan Tian
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Guoping Guo
- Key Laboratory of Quantum InformationCASUniversity of Science and Technology of ChinaHefei230026China
| | - Haizhou Lu
- Institute for Quantum Science and Engineering and Department of PhysicsSouth University of Science and Technology of ChinaShenzhen518055China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Hongtao He
- Institute for Quantum Science and Engineering and Department of PhysicsSouth University of Science and Technology of ChinaShenzhen518055China
| |
Collapse
|
29
|
Pei L, Li HR, Yan M, Chen Q, Mu YW, Lu HG, Wu YB, Li SD. Charge-induced structural transition between seashell-like B 29- and B 29+ in 18 π-electron configurations. Phys Chem Chem Phys 2018; 20:15330-15334. [PMID: 29796470 DOI: 10.1039/c8cp01078a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent joint experimental and theoretical investigations have shown that seashell-like C2 B28 is the smallest neutral borospherene reported to date, while seashell-like Cs B29- (1-) as a minor isomer competes with its quasi-planar counterparts in B29- cluster beams. Extensive global minimum searches and first-principles theory calculations performed in this work indicate that with two valence electrons detached from B29-, the B29+ monocation favors a seashell-like Cs B29+ (1+) much different from Cs B29- (1-) in geometry which is overwhelmingly the global minimum of the system with three B7 heptagonal holes in the front, on the back, and at the bottom, respectively, unveiling an interesting charge-induced structural transition from Cs B29- (1-) to Cs B29+ (1+). Detailed bonding analyses show that with one less σ bond than B29- (1-), Cs B29+ (1+) also possesses nine delocalized π-bonds over its σ-skeleton on the cage surface with a σ + π double delocalization bonding pattern and follows the 2(n + 1)2 electron counting rule for 3D spherical aromaticity (n = 2). B29+ (1+) is therefore the smallest borospherene monocation reported to date which is π-isovalent with the smallest neutral borospherene C2 B28. The IR, Raman, and UV-vis spectra of B29+ (1+) are computationally simulated to facilitate its spectroscopic characterization.
Collapse
Affiliation(s)
- Ling Pei
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zheng B, Qiao L, Yu HT, Wang QY, Xie Y, Qu CQ. Enhanced field-emission properties of buckled α-borophene by means of Li decoration: a first-principles investigation. Phys Chem Chem Phys 2018; 20:15139-15148. [PMID: 29789848 DOI: 10.1039/c8cp01048j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the structures and field-emission properties of Li-decorated buckled α-borophene (BBP) were investigated by first-principles density functional theory at the PW91 level. Using the computed binding energies, Hirshfeld- and electrostatic potential-derived charges, induced dipole moments, densities of states, and ionization potentials, we evaluated the influence of an applied electric field on the structural stability, work function, and field-emission current of the Li-decorated BBP nanostructures. Furthermore, we also explored the quantitative dependence of the emission current on the electric field, Li concentration, and molecular orbitals. The computed results indicated that increasing the electric field and Li concentration has a considerably positive effect on the field-emission performance of the Li-decorated BBPs. Besides advantages including small work functions and low ionization potentials, most remarkably, the field-emission current can be as high as 48.81 μA in Li4/BBP (supercell with 36 atoms only) under a rather small applied electric field of 0.05 V Å-1, which rivals the highest value of the graphene-BN nanocomposite among all the theoretical nanostructures presented to date. Our results highly support the fact that Li-decorated BBPs can be appealing field-emission cathode materials with an extremely high emission current.
Collapse
Affiliation(s)
- Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | | | | | | | | | | |
Collapse
|
31
|
Patel K, Roondhe B, Dabhi SD, Jha PK. A new flatland buddy as toxic gas scavenger: A first principles study. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:337-345. [PMID: 29558657 DOI: 10.1016/j.jhazmat.2018.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 05/13/2023]
Abstract
Recently predicted and grown new single element two dimensional (2D) material borophene gathered tremendous research interest due to its structural, electronic and other properties. Using first principles based dispersion corrected density functional calculations, we have studied interaction of two toxic gases phosgene (COCl2) and carbon monoxide (CO) with borophene to understand the role of borophene as biosensor and carriers in drug delivery. The sensing behaviour of borophene towards COCl2 and CO has been studied by calculating the binding energy and electronic density of states (DOS). The change in the band structure, DOS, charge density and work function (WF) upon adsorption of gas molecules further confirms the sensing properties of borophene towards these molecules. The binding energy for COCl2 and CO molecules on borophene is -0.306 eV and -0.15 eV respectively which indicates that the COCl2 is adsorbed more favourably than CO over borophene. The WF is enhanced by 0.193 eV and 0.051 eV after the adsorption of COCl2 and CO over borophene. Short recovery time of 148 ns and 37 ns for COCl2 and CO has been predicted. These findings show that the borophene can be used as nanosensor to detect COCl2 and CO.
Collapse
Affiliation(s)
- Khushboo Patel
- Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara, 390 001, India
| | - Basant Roondhe
- Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara, 390 001, India
| | - Shweta D Dabhi
- Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, India
| | - Prafulla K Jha
- Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara, 390 001, India.
| |
Collapse
|
32
|
Mannix AJ, Zhang Z, Guisinger NP, Yakobson BI, Hersam MC. Borophene as a prototype for synthetic 2D materials development. NATURE NANOTECHNOLOGY 2018; 13:444-450. [PMID: 29875501 DOI: 10.1038/s41565-018-0157-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/25/2018] [Indexed: 05/09/2023]
Abstract
The synthesis of 2D materials with no analogous bulk layered allotropes promises a substantial breadth of physical and chemical properties through the diverse structural options afforded by substrate-dependent epitaxy. However, despite the joint theoretical and experimental efforts to guide materials discovery, successful demonstrations of synthetic 2D materials have been rare. The recent synthesis of 2D boron polymorphs (that is, borophene) provides a notable example of such success. In this Perspective, we discuss recent progress and future opportunities for borophene research. Borophene combines unique mechanical properties with anisotropic metallicity, which complements the canon of conventional 2D materials. The multi-centre characteristics of boron-boron bonding lead to the formation of configurationally varied, vacancy-mediated structural motifs, providing unprecedented diversity in a mono-elemental 2D system with potential for electronic applications, chemical functionalization, materials synthesis and complex heterostructures. With its foundations in computationally guided synthesis, borophene can serve as a prototype for ongoing efforts to discover and exploit synthetic 2D materials.
Collapse
Affiliation(s)
- Andrew J Mannix
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, USA
| | - Zhuhua Zhang
- Department of Materials Science and NanoEngineering and Department of Chemistry, Rice University, Houston, TX, USA
- State Key Laboratory of Mechanics and Control of Mechanical Structures, and Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Nathan P Guisinger
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, USA
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering and Department of Chemistry, Rice University, Houston, TX, USA.
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
33
|
Zhang Z, Penev ES, Yakobson BI. Two-dimensional boron: structures, properties and applications. Chem Soc Rev 2018; 46:6746-6763. [PMID: 29085946 DOI: 10.1039/c7cs00261k] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Situated between metals and non-metals in the periodic table, boron is one of the most chemically versatile elements, forming at least sixteen bulk polymorphs composed of interlinked boron polyhedra. In low-dimensionality, boron chemistry remains or becomes even more intriguing since boron clusters with several to tens of atoms favor planar or cage-like structures, which are similar to their carbon counterparts in terms of conformation and electronic structure. The similarity between boron and carbon has raised a question of whether there exists stable two-dimensional (2D) boron, as a conceptual precursor, from which other boron nanostructures may be built. Here, we review the current theoretical and experimental progress in realizing boron atomic layers. Starting by describing a decade-long effort towards understanding the size-dependent structures of boron clusters, we present how theory plays a role in extrapolating boron clusters into 2D form, from a freestanding state to that on substrates, as well as in exploring practical routes for their synthesis that recently culminated in experimental realization. While 2D boron has been revealed to have unusual mechanical, electronic and chemical properties, materializing its potential in practical applications remains largely impeded by lack of routes towards transfer from substrates and controlled synthesis of quality samples.
Collapse
Affiliation(s)
- Zhuhua Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, and Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | | | | |
Collapse
|
34
|
Li H, Jing L, Liu W, Lin J, Tay RY, Tsang SH, Teo EHT. Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance. ACS NANO 2018; 12:1262-1272. [PMID: 29378394 DOI: 10.1021/acsnano.7b07444] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although two-dimensional boron (B) has attracted much attention in electronics and optoelectronics due to its unique physical and chemical properties, in-depth investigations and applications have been limited by the current synthesis techniques. Herein, we demonstrate that high-quality few-layer B sheets can be prepared in large quantities by sonication-assisted liquid-phase exfoliation. By simply varying the exfoliating solvent types and centrifugation speeds, the lateral size and thickness of the exfoliated B sheets can be controllably tuned. Additionally, the exfoliated few-layer B sheets exhibit excellent stability and outstanding dispersion in organic solvents without aggregates for more than 50 days under ambient conditions, owing to the presence of a solvent residue shell on the B sheet surface that provides excellent protection against air oxidation. Moreover, we also demonstrate the use of the exfoliated few-layer B sheets for high-performance supercapacitor electrode materials. This as-prepared device exhibits impressive electrochemical performance with a wide potential window of up to 3.0 V, excellent energy density as high as 46.1 Wh/kg at a power density of 478.5 W/kg, and excellent cycling stability with 88.7% retention of the initial specific capacitance after 6000 cycles. This current work not only demonstrates an effective strategy for the synthesis of the few-layer B sheets in a controlled manner but also makes the resulting materials promising for next-generation optoelectronics and energy storage applications.
Collapse
Affiliation(s)
- Hongling Li
- School of Electrical and Electronic Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lin Jing
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenwen Liu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario, Canada N2L 3G1
| | - Jinjun Lin
- School of Electrical and Electronic Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Roland Yingjie Tay
- Temasek Laboratories@NTU , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Siu Hon Tsang
- Temasek Laboratories@NTU , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Edwin Hang Tong Teo
- School of Electrical and Electronic Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
35
|
Gunda H, Das SK, Jasuja K. Simple, Green, and High‐Yield Production of Boron‐Based Nanostructures with Diverse Morphologies by Dissolution and Recrystallization of Layered Magnesium Diboride Crystals in Water. Chemphyschem 2018; 19:880-891. [DOI: 10.1002/cphc.201701033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Harini Gunda
- Department of Chemical EngineeringIndian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Saroj Kumar Das
- Department of Chemical EngineeringIndian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Kabeer Jasuja
- Department of Chemical EngineeringIndian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| |
Collapse
|
36
|
Li J, Duan Y, Li Y, Li T, Yin LW, Li H. First principles study of electronic transport properties in novel FeB2 flake-based nanodevices. Phys Chem Chem Phys 2018; 20:4455-4465. [DOI: 10.1039/c7cp07132a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
First-principles calculations provide theoretical support for the promising applications of innovative two-probe devices based on FeB2 flakes and reveal the superiority of devices with FeB2 flakes at temperatures not above 1000 K in transport properties.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Yunrui Duan
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Yifan Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Tao Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Long-Wei Yin
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| |
Collapse
|
37
|
Wu Y, Sun Z, Zhao S, Han X, Liu X. Growth mechanisms of fiber-like and dendrite-like boron in a Cu melt. CrystEngComm 2018. [DOI: 10.1039/c7ce02212c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There are two types of eutectic boron in Cu–B alloy, i.e. fiber-like eutectic boron and dendrite-like eutectic boron. The fiber-like eutectic boron has a tetragonal structure, and it can be used to prepare boron nanowires. The dendrite-like eutectic boron has a rhombohedral structure, and twin growth facilitates its dendrite growth.
Collapse
Affiliation(s)
- Yuying Wu
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P. R. China
| | - Zuxin Sun
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P. R. China
| | - Shuo Zhao
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P. R. China
| | - Xiaoxiao Han
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P. R. China
| | - Xiangfa Liu
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P. R. China
| |
Collapse
|
38
|
Interaction Studies of Ammonia Gas Molecules on Borophene Nanosheet and Nanotubes: A Density Functional Study. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0761-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Abstract
Abstract
Nanostructured boron compounds have emerged as one of the promising frontiers in boron chemistry. These species possess unique physical and chemical properties in comparison with classical small boron compounds. The nanostructured boron composites generally have large amounts of boron contents and thus have the potential to deliver significant amount of boron to the tumor cells, that is crucial for boron neutron capture therapy (BNCT). In theory, BNCT is based on a nuclear capture reaction with the 10B isotope absorbing a slow neutron to initiate a nuclear fission reaction with the release of energetic particles, such as lithium and helium (α particles), which travel the distance of around nine microns within the cell DNA or RNA to destroy it. The recent studies have demonstrated that the nanostructured boron composites can be combined with the advanced targeted drug delivery system and drug detection technology. The successful combination of these three areas should significantly improve the BNCT in cancer treatment. This mini review summarizes the latest developments in this unique area of cancer therapy.
Collapse
Affiliation(s)
- Yinghuai Zhu
- School of Pharmacy , Macau University of Science and Technology , Avenida Wai Long, Taipa , Macau 999078 , Macau
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb, IL 60115 , USA
| |
Collapse
|
40
|
Kondo T. Recent progress in boron nanomaterials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:780-804. [PMID: 29152014 PMCID: PMC5678458 DOI: 10.1080/14686996.2017.1379856] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Various types of zero, one, and two-dimensional boron nanomaterials such as nanoclusters, nanowires, nanotubes, nanobelts, nanoribbons, nanosheets, and monolayer crystalline sheets named borophene have been experimentally synthesized and identified in the last 20 years. Owing to their low dimensionality, boron nanomaterials have different bonding configurations from those of three-dimensional bulk boron crystals composed of icosahedra or icosahedral fragments. The resulting intriguing physical and chemical properties of boron nanomaterials are fascinating from the viewpoint of material science. Moreover, the wide variety of boron nanomaterials themselves could be the building blocks for combining with other existing nanomaterials, molecules, atoms, and/or ions to design and create materials with new functionalities and properties. Here, the progress of the boron nanomaterials is reviewed and perspectives and future directions are described.
Collapse
Affiliation(s)
- Takahiro Kondo
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Research Center for Interdisciplinary Materials Science, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
41
|
Zhao L, Qu X, Wang Y, Lv J, Zhang L, Hu Z, Gu G, Ma Y. Effects of manganese doping on the structure evolution of small-sized boron clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:265401. [PMID: 28481215 DOI: 10.1088/1361-648x/aa7190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atomic doping of clusters is known as an effective approach to stabilize or modify the structures and properties of resulting doped clusters. We herein report the effect of manganese (Mn) doping on the structure evolution of small-sized boron (B) clusters. The global minimum structures of both neutral and charged Mn doped B cluster [Formula: see text] (n = 10-20 and Q = 0, ±1) have been proposed through extensive first-principles swarm-intelligence based structure searches. It is found that Mn doping has significantly modified the grow behaviors of B clusters, leading to two novel structural transitions from planar to tubular and then to cage-like B structures in both neutral and charged species. Half-sandwich-type structures are most favorable for small [Formula: see text] (n ⩽ 13) clusters and gradually transform to Mn-centered double-ring tubular structures at [Formula: see text] clusters with superior thermodynamic stabilities compared with their neighbors. Most strikingly, endohedral cages become the ground-state structures for larger [Formula: see text] (n ⩾ 19) clusters, among which [Formula: see text] adopts a highly symmetric structure with superior thermodynamic stability and a large HOMO-LUMO gap of 4.53 eV. The unique stability of the endohedral [Formula: see text] cage is attributed to the geometric fit and formation of 18-electron closed-shell configuration. The results significantly advance our understanding about the structure and bonding of B-based clusters and strongly suggest transition-metal doping as a viable route to synthesize intriguing B-based nanomaterials.
Collapse
Affiliation(s)
- Lingquan Zhao
- College of Materials Science and Engineering, Jilin University, Changchun 130012, People's Republic of China. Department of Physics, College of Science, Yanbian University, Yanji 133002, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhong Q, Zhang J, Cheng P, Feng B, Li W, Sheng S, Li H, Meng S, Chen L, Wu K. Metastable phases of 2D boron sheets on Ag(1 1 1). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:095002. [PMID: 28129209 DOI: 10.1088/1361-648x/aa5165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two reproducible new phases of 2D boron sheets have been found on Ag(1 1 1). One of them shares the identical atomic structure of the previously reported S1 phase (β 12 sheet) but has a different rotational relationship with the substrate, and thus exhibits very different features in scanning tunneling microscopy (STM) images. The other new phase has a hexagonal symmetry and is proposed to be the long-expected α-sheet. Both of these two boron sheets are confirmed to be metallic by scanning tunneling spectroscopy.
Collapse
Affiliation(s)
- Qing Zhong
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Gan H, Peng L, Yang X, Tian Y, Xu N, Chen J, Liu F, Deng S. A moderate synthesis route of 5.6 mA-current LaB6 nanowire film with recoverable emission performance towards cold cathode electron source applications. RSC Adv 2017. [DOI: 10.1039/c7ra01637a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The as-grown LaB6 nanowire arrays still remain a very large and stable emission current density over 16.7 mA cm−2 at high temperature as well as recoverable emission performances, which should have promising future in cold cathode electron sources.
Collapse
Affiliation(s)
- Haibo Gan
- State Key Laboratory of Optoelectronic Materials and Technologies
- Guangdong Province Key Laboratory of Display Material and Technology
- School of Electronics and Information Technology
- Sun Yat-sen University
- Guangzhou 510275
| | - Luxi Peng
- State Key Laboratory of Optoelectronic Materials and Technologies
- Guangdong Province Key Laboratory of Display Material and Technology
- School of Electronics and Information Technology
- Sun Yat-sen University
- Guangzhou 510275
| | - Xun Yang
- State Key Laboratory of Optoelectronic Materials and Technologies
- Guangdong Province Key Laboratory of Display Material and Technology
- School of Electronics and Information Technology
- Sun Yat-sen University
- Guangzhou 510275
| | - Yan Tian
- State Key Laboratory of Optoelectronic Materials and Technologies
- Guangdong Province Key Laboratory of Display Material and Technology
- School of Electronics and Information Technology
- Sun Yat-sen University
- Guangzhou 510275
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and Technologies
- Guangdong Province Key Laboratory of Display Material and Technology
- School of Electronics and Information Technology
- Sun Yat-sen University
- Guangzhou 510275
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies
- Guangdong Province Key Laboratory of Display Material and Technology
- School of Electronics and Information Technology
- Sun Yat-sen University
- Guangzhou 510275
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies
- Guangdong Province Key Laboratory of Display Material and Technology
- School of Electronics and Information Technology
- Sun Yat-sen University
- Guangzhou 510275
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies
- Guangdong Province Key Laboratory of Display Material and Technology
- School of Electronics and Information Technology
- Sun Yat-sen University
- Guangzhou 510275
| |
Collapse
|
45
|
Mu Y, Chen Q, Chen N, Lu H, Li SD. A novel borophene featuring heptagonal holes: a common precursor of borospherenes. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp03021e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a novel stable borophene (referred to as H-borophene) with unique construction pattern, which is able to serve as the common precursor of borospherenes.
Collapse
Affiliation(s)
- Yuewen Mu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Qiang Chen
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Na Chen
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Haigang Lu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Si-Dian Li
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
46
|
Wu Y, Li Y, Chen H, Sun Z, Wang N, Qin J, Li H, Bian X, Liu X. Growth of single crystalline boron nanotubes in a Cu alloy. CrystEngComm 2017. [DOI: 10.1039/c7ce00818j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the successful synthesis of single crystalline boron nanotubes in a Cu alloy via a novel and simple direct melt reaction process.
Collapse
Affiliation(s)
- Yuying Wu
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P.R. China
| | - Yifan Li
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P.R. China
| | - Houwen Chen
- School of Material Science & Engineering
- Chongqing University
- Chongqing 400045
- P.R. China
| | - Zuxin Sun
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P.R. China
| | - Na Wang
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P.R. China
| | - Jingyu Qin
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P.R. China
| | - Hui Li
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P.R. China
| | - Xiufang Bian
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P.R. China
| | - Xiangfa Liu
- Key Laboratory of Liquid-Solid Structural Evolution & Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- P.R. China
| |
Collapse
|
47
|
Kou L, Ma Y, Tang C, Sun Z, Du A, Chen C. Auxetic and Ferroelastic Borophane: A Novel 2D Material with Negative Possion's Ratio and Switchable Dirac Transport Channels. NANO LETTERS 2016; 16:7910-7914. [PMID: 27960461 DOI: 10.1021/acs.nanolett.6b04180] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recently synthesized atomically thin boron sheets (that is, borophene) provide a fascinating template for new material property discovery. Here, we report findings of an extraordinary combination of unusual mechanical and electronic properties in hydrogenated borophene, known as borophane, from first-principles calculations. This novel 2D material has been shown to exhibit robust Dirac transport physics. Our study unveils that borophane is auxetic with a surprising negative Poisson's ratio stemming from its unique puckered triangle hinge structure and the associated hinge dihedral angle variation under a tensile strain in the armchair direction. Our results also identify borophane to be ferroelastic with a stress-driven 90° lattice rotation in the boron layer, accompanied by a remarkable orientation switch of the anisotropic Dirac transport channels. These outstanding strain-engineered properties make borophane a highly versatile and promising 2D material for innovative applications in microelectromechanical and nanoelectronic devices.
Collapse
Affiliation(s)
- Liangzhi Kou
- School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology , Garden Point Campus, QLD 4001, Brisbane, Australia
- Integrated Materials Design Centre (IMDC), School of Chemical Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Yandong Ma
- Department of Physics and Earth Science, Jacobs University Bremen , Campus Ring 1, 28759 Bremen, Germany
| | - Chun Tang
- Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada , Las Vegas, Nevada 89154, United States
| | - Ziqi Sun
- School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology , Garden Point Campus, QLD 4001, Brisbane, Australia
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology , Garden Point Campus, QLD 4001, Brisbane, Australia
| | - Changfeng Chen
- Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada , Las Vegas, Nevada 89154, United States
| |
Collapse
|
48
|
Fagiani MR, Song X, Petkov P, Debnath S, Gewinner S, Schöllkopf W, Heine T, Fielicke A, Asmis KR. Structure and Fluxionality of B 13+ Probed by Infrared Photodissociation Spectroscopy. Angew Chem Int Ed Engl 2016; 56:501-504. [PMID: 27918141 DOI: 10.1002/anie.201609766] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 11/06/2022]
Abstract
We use cryogenic ion vibrational spectroscopy to characterize the structure and fluxionality of the magic number boron cluster B13+ . The infrared photodissociation (IRPD) spectrum of the D2 -tagged all-11 B isotopologue of B13+ is reported in the spectral range from 435 to 1790 cm-1 and unambiguously assigned to a planar boron double wheel structure based on a comparison to simulated IR spectra of low energy isomers from density-functional-theory (DFT) computations. Born-Oppenheimer DFT molecular dynamics simulations show that B13+ exhibits internal quasi-rotation already at 100 K. Vibrational spectra derived from these simulations allow extracting the first spectroscopic evidence from the IRPD spectrum for the exceptional fluxionality of B13+ .
Collapse
Affiliation(s)
- Matias R Fagiani
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Xiaowei Song
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Petko Petkov
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| | - Sreekanta Debnath
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Thomas Heine
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| | - André Fielicke
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| |
Collapse
|
49
|
Fagiani MR, Song X, Petkov P, Debnath S, Gewinner S, Schöllkopf W, Heine T, Fielicke A, Asmis KR. Untersuchung der Struktur und Dynamik des B13
+
mithilfe der Infrarot-Photodissoziationsspektroskopie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matias R. Fagiani
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie; Universität Leipzig; Linnéstraße 2 04103 Leipzig Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Xiaowei Song
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie; Universität Leipzig; Linnéstraße 2 04103 Leipzig Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Petko Petkov
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie; Universität Leipzig; Linnéstraße 2 04103 Leipzig Deutschland
| | - Sreekanta Debnath
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie; Universität Leipzig; Linnéstraße 2 04103 Leipzig Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Deutschland
| | - Thomas Heine
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie; Universität Leipzig; Linnéstraße 2 04103 Leipzig Deutschland
| | - André Fielicke
- Institut für Optik und Atomare Physik; Technische Universität Berlin; Hardenbergstraße 36 10623 Berlin Deutschland
| | - Knut R. Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie; Universität Leipzig; Linnéstraße 2 04103 Leipzig Deutschland
| |
Collapse
|
50
|
Tian WJ, Chen Q, Tian XX, Mu YW, Lu HG, Li SD. From Quasi-Planar B 56 to Penta-Ring Tubular Ca©B 56: Prediction of Metal-Stabilized Ca©B 56 as the Embryo of Metal-Doped Boron α-Nanotubes. Sci Rep 2016; 6:37893. [PMID: 27885257 PMCID: PMC5122883 DOI: 10.1038/srep37893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023] Open
Abstract
Motifs of planar metalloborophenes, cage-like metalloborospherenes, and metal-centered double-ring tubular boron species have been reported. Based on extensive first-principles theory calculations, we present herein the possibility of doping the quasi-planar C2v B56 (A-1) with an alkaline-earth metal to produce the penta-ring tubular Ca©B56 (B-1) which is the most stable isomer of the system obtained and can be viewed as the embryo of metal-doped (4,0) boron α-nanotube Ca©BNT(4,0) (C-1). Ca©BNT(4,0) (C-1) can be constructed by rolling up the most stable boron α-sheet and is predicted to be metallic in nature. Detailed bonding analyses show that the highly stable planar C2v B56 (A-1) is the boron analog of circumbiphenyl (C38H16) in π-bonding, while the 3D aromatic C4v Ca©B56 (B-1) possesses a perfect delocalized π system over the σ-skeleton on the tube surface. The IR and Raman spectra of C4v Ca©B56 (B-1) and photoelectron spectrum of its monoanion C4v Ca©B56− are computationally simulated to facilitate their spectroscopic characterizations.
Collapse
Affiliation(s)
- Wen-Juan Tian
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Qiang Chen
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.,Institute of Materials Science and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000, China
| | - Xin-Xin Tian
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yue-Wen Mu
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hai-Gang Lu
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Si-Dian Li
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|