1
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Wang B, Zhu D, Xiong Y, Ye Y, Jiang Y, Xie W, Ren A. A Reaction-based Ratiometric Fluorescent Probe with Large STOKES Shift for Cu 2+ in Neat Aqueous Solution. J Fluoresc 2024:10.1007/s10895-024-03717-6. [PMID: 38613709 DOI: 10.1007/s10895-024-03717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
A novel reaction-based ratiometric fluorescent probe 1 for Cu2+ using picolinate as the reaction site and hemicyanine as the fluorophore was developed. 1 displayed maximum absorption peak at 355 nm and fluorescence emission peak at 500 nm, with large Stokes shift of 145 nm. Upon reaction with Cu2+, the maximum absorption and fluorescence emission peaks red-shifted to 390 nm and 570 nm respectively, owing to Cu2+-induced hydrolysis of the picolinate moiety in 1. Meanwhile, the solution of 1 turned from green to orange under a 365 nm UV lamp. 1 not only could detect Cu2+ ratiometrically by the ratios of both absorbance (A390 nm/A355 nm) and fluorescence intensity (F570 nm/F500 nm), but also displayed large Stokes shift, fast response, high sensitivity and excellent selectivity over other metal ions in neat aqueous solution.
Collapse
Affiliation(s)
- Biao Wang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545005, PR China
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, PR China
| | - Dongjian Zhu
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, PR China.
| | - Yuhao Xiong
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, PR China
| | - Yun Ye
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545005, PR China.
| | - Ying Jiang
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, PR China.
| | - Wei Xie
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, PR China
| | - Aishan Ren
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, PR China.
| |
Collapse
|
3
|
Development in Fluorescent OFF-ON Probes Based on Cu 2+ Promoted Hydrolysis Reaction of the Picolinate Moiety. J Fluoresc 2023; 33:401-411. [PMID: 36480123 DOI: 10.1007/s10895-022-03078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Anions and cations have a key role in our normal life. Cu2+ ion is a crucial trace element accountable for the part of several cellular enzymes and proteins, including cytochrome c oxidase, dopamine monooxygenase, Cu/Zn superoxide dismutase, and ceruloplasmin. WHO has found the extreme acceptable level of Cu2+ ions in drinking water is up to 2.0 ppm. Excess use of Cu2+ ions is associated with various human genetic disorders. Thus, the visualization of Cu2+ ions to avoid its toxic effects in chemical and biological systems is significant. In this review we have summarized sensors based on catalytic hydrolysis of picolinate to detect Cu2+ ions. The sensors based on hydrolysis of picolinate are very selective as compared to the other sensors for Cu2+ ions detection. We have focused on describing the structure, spectral properties, detection limits, and bioimaging model of the sensors.
Collapse
|
4
|
Segura C, Yañez O, Galdámez A, Tapia V, Núñez MT, Osorio-Román I, García C, García-Beltrán O. Synthesis and characterization of a novel colorimetric and fluorometric probe “Turn-on” for the detection of Cu2+ of derivatives rhodamine. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Xiong Y, An Q, Qiao N, Chen Y, Zhou J, Luo D, Zhang H, Wang Y, Xu D, Yuan Z. Electrolysis‐Mediated Rapid Synthesis of Highly Fluorescent and pH Responsive Congo Red Carbon Nanodots for Cu
2+
Sensing. ChemistrySelect 2022. [DOI: 10.1002/slct.202203435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Yuanyuan Xiong
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang JiangXi 330000 China
| | - Qingxiao An
- Central South University of Forestry & Technology Changsha Hunan 410004 China
| | - Niqin Qiao
- Hunan Zhixiangweilai Biotechnology Co., Ltd Changsha Hunan 410125 China
| | - Yi Chen
- Hunan Zhixiangweilai Biotechnology Co., Ltd Changsha Hunan 410125 China
| | - Jia‐Quan Zhou
- Department of Urology Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570000 China
| | - Dong‐Ni Luo
- Department of Urology Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570000 China
| | - Huan‐Tsung Zhang
- Hunan Zhixiangweilai Biotechnology Co., Ltd Changsha Hunan 410125 China
| | - Yang Wang
- Department of Urology Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570000 China
| | - Dong Xu
- Central South University of Forestry & Technology Changsha Hunan 410004 China
| | - Zhiqin Yuan
- College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
6
|
Ji L, Fu Y, Yang N, Wang M, Yang L, Wang Q, Shang W, He G. A fluorescence "turn-on" probe for Cu (Ⅱ) based on flavonoid intermediates generated by copper-induced oxidative cyclization and its fluorescence imaging in living cells. Anal Biochem 2022; 655:114855. [PMID: 35987417 DOI: 10.1016/j.ab.2022.114855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
A fluorescence "turn-on" probe for Cu (Ⅱ) ions was prepared based on the condensation reaction of coumaraldehyde and 1-hydroxy-2-acetylnaphthalene. A strong fluorescent flavonoid intermediate was formed and verified by the NMR and ESI-MS experiments. The water-soluble and pH dependence experiments were performed to confirm the optimal solvent condition (CH3CN: HEPES = 1:1, v/v, pH = 7.2-7.4). The dynamic experiments indicated that the formation process of the intermediate catalyzed by Cu(Ⅱ) ions was probably pseudo-first-order reaction process. The probe showed good selectivity toward copper ions and almost no interference except Ag+ ions by the selectivity and competitive experiments. The HeLa cells were used in the cell fluorescence imaging tests and it was demonstrated that the probe could be used in the phycological condition and showed weak cytotoxicity by the MTT experiments.
Collapse
Affiliation(s)
- Liguo Ji
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China.
| | - Yutian Fu
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Nan Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Meifei Wang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Qingzhi Wang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Wanbing Shang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China.
| | - Guangjie He
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
7
|
Ali M, Memon N, Ali M, Chana AS, Gaur R, Jiahai Y. Recent development in fluorescent probes for copper ion detection. Curr Top Med Chem 2022; 22:835-854. [DOI: 10.2174/1568026622666220225153703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Copper is the third most common heavy metal and an indispensable component of life. Variations of body copper levels, both structural and cellular, are related to a number of disorders; consequently, pathophysiological importance of copper ions demands the development of sensitivity and selective for detecting these organisms in biological systems. In recent years, the area of fluorescent sensors for detecting copper metal ions has seen revolutionary advances. Consequently, closely related fields have raised awareness of several diseases linked to copper fluctuations. Further developments in this field of analysis could pave the way for new and innovative treatments to combat these diseases. This review reports on recent progress in the advancement of three fields of fluorescent probes; chemodosimeters, near IR fluorescent probes, and ratiometric fluorescent probes. Methods used to develop these fluorescent probes and the mechanisms that govern their reaction to specific analytes and their applications in studying biological systems, are also given.
Collapse
Affiliation(s)
- Mukhtiar Ali
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Manthar Ali
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Sami Chana
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Rashmi Gaur
- Natural Products Laboratory, International Joint Laboratory of tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ye Jiahai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
| |
Collapse
|
8
|
Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for "turn-on" Cu 2+ detection in living cancer cells. J Inorg Biochem 2021; 220:111466. [PMID: 33933927 DOI: 10.1016/j.jinorgbio.2021.111466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 12/24/2022]
Abstract
In recent years, fluorescent sensors have emerged as attractive imaging probes due to their distinct responses toward bio-relevant metal ions. However, the bioimaging application main barrier is the 'turn-off' response toward paramagnetic metal ions such as Cu2+ under physiological conditions. Herein, we report a new sensor (2-methyl(4-bromo-N-ethylpiperazinyl-1,8-naphthalimido)-4-(1H-phenanthro[9,10-d]imidazole-2-yl) phenol)NPP with multifunctional (Naphthalimide, Piperazine, Phenanthroimidazole) units for fluorescent and colourimetric detection of Cu2+ in an aqueous medium. Both absorption and fluorescence spectral titration strategies were used to monitor the Cu2+-sensing property of NPP. The NPP displays a weak emission at ca. 455 nm, which remarkably enhances (⁓3.2-fold) upon selective binding of Cu2+ over a range of metal ions, including other paramagnetic metal ions (Mn2+, Fe3+, Co2+). The stoichiometry, binding constant (Ka) and the LOD (limit of detection) of NPP toward Cu2+ ions were found to be 1:1, 5.0 (± 0.2) × 104 M-1 and 6.5 (± 0.4) × 10-7 M, respectively. We have also used NPP as a fluorescent probe to detect Cu2+ in live (human cervical HeLa) cancer cells. The emission intensity of NPP was almost recovered in HeLa cells by incubating 'in situ' the derived Cu2+ complex (NPP-Cu2+) in the presence of a benchmark chelating agent such as EDTA (ethylenediaminetetraacetate). The fluorescent emission of NPP was reverted significantly in each cycle upon sequencial addition of Cu2+ and EDTA to the NPP solution. Overall, NPP is a novel, simple, economic and portable sensor that can detect Cu2+ in biological and environmental scenarios.
Collapse
|
9
|
Nan X, Huyan Y, Li H, Sun S, Xu Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213580] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Correia BB, Brown TR, Reibenspies JH, Lee HS, Hancock RD. Exciplex formation as an approach to selective Copper(II) fluorescent sensors. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Colorimetric Chemosensor and Turn on Fluorescence Probe for pH Monitoring Based on Xanthene Dye Derivatives and its Bioimaging of Living Escherichia coli Bacteria. J Fluoresc 2020; 30:601-612. [PMID: 32285236 DOI: 10.1007/s10895-020-02522-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
A new turn on fluorescence probe based on 3',6'-dihydroxy-6-methyl-2-((pyridin-2-ylmethylene)amino)-4-(p-tolyl)spiro[benzo[f]isoindole-1,9'-xanthen]-3(2H)-one (BFFPH) derived from benzo[f]fluorescein was prepared. Full characterization of the prepared probe using spectroscopic analysis was described such as IR, NMR and MS spectra. The sensitivity of BFFPH for monitoring of pH change in alkaline medium was studied. BFFPH exhibited a high sensitivity to alkaline pH by two pKa values at 8.82 and 10.66 in UV/vis spectroscopy titration. The pH monitoring was studied in broad range of pH values (2.5-12.2) at two pKa values at 8.72 and 10.73 by recording the effect of pH on the fluorescence intensity of BFFPH. The acid-base reversibility character of the probe was investigated as well as the effect of the pH change on the fluorescence quantum yield. The application of the prepared BFFPH probe for detection of living Escherichia coli (E. coli) bacteria using confocal fluorescence microscope was investigated.
Collapse
|
12
|
Mishra SK, Dehuri S, Bag B. Effect of n-alkyl substitution on Cu(ii)-selective chemosensing of rhodamine B derivatives. Org Biomol Chem 2020; 18:316-332. [PMID: 31845711 DOI: 10.1039/c9ob02439e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodamine B hydrazide-based molecular probes (1-10) were synthesized by derivatization with n-alkyl chains of different lengths at the hydrazide amino end. These probes exhibited selective absorption (A∼557) and fluorescence (I∼580) 'off-on' signal transduction along with a colourless → magenta colour transition in the presence of Cu(ii) ions among all the competitive metal ions investigated. The effective coordination of these probes to Cu(ii) ions under the investigated environment forming [Cu·L]2+ (L = 1-5) and [Cu·L2]2+ (L = 6-10) complexes led to their spiro-ring opening, which in turn was expressed through signatory spectral peaks of ring-opened rhodamine. All these probes exhibited Cu(ii) selectivity in signalling despite structural modifications to the core receptor unit through variation of the nature of the alkyl substituents. However, the sensitivity of the signalling and kinetics of the spiro-ring opening varied and could be correlated with the number of carbon atoms present in the n-alkyl substituents. Structural elucidation with X-ray diffraction and X-ray photoemission spectroscopic analyses provided further insight into the structure-function correlation in their Cu(ii) complexes. These probes with Cu(ii) coordination showed selectivity in signalling, high complexation affinity (log Ka = 4.8-8.8), high sensitivity (LOD = 4.1-80 nM), fast response time (rate = 0.0017-0.0159 s-1) and reversibility with counter anions, which ascertained their potential utility as chemosensors for Cu(ii) ion detection.
Collapse
Affiliation(s)
- Santosh Kumar Mishra
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India.
| | | | | |
Collapse
|
13
|
Peng D, Liang RP, Qiu JD, Liu J. Robust Colorimetric Detection of Cu2+ by Excessed Nucleotide Coordinated Nanozymes. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00106-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
A selective Fluorescence Chemosensor: Pyrene motif Schiff base derivative for detection of Cu2+ ions in living cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Ren A, Zhu D, Xie W, He X, Duan Z, Luo Y, Zhong X, Song M, Yan X. A novel reaction-based fluorescent probe for sensitive and selective detection of Cu 2+. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Sun T, Li Y, Niu Q, Li T, Liu Y. Highly selective and sensitive determination of Cu 2+ in drink and water samples based on a 1,8-diaminonaphthalene derived fluorescent sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:142-147. [PMID: 29414571 DOI: 10.1016/j.saa.2018.01.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 06/08/2023]
Abstract
A new simple and efficient fluorescent sensor L based on 1,8‑diaminonaphthalene Schiff-base for highly sensitive and selective determination of Cu2+ in drink and water has been developed. This Cu2+-selective detection over other tested metal ions displayed an obvious color change from blue to colorless easily detected by naked eye. The detection limit is determined to be as low as 13.2 nM and the response time is very fast within 30 s. The 1:1 binding mechanism was well confirmed by fluorescence measurements, IR analysis and DFT calculations. Importantly, this sensor L was employed for quick detection of Cu2+ in drink and environmental water samples with satisfactory results, providing a simple, rapid, reliable and feasible Cu2+-sensing method.
Collapse
Affiliation(s)
- Tao Sun
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Yang Li
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China.
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Yan Liu
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China
| |
Collapse
|
17
|
Mao G, Liu C, Du M, Zhang Y, Ji X, He Z. One-pot synthesis of the stable CdZnTeS quantum dots for the rapid and sensitive detection of copper-activated enzyme. Talanta 2018; 185:123-131. [PMID: 29759178 DOI: 10.1016/j.talanta.2018.03.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Galactose oxidase is a copper-activated enzyme and have a vital role in metabolism of galactose. Much of the work is focused on determining the amount of galactose in the blood rather than measuring the amount of galactose oxidase to urge the galactosemia patients to restrict milk intake. Here, a simple and effective method was developed for Cu2+ and copper-activated enzyme detection based on homogenous alloyed CdZnTeS quantum dots (QDs). Meso- 2,3-dimercaptosuccinic acid (DMSA) was used as the reducing agent for preparing QDs and the highest quantum yield of CdZnTeS QDs was 69.4%. In addition, the as-prepared CdZnTeS QDs show superior fluorescence properties, such as good photo-/chemical stability. The DMSA was the surface ligand of the QDs, containing abundant -SH and -COOH, thus the surface ligands have a high affinity with Cu2+. Therefore, this developed probe can be applied for Cu2+ and galactose oxidase detection and shows a good sensitivity in the buffer. Then, this probe was successfully used for Cu2+ and galactose oxidase detection in real samples with the satisfactory results. The proposed fluorescence quenching strategy gives a new and simple insight for enzyme assay without the enzyme-catalyzed reaction.
Collapse
Affiliation(s)
- Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chen Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Mingyuan Du
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuwei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
18
|
Au-Yeung HY, Chan CY, Tong KY, Yu ZH. Copper-based reactions in analyte-responsive fluorescent probes for biological applications. J Inorg Biochem 2017; 177:300-312. [DOI: 10.1016/j.jinorgbio.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
|
19
|
Zhu D, Ren A, He X, Luo Y, Duan Z, Yan X, Xiong Y, Zhong X. A novel ratiometric fluorescent probe for selective and sensitive detection of Cu2+ in complete aqueous solution. SENSORS AND ACTUATORS B: CHEMICAL 2017; 252:134-141. [DOI: 10.1016/j.snb.2017.05.141] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
|
20
|
Liu Y, Ding D, Zhen Y, Guo R. Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens Bioelectron 2017; 92:140-146. [DOI: 10.1016/j.bios.2017.01.036] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 11/24/2022]
|
21
|
Tang L, He P, Zhong K, Hou S, Bian Y. A new hydroxynaphthyl benzothiazole derived fluorescent probe for highly selective and sensitive Cu(2+) detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 169:246-51. [PMID: 27391231 DOI: 10.1016/j.saa.2016.06.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 05/13/2023]
Abstract
A new reactive probe, 1-(benzo[d]thiazol-2-yl)naphthalen-2-yl-picolinate (BTNP), was designed and synthesized. BTNP acts as a highly selective probe to Cu(2+) in DMSO/H2O (7/3, v/v, Tris-HCl 10mM, pH=7.4) solution based on Cu(2+) catalyzed hydrolysis of the picolinate ester moiety in BTNP, which leads to the formation of an ESIPT active product with dual wavelength emission enhancement. The probe also possesses the advantages of simple synthesis, rapid response and high sensitivity. The pseudo-first-order reaction rate constant was calculated to be 0.205min(-1). Moreover, application of BTNP to Cu(2+) detection in living cells and real water samples was also explored.
Collapse
Affiliation(s)
- Lijun Tang
- Department of Chemistry, Bohai University, Jinzhou 121013, China.
| | - Ping He
- Department of Chemistry, Bohai University, Jinzhou 121013, China
| | - Keli Zhong
- Department of Chemistry, Bohai University, Jinzhou 121013, China
| | - Shuhua Hou
- Department of Chemistry, Bohai University, Jinzhou 121013, China
| | - Yanjiang Bian
- Department of Chemistry, Bohai University, Jinzhou 121013, China
| |
Collapse
|
22
|
Fan Z, Ye JH, Bai Y, Bian S, Wang X, Zhang W, He W. A new dual-channel ratiometric fluorescent chemodosimeter for Cu2+ and its imaging in living cells. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Zhu D, Luo Y, Shuai L, Xie W, Yan X, Duan Z, Cai W. A hemicyanine-based selective and sensitive colorimetric and fluorescent turn-on probe for Cu2+. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Shan Z, Lu M, Wang L, MacDonald B, MacInnis J, Mkandawire M, Zhang X, Oakes KD. Chloride accelerated Fenton chemistry for the ultrasensitive and selective colorimetric detection of copper. Chem Commun (Camb) 2016; 52:2087-90. [PMID: 26685747 DOI: 10.1039/c5cc07446k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A highly selective, ultrasensitive (visual and instrumental detection limits of 40 nM and 0.1 nM, respectively), environmentally-friendly, simple and rapid colorimetric sensor was developed for the detection of copper(II) in water. This sensor is based on a novel signal-amplification mechanism involving reactive halide species (RHSs) including chlorides or bromides, which accelerate copper Fenton reactions oxidizing the chromogenic substrate to develop colour. The results of this study expand our understanding of copper-based Fenton chemistry.
Collapse
Affiliation(s)
- Zhi Shan
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, 1250 Grand Lake Rd, Sydney, Nova Scotia B1P 6L2, Canada. and College of Life Science, Sichuan Agriculture University, Yaan 625014, Sichuan, China
| | - Mingsheng Lu
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, 1250 Grand Lake Rd, Sydney, Nova Scotia B1P 6L2, Canada. and Marine School, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Li Wang
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, 1250 Grand Lake Rd, Sydney, Nova Scotia B1P 6L2, Canada. and College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Bruce MacDonald
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, 1250 Grand Lake Rd, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Judy MacInnis
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Rd, Sydney, Nova Scotia B1P 6L2, Canada
| | - Martin Mkandawire
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, 1250 Grand Lake Rd, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Xu Zhang
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, 1250 Grand Lake Rd, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Ken D Oakes
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, 1250 Grand Lake Rd, Sydney, Nova Scotia B1P 6L2, Canada. and Department of Biology, Cape Breton University, 1250 Grand Lake Rd, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
25
|
Qing Z, Zhu L, Yang S, Cao Z, He X, Wang K, Yang R. In situ formation of fluorescent copper nanoparticles for ultrafast zero-background Cu 2+ detection and its toxicides screening. Biosens Bioelectron 2016; 78:471-476. [DOI: 10.1016/j.bios.2015.11.057] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
|
26
|
Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Long L, Wu Y, Wang L, Gong A, Hu R, Zhang C. Complete suppression of the fluorophore fluorescence by combined effect of multiple fluorescence quenching groups: A fluorescent sensor for Cu2+ with zero background signals. Anal Chim Acta 2016; 908:1-7. [DOI: 10.1016/j.aca.2015.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 02/08/2023]
|
28
|
Chen MM, Chen L, Li HX, Brammer L, Lang JP. Highly selective detection of Hg2+ and MeHgI by di-pyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine and its zinc coordination polymer. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00160b] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Di-pyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine and its zinc coordination polymer are used to detect Hg2+ and MeHgI with high selectivity.
Collapse
Affiliation(s)
- Min-Min Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Liang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong-Xi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Lee Brammer
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF
- UK
| | - Jian-Ping Lang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
29
|
Zhu D, Luo Y, Yan X, Xie W, Cai W, Zhong X. A reaction-based fluorescent turn-on probe for Cu2+ in complete aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra18669f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FP can detect Cu2+ in complete aqueous solution with a rapid response time, high sensitivity, and high selectivity.
Collapse
Affiliation(s)
- Dongjian Zhu
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Yanghe Luo
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Xiaowei Yan
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Wei Xie
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Wen Cai
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| | - Xing Zhong
- Research Institute of Food Science & Engineering Technology
- Hezhou University
- Hezhou 542899
- P. R. China
| |
Collapse
|
30
|
Hong JM, Kim HY, Park H, Chang SK. Cu 2+ -selective colorimetric signaling by sequential hydrolysis and oxidative coupling of a Schiff base. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.10.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Hong JM, Jun JK, Kim HY, Ahn S, Chang SK. Colorimetric signaling of Cu(II) ions by oxidative coupling of anilines with 4-aminoantipyrine. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Ren M, Deng B, Wang JY, Liu ZR, Lin W. A dual-emission fluorescence-enhanced probe for imaging copper(ii) ions in lysosomes. J Mater Chem B 2015; 3:6746-6752. [PMID: 32262467 DOI: 10.1039/c5tb01184a] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed the first example of a fluorescence-enhanced and lysosome-targeted Cu2+ probe (Lys-Cu) with unique dual-channel emissions. The newly synthesized fluorescent probe Lys-Cu, which contains two recognition sites with different sensing mechanisms for Cu2+, displays fluorescence-enhanced dual-channel emissions with fluorescence response to Cu2+ in the lysosome pH environment. Fluorescence imaging shows that Lys-Cu is membrane-permeable and suitable for visualization of Cu2+ in lysosomes of living cells by dual-channel imaging.
Collapse
Affiliation(s)
- Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | | | | | | | | |
Collapse
|
33
|
Li L, Feng J, Fan Y, Tang B. Simultaneous Imaging of Zn2+ and Cu2+ in Living Cells Based on DNAzyme Modified Gold Nanoparticle. Anal Chem 2015; 87:4829-35. [DOI: 10.1021/acs.analchem.5b00204] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lu Li
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Jie Feng
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuanyuan Fan
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
34
|
Feng DQ, Liu G, Wang W. A novel biosensor for copper(ii) ions based on turn-on resonance light scattering of ssDNA templated silver nanoclusters. J Mater Chem B 2015; 3:2083-2088. [DOI: 10.1039/c4tb01940g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ultrasensitive biosensor for copper(ii) ions was first developed based on turn-on resonance light scattering (RLS) of ssDNA templated silver nanoclusters through anti-galvanic reduction (AGR).
Collapse
Affiliation(s)
- Da-Qian Feng
- School of Chemical and Biological Engineering
- Yancheng Institute of Technology
- China
| | - Guoliang Liu
- School of Chemical and Biological Engineering
- Yancheng Institute of Technology
- China
| | - Wei Wang
- School of Chemical and Biological Engineering
- Yancheng Institute of Technology
- China
| |
Collapse
|
35
|
Huang L, Gu B, Su W, yin P, Li H. Proton donor modulating ESIPT-based fluorescent probes for highly sensitive and selective detection of Cu2+. RSC Adv 2015. [DOI: 10.1039/c5ra14443d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Two novel ESIPT-based fluorescent probes for Cu2+ detection were developed. Altering the linker in probe molecules reversed their sensing behavior. Both probes exhibited high selectivity and sensitivity to Cu2+, and can be used for cell imaging.
Collapse
Affiliation(s)
- Liyan Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Biao Gu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Wei Su
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Peng yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| |
Collapse
|
36
|
Verwilst P, Sunwoo K, Kim JS. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun (Camb) 2015; 51:5556-71. [DOI: 10.1039/c4cc10366a] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper ions are crucial to life, and some fundamental roles of copper in pathophysiology have been elucidated using fluorescent sensors.
Collapse
Affiliation(s)
- Peter Verwilst
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Kyoung Sunwoo
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea Univesity
- Seoul 136-701
- Korea
| |
Collapse
|
37
|
Kim HY, Lee HJ, Chang SK. Reaction-based colorimetric signaling of Cu2+ ions by oxidative coupling of phenols with 4-aminoantipyrine. Talanta 2015; 132:625-9. [DOI: 10.1016/j.talanta.2014.09.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/30/2022]
|
38
|
Ye JH, Xu J, Chen H, Bai Y, Zhang W, He W. A colorimetric and highly sensitive and selective chemodosimeter for Cu2+ and its application in live cell imaging. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Yang W, He Y, Xu L, Chen D, Li M, Zhang H, Fu F. A novel phosphatidylserine-functionalized AuNP for the visual detection of free copper ions with high sensitivity and specificity. J Mater Chem B 2014; 2:7765-7770. [PMID: 32261913 DOI: 10.1039/c4tb01395f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we have reported on novel phosphatidylserine-functionalized AuNPs (gold nanoparticles) for the visual detection of Cu2+ by employing phosphatidylserine for Cu2+ recognition and AuNPs for signal generation. The phosphatidylserine (1,2-dioleoyl-sn-glycero-3-phospho-l-serine, DOPS) was covalently assembled on the AuNP surface to obtain DOPS-functionalized AuNPs. It was demonstrated that DOPS-functionalized AuNPs could specifically bind Cu2+ and lead to the aggregation of AuNPs, which gave rise to a colour change from wine-red to blue and a new absorption band around 650 nm. This provides a sensing platform for the simple, rapid and field portable colorimetric detection of Cu2+. By using the sensing platform, a selective and sensitive visual biosensor for the detection of Cu2+ was developed. The proposed biosensor has outstanding analytical advantages such as good stability, relatively high sensitivity, low cost and short analysis time. It can be used to detect concentrations of Cu2+ as low as 30 μM in river water by observation with the naked eye and of 1.55 μM Cu2+ in river water by UV-visible spectrophotometry, within 10 min and with a recovery of 98-103% and a relative standard deviation (RSD) < 4% (n = 6). The proposed biosensor is promising for on-site detection of trace Cu2+ in clinical diagnosis or environmental monitoring.
Collapse
Affiliation(s)
- WeiJuan Yang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
New family of fluorogenic azacrown probes with identical cavity size but different electronic environment outside the macrocycle: effects on sensitivity of Cu2+ detection. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Huang CB, Li HR, Luo Y, Xu L. A naphthalimide-based bifunctional fluorescent probe for the differential detection of Hg²⁺ and Cu²⁺ in aqueous solution. Dalton Trans 2014; 43:8102-8. [PMID: 24723120 DOI: 10.1039/c4dt00014e] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent probe NPM based on naphthalimide was designed and synthesized. Interestingly, NPM exhibited highly selective fluorescence turn-on for Hg(2+) and turn-off for Cu(2+) in aqueous solution (10 mM HEPES, pH 7.5). Its fluorescence intensity enhanced in a linear fashion with the concentration of Hg(2+) and decreased in a nearly linear fashion with the concentration of Cu(2+). Thus NPM could be potentially used for the quantification of Hg(2+) and Cu(2+) in aqueous solution. A series of model compounds were rationally designed and synthesized in order to explore the sensing mechanisms and binding modes of NPM with Hg(2+) and Cu(2+).
Collapse
Affiliation(s)
- Chang-Bo Huang
- Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
| | | | | | | |
Collapse
|
42
|
Yin H, Kuang H, Liu L, Xu L, Ma W, Wang L, Xu C. A ligation DNAzyme-induced magnetic nanoparticles assembly for ultrasensitive detection of copper ions. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4752-4757. [PMID: 24611502 DOI: 10.1021/am405482a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel biosensor for ultrasensitive detection of copper (Cu(2+)) was established based on the assembly of magnetic nanoparticles induced by the Cu(2+)-dependent ligation DNAzyme. With a low limit of detection of 2.8 nM and high specificity, this method has the potential to serve as a general platform for the detection of heavy metal ions.
Collapse
Affiliation(s)
- Honghong Yin
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Hu Z, Hu J, Cui Y, Wang G, Zhang X, Uvdal K, Gao HW. A facile “click” reaction to fabricate a FRET-based ratiometric fluorescent Cu2+ probe. J Mater Chem B 2014; 2:4467-4472. [DOI: 10.1039/c4tb00441h] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Guan X, Lin W, Huang W. Development of a new rhodamine-based FRET platform and its application as a Cu2+ probe. Org Biomol Chem 2014; 12:3944-9. [DOI: 10.1039/c4ob00131a] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Huang J, Xu Y, Qian X. Rhodamine-based fluorescent off–on sensor for Fe3+ – in aqueous solution and in living cells: 8-aminoquinoline receptor and 2 : 1 binding. Dalton Trans 2014; 43:5983-9. [DOI: 10.1039/c3dt53159g] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A rhodamine-based Fe3+ sensor of a rigid 8-aminoquinoline receptor shows a 2 : 1 binding according to 1D and 2D-1HNMR experiments.
Collapse
Affiliation(s)
- Junhai Huang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237, China
- Zhangjiang R&D center
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237, China
| |
Collapse
|
46
|
Ye JH, Xu J, Chen H, Bai Y, Zhang W, He W. A highly sensitive and selective turn-on fluorescent chemodosimeter for Cu2+ based on BODIPY and its application in bioimaging. RSC Adv 2014. [DOI: 10.1039/c3ra47157h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
47
|
Reja SI, Bhalla V, Manchanda S, Kaur G, Kumar M. Chemodosimeter approach for nanomolar detection of Cu2+ ions and their bio-imaging in PC3 cell lines. RSC Adv 2014. [DOI: 10.1039/c4ra08894h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new rhodamine–azaindole based fluorescence probe for Cu2+ has been synthesized which shows fluorescence resonance energy transfer process in acetonitrile. Further, the probe undergoes Cu2+ promoted hydrolysis in mixed aqueous media as well as in the intracellular systems.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-1
- Guru Nanak Dev University
- Amritsar, India
| | - Vandana Bhalla
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-1
- Guru Nanak Dev University
- Amritsar, India
| | - Shaffi Manchanda
- Department of Biotechnology
- Guru Nanak Dev University
- Amritsar, India
| | - Gurcharan Kaur
- Department of Biotechnology
- Guru Nanak Dev University
- Amritsar, India
| | - Manoj Kumar
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-1
- Guru Nanak Dev University
- Amritsar, India
| |
Collapse
|
48
|
Yuan Z, Cai N, Du Y, He Y, Yeung ES. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal Chem 2013; 86:419-26. [PMID: 24274096 DOI: 10.1021/ac402158j] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper is a highly toxic environmental pollutant with bioaccumulative properties. Therefore, sensitive Cu(2+) detection is very important to prevent over-ingestion, and visual detection using unaugmented vision is preferred for practical applications. In this study, hyperbranched polyethyleneimine-protected silver nanoclusters (hPEI-AgNCs) were successfully synthesized using a facile, one-pot reaction under mild conditions. The hPEI-AgNCs were very stable against extreme pH, ionic strength, temperature, and photoillumination and could act as sensitive and selective Cu(2+) sensing nanoprobes in aqueous solutions with a 10 nM limit of detection. In addition, hPEI-AgNCs-doped agarose hydrogels were developed as an instrument-free and regenerable platform for visual Cu(2+) and water quality monitoring.
Collapse
Affiliation(s)
- Zhiqin Yuan
- College of Chemistry and Chemical Engineering, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University , Changsha, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
A two-photon ratiometric fluorescence probe for cupric ions in live cells and tissues. Sci Rep 2013; 3:2933. [PMID: 24121717 PMCID: PMC3796302 DOI: 10.1038/srep02933] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/25/2013] [Indexed: 01/09/2023] Open
Abstract
Development of sensitive and selective probes for cupric ions (Cu2+) at cell and tissue level is a challenging work for progress in understanding the biological effects of Cu2+. Here, we report a ratiometric two-photon probe for Cu2+ based on the organic-inorganic hybrids of graphene quantum dots (GQDs) and Nile Blue dye. Meanwhile, Cu-free derivative of copper-zinc superoxide dismutase (SOD) – E2Zn2SOD is designed as the unique receptor for Cu2+ and conjugated on the surface of GQDs. This probe shows a blue-to-yellow color change in repose to Cu2+, good selectivity, low cytotoxicity, long-term photostability, and insensitivity to pH over the biologically relevant pH range. The developed probe allows the direct visualization of Cu2+ levels in live cells as well as in deep-tissues at 90–180 μm depth through the use of two-photon microscopy. Furthermore, the effect of ascorbic acid is also evaluated on intracellular Cu2+ binding to E2Zn2SOD by this probe.
Collapse
|
50
|
Shi Z, Tang X, Zhou X, Cheng J, Han Q, Zhou JA, Wang B, Yang Y, Liu W, Bai D. A Highly Selective Fluorescence “Turn-On” Probe for Cu(II) Based on Reaction and Its Imaging in Living Cells. Inorg Chem 2013; 52:12668-73. [DOI: 10.1021/ic401865e] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Zhaohua Shi
- Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
and State Key Laboratory of Applied Organic Chemistry, College of
Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaoliang Tang
- Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
and State Key Laboratory of Applied Organic Chemistry, College of
Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaoyan Zhou
- Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
and State Key Laboratory of Applied Organic Chemistry, College of
Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Ju Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
and Operative Surgery Institute, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Qingxin Han
- Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
and State Key Laboratory of Applied Organic Chemistry, College of
Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Ji-an Zhou
- Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
and State Key Laboratory of Applied Organic Chemistry, College of
Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Bei Wang
- Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
and State Key Laboratory of Applied Organic Chemistry, College of
Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yanfang Yang
- Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
and State Key Laboratory of Applied Organic Chemistry, College of
Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Weisheng Liu
- Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
and State Key Laboratory of Applied Organic Chemistry, College of
Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Decheng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
and Operative Surgery Institute, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|