1
|
Groves TS, Perkin S. Wave mechanics in an ionic liquid mixture. Faraday Discuss 2024; 253:193-211. [PMID: 39045840 PMCID: PMC11505645 DOI: 10.1039/d4fd00040d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 07/25/2024]
Abstract
Experimental measurements of interactions in ionic liquids and concentrated electrolytes over the past decade or so have revealed simultaneous monotonic and oscillatory decay modes. These observations have been hard to interpret using classical theories, which typically allow for just one electrostatic decay mode in electrolytes. Meanwhile, substantial progress in the theoretical description of dielectric response and ion correlations in electrolytes has illuminated the deep connection between density and charge correlations and the multiplicity of decay modes characterising a liquid electrolyte. The challenge in front of us is to build connections between the theoretical expressions for a pair of correlation functions and the directly measured free energy of interaction between macroscopic surfaces in experiments. Towards this aim, we here present measurements and analysis of the interactions between macroscopic bodies across a fluid mixture of two ionic liquids of widely diverging ionic size. The measured oscillatory interaction forces in the liquid mixtures are significantly more complex than for either of the pure ionic liquids, but can be fitted to a superposition of two oscillatory and one monotonic mode with parameters matching those of the pure liquids. We discuss this empirical finding, which hints at a kind of wave mechanics for interactions in liquid matter.
Collapse
Affiliation(s)
- Timothy S Groves
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Wang J, Li H, Warr GG, Chen F, Atkin R. Nanostructure and Dynamics of Aprotic Ionic Liquids at Graphite Electrodes as a Function of Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311353. [PMID: 38573945 DOI: 10.1002/smll.202311353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Atomic force microscope (AFM) videos reveal the near-surface nanostructure and dynamics of the ionic liquids (ILs) 1-butyl-3-methylimidazolium dicyanamide (BMIM DCA) and 1-hexyl-3-methylimidazolium dicyanamide (HMIM DCA) above highly oriented pyrolytic graphite (HOPG) electrodes as a function of surface potential. Molecular dynamics (MD) simulations reveal the molecular-level composition of the nanostructures. In combination, AFM and MD show that the near-surface aggregates form via solvophobic association of the cation alkyl chains at the electrode interface. The diffusion coefficients of interfacial nanostructures are ≈0.01 nm2 s-1 and vary with the cation alkyl chain length and the surface potential. For each IL, the nanostructure diffusion coefficients are similar at open-circuit potential (OCP) and OCP + 1V, but BMIM DCA moves about twice as fast as HMIM DCA. At negative potentials, the diffusion coefficient decreases for BMIM DCA and increases for HMIM DCA. When the surface potential is switched from negative to positive, a sudden change in the direction of the nanostructure motion is observed for both BMIM DCA and HMIM DCA. No transient dynamics are noted following other potential jumps. This study provides a new fundamental understanding regarding the dynamics of electrochemically stable ILs at electrodes vital for the rational development of IL-based electrochemical devices.
Collapse
Affiliation(s)
- Jianan Wang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fangfang Chen
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Rivera-Pousa A, Otero-Mato JM, Montes-Campos H, Méndez-Morales T, Diddens D, Heuer A, Varela LM. Ternary Solid Polymer Electrolytes at the Electrochemical Interface: A Computational Study. Macromolecules 2024; 57:3921-3936. [PMID: 38765500 PMCID: PMC11100289 DOI: 10.1021/acs.macromol.3c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Polymer-based solid-like gel electrolytes have emerged as a promising alternative to improve battery performance. However, there is a scarcity of studies on the behavior of these media at the electrochemical interface. In this work, we report classical MD simulations of ternary polymer electrolytes composed of poly(ethylene oxide), a lithium salt [lithium bis(trifluoromethanesulfonyl)imide], and different ionic liquids [1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] confined between two charged and uncharged graphene-like surfaces. The molecular solvation of Li+ ions and their diffusion as well as the polymer conformational picture were characterized in terms of the radial distribution functions, coordination numbers, number density profiles, orientations, displacement variance, polymer radius of gyration, and polymer end-to-end distance. Our results show that the layering behavior of the ternary electrolyte in the interfacial region leads to a decrease of Li+ mobility in the direction perpendicular to the electrodes and high energy barriers that hinder lithium cations from coming into direct contact with the graphene-like surface. The nature of the ionic liquid and its concentration were found to influence the structural and dynamic properties at the electrode/electrolyte interface, the electrolyte with low amounts of the pyrrolidinium-based ionic liquid being that with the best performance since it favors the migration of Li+ cations toward the negative electrode when compared to the imidazolium-based one.
Collapse
Affiliation(s)
- Alejandro Rivera-Pousa
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
| | - José Manuel Otero-Mato
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
| | - Hadrian Montes-Campos
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
- CIQUP,
Institute of Molecular Sciences (IMS)—Departamento de Química
e Bioquímica, Faculdade de Ciências
da Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Trinidad Méndez-Morales
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
| | - Diddo Diddens
- Helmholtz-Institute
Münster (HI MS), Ionics in Energy Storage, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
| | - Andreas Heuer
- Helmholtz-Institute
Münster (HI MS), Ionics in Energy Storage, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
- Institute
of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Luis Miguel Varela
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
| |
Collapse
|
4
|
An R, Wu N, Gao Q, Dong Y, Laaksonen A, Shah FU, Ji X, Fuchs H. Integrative studies of ionic liquid interface layers: bridging experiments, theoretical models and simulations. NANOSCALE HORIZONS 2024; 9:506-535. [PMID: 38356335 DOI: 10.1039/d4nh00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Ionic liquids (ILs) are a class of salts existing in the liquid state below 100 °C, possessing low volatility, high thermal stability as well as many highly attractive solvent and electrochemical capabilities, etc., making them highly tunable for a great variety of applications, such as lubricants, electrolytes, and soft functional materials. In many applications, ILs are first either physi- or chemisorbed on a solid surface to successively create more functional materials. The functions of ILs at solid surfaces can differ considerably from those of bulk ILs, mainly due to distinct interfacial layers with tunable structures resulting in new ionic liquid interface layer properties and enhanced performance. Due to an almost infinite number of possible combinations among the cations and anions to form ILs, the diversity of various solid surfaces, as well as different external conditions and stimuli, a detailed molecular-level understanding of their structure-property relationship is of utmost significance for a judicious design of IL-solid interfaces with appropriate properties for task-specific applications. Many experimental techniques, such as atomic force microscopy, surface force apparatus, and so on, have been used for studying the ion structuring of the IL interface layer. Molecular Dynamics simulations have been widely used to investigate the microscopic behavior of the IL interface layer. To interpret and clarify the IL structure and dynamics as well as to predict their properties, it is always beneficial to combine both experiments and simulations as close as possible. In another theoretical model development to bridge the structure and properties of the IL interface layer with performance, thermodynamic prediction & property modeling has been demonstrated as an effective tool to add the properties and function of the studied nanomaterials. Herein, we present recent findings from applying the multiscale triangle "experiment-simulation-thermodynamic modeling" in the studies of ion structuring of ILs in the vicinity of solid surfaces, as well as how it qualitatively and quantitatively correlates to the overall ILs properties, performance, and function. We introduce the most common techniques behind "experiment-simulation-thermodynamic modeling" and how they are applied for studying the IL interface layer structuring, and we highlight the possibilities of the IL interface layer structuring in applications such as lubrication and energy storage.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Nanhua Wu
- Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qingwei Gao
- College of Environmental and Chemical Engineering, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
- Center of Advanced Research in Bionanoconjugates and Biopolymers, ''Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Harald Fuchs
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| |
Collapse
|
5
|
Kondrat S, Feng G, Bresme F, Urbakh M, Kornyshev AA. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chem Rev 2023; 123:6668-6715. [PMID: 37163447 PMCID: PMC10214387 DOI: 10.1021/acs.chemrev.2c00728] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 05/12/2023]
Abstract
Room-temperature ionic liquids (RTILs) have exciting properties such as nonvolatility, large electrochemical windows, and remarkable variety, drawing much interest in energy storage, gating, electrocatalysis, tunable lubrication, and other applications. Confined RTILs appear in various situations, for instance, in pores of nanostructured electrodes of supercapacitors and batteries, as such electrodes increase the contact area with RTILs and enhance the total capacitance and stored energy, between crossed cylinders in surface force balance experiments, between a tip and a sample in atomic force microscopy, and between sliding surfaces in tribology experiments, where RTILs act as lubricants. The properties and functioning of RTILs in confinement, especially nanoconfinement, result in fascinating structural and dynamic phenomena, including layering, overscreening and crowding, nanoscale capillary freezing, quantized and electrotunable friction, and superionic state. This review offers a comprehensive analysis of the fundamental physical phenomena controlling the properties of such systems and the current state-of-the-art theoretical and simulation approaches developed for their description. We discuss these approaches sequentially by increasing atomistic complexity, paying particular attention to new physical phenomena emerging in nanoscale confinement. This review covers theoretical models, most of which are based on mapping the problems on pertinent statistical mechanics models with exact analytical solutions, allowing systematic analysis and new physical insights to develop more easily. We also describe a classical density functional theory, which offers a reliable and computationally inexpensive tool to account for some microscopic details and correlations that simplified models often fail to consider. Molecular simulations play a vital role in studying confined ionic liquids, enabling deep microscopic insights otherwise unavailable to researchers. We describe the basics of various simulation approaches and discuss their challenges and applicability to specific problems, focusing on RTIL structure in cylindrical and slit confinement and how it relates to friction and capacitive and dynamic properties of confined ions.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart, Stuttgart 70569, Germany
| | - Guang Feng
- State
Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Nano
Interface Centre for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Michael Urbakh
- School
of Chemistry and the Sackler Center for Computational Molecular and
Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexei A. Kornyshev
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Verma UK, Manhas A, Kapoor KK. [Ch][TAPSO] As an Efficient Ionic Liquid Catalyst for One‐Pot Synthesis ofTetrahydro‐4
H
‐chromenes and 3,4‐Dihydropyrano[
c
]chromenes. ChemistrySelect 2023. [DOI: 10.1002/slct.202204961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Usha Kumari Verma
- Department of Chemistry University of Jammu Jammu Jammu and Kashmir (INDIA 180006 India
| | - Akanksha Manhas
- Department of Chemistry University of Jammu Jammu Jammu and Kashmir (INDIA 180006 India
| | - Kamal K. Kapoor
- Department of Chemistry University of Jammu Jammu Jammu and Kashmir (INDIA 180006 India
| |
Collapse
|
7
|
A novel benzimidazole based ionic liquid-tagged Schiff base copper catalyst: Synthesis, characterization and application toward the synthesis of 1,4-disubstituted 1,2,3-triazoles. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
An R, Laaksonen A, Wu M, Zhu Y, Shah FU, Lu X, Ji X. Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces. NANOSCALE 2022; 14:11098-11128. [PMID: 35876154 DOI: 10.1039/d2nr02812c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are room temperature molten salts that possess preeminent physicochemical properties and have shown great potential in many applications. However, the use of ILs in surface-dependent processes, e.g. energy storage, is hindered by the lack of a systematic understanding of the IL interfacial microstructure. ILs on the solid surface display rich ordering, arising from coulombic, van der Waals, solvophobic interactions, etc., all giving near-surface ILs distinct microstructures. Therefore, it is highly important to clarify the interactions of ILs with solid surfaces at the nanoscale to understand the microstructure and mechanism, providing quantitative structure-property relationships. Atomic force microscopy (AFM) opens a surface-sensitive way to probe the interaction force of ILs with solid surfaces in the layers from sub-nanometers to micrometers. Herein, this review showcases the recent progress of AFM in probing interactions and microstructures of ILs at solid interfaces, and the influence of IL characteristics, surface properties and external stimuli is thereafter discussed. Finally, a summary and perspectives are established, in which, the necessities of the quantification of IL-solid interactions at the molecular level, the development of in situ techniques closely coupled with AFM for probing IL-solid interfaces, and the combination of experiments and simulations are argued.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Muqiu Wu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yudan Zhu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
9
|
Horvath A, Anaredy RS, Shaw SK. Solvents and Stabilization in Ionic Liquid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9372-9381. [PMID: 35862667 PMCID: PMC10111422 DOI: 10.1021/acs.langmuir.2c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
We report the interfacial structures and chemical environments of ionic liquid films as a function of dilution with molecular solvents and over a range of film thicknesses (a few micrometers). Data from spectroscopic ellipsometry and infrared spectroscopy measurements show differences between films comprised of neat ionic liquids, as well as films comprised of ionic liquids diluted with two molecular solvents (water and acetonitrile). While the water-diluted IL films follow thickness trends predicted by the Landau-Levich model, neat IL and IL/MeCN films deviate significantly from predicted behaviors. Specifically, these film thicknesses are far greater than the predicted values, suggesting enhanced intermolecular interactions or other non-Newtonian behaviors not captured by the theory. We correlate film thicknesses with trends in the infrared intensity profiles across film thicknesses and IL-solvent dilution conditions and interpret the changes from expected behaviors as varying amounts of the film volume existing in isotropic (bulk) vs anisotropic (interfacial) states. The hydrogen bonding network of water-diluted ionic liquids is implicated in the agreement of this system with the Landau-Levich model's thickness predictions.
Collapse
|
10
|
Bresme F, Kornyshev AA, Perkin S, Urbakh M. Electrotunable friction with ionic liquid lubricants. NATURE MATERIALS 2022; 21:848-858. [PMID: 35761059 DOI: 10.1038/s41563-022-01273-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature ionic liquids and their mixtures with organic solvents as lubricants open a route to control lubricity at the nanoscale via electrical polarization of the sliding surfaces. Electronanotribology is an emerging field that has a potential to realize in situ control of friction-that is, turning the friction on and off on demand. However, fulfilling its promise needs more research. Here we provide an overview of this emerging research area, from its birth to the current state, reviewing the main achievements in non-equilibrium molecular dynamics simulations and experiments using atomic force microscopes and surface force apparatus. We also present a discussion of the challenges that need to be solved for future applications of electrotunable friction.
Collapse
Affiliation(s)
- Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Michael Urbakh
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022; 122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne
Université, CNRS, Physico-chimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
| | - Benjamin Rotenberg
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Électrochimique de l’Énergie
(RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
12
|
Mizukami M, Yanagimachi T, Ohta N, Shibuya Y, Yagi N, Kurihara K. Structures of Nanoconfined Liquids Determined by Synchrotron X-ray Diffraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5248-5256. [PMID: 35188786 DOI: 10.1021/acs.langmuir.1c02621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have successfully performed X-ray diffraction measurements of the liquids octamethylcyclotetrasiloxane (OMCTS, a quasi-spherical-shaped molecule) and n-hexadecane (a normal alkane) confined between mica surfaces at surface separation distances (D's) from 500 nm to the hard-wall thickness (1.9 nm for OMCTS and 1.0 nm for hexadecane). At all of the studied D's, we observed diffraction peaks corresponding to their mean intermolecular spacing at q = 8.6 nm-1 (d = 0.73 nm) for OMCTS and q = 13.6 nm-1 (d = 0.45 nm) for n-hexadecane. The peak intensity increased at D < ca. 50 nm for OMCTS even with the decreasing distance and exhibited a local maximum at D = 17-13 nm, indicating the sharp increase in the molecular order in this distance range. The peak intensities normalized by the D and Inormalized values of OMCTS and n-hexadecane were nearly constant at D's greater than 100 nm, though they appeared to increase slightly. The increase then became more significant with decreasing D below 100 nm, and finally the Inormalized values became 120 (for OMCTS) and 160 (for n-hexadecane) at the hard wall. These results clearly demonstrated the significant increase in the structural order of OMCTS and n-hexadecane under nanoconfinement, especially below 100 nm. The fwhm values of the peaks of OMCTS and n-hexadecane showed no significant change until small distances when the confinement effect was significant. These results indicated that the increase in the structural order should be mainly ascribed to the ordering of the molecules in the parallel plane in the enhanced layered structure formed under the confinement. The viscous parameters (b2) of OMCTS and n-hexadecane obtained from the resonance shear measurement showed no increase at D's down to ca. 7 nm. This indicated that a certain ordering of the confined molecules was required for the observable increase in the viscosity.
Collapse
Affiliation(s)
- Masashi Mizukami
- New Industry Creation Hatchery Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takuya Yanagimachi
- New Industry Creation Hatchery Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute/SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Yuuta Shibuya
- New Industry Creation Hatchery Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute/SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Kazue Kurihara
- New Industry Creation Hatchery Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Chen Z, Li Z, Zhao W, Matsumoto RA, Thompson MW, Morales-Collazo O, Cummings PT, Mangolini F, Brennecke JF. Investigation of Multilayered Structures of Ionic Liquids on Graphite and Platinum Using Atomic Force Microscopy and Molecular Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4036-4047. [PMID: 35313730 DOI: 10.1021/acs.langmuir.2c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The molecular-level orientation and structure of ionic liquids (ILs) at liquid-solid interfaces are significantly different than in the bulk. The interfacial ordering influences both IL properties, such as dielectric constants and viscosity, and their efficacy in devices, such as fuel cells and electrical capacitors. Here, we report the layered structures of four ILs on unbiased, highly ordered pyrolytic graphite (HOPG) and Pt(111) surfaces, as determined by atomic force microscopy. The ILs investigated are 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]), 1-ethyl-3-methylimidazolium perfluorobutylsulfonate ([emim][C4F9SO3]), 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene bis(trifluoromethylsulfonyl)imide ([MTBD][Tf2N]), and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene perfluorobutylsulfonate ([MTBD][C4F9SO3]). Molecular dynamics simulations provide complementary information on the position and orientation of the ions. These ILs form a cation layer at the IL-solid interface, followed by a layer of anions. [Emim]+ and [MTBD]+ have similar orientations at the surface, but [MTBD]+ forms a thinner layer compared to [emim]+ on both HOPG and Pt(111). In addition, [Tf2N]- shows stronger interactions with Pt(111) surfaces than [C4F9SO3]-.
Collapse
Affiliation(s)
- Zhichao Chen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zixuan Li
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ray A Matsumoto
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Matthew W Thompson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Oscar Morales-Collazo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Peter T Cummings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joan F Brennecke
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Han M, Rogers SA, Espinosa-Marzal RM. Rheological Characteristics of Ionic Liquids under Nanoconfinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2961-2971. [PMID: 35220714 DOI: 10.1021/acs.langmuir.1c03460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the dynamic properties of ionic liquids (ILs) in nanoconfinement play a crucial role in the performance of IL-based electrochemical and mechanical devices, experimental work mostly falls short at reporting "solid-like" versus "liquid-like" behavior of confined ILs. The present work is the first to conduct frequency-sweep oscillatory-shear rheology on IL nanofilms, reconciling the solid-versus-liquid debate and revealing the importance of shear rate in the behavior. We disentangle and analyze the viscoelasticity of nanoconfined ILs and shed light on their relaxation mechanisms. Furthermore, a master curve describes the scaling of the dynamic behavior of four (non-hydrogen-bonding) ILs under nanoconfinement and reveals the role of the compressibility of the flow units.
Collapse
Affiliation(s)
- Mengwei Han
- Department of Civil and Environmental Engineering at University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering at University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Wijanarko W, Khanmohammadi H, Espallargas N. Effect of Steel Hardness and Composition on the Boundary Lubricating Behavior of Low-Viscosity PAO Formulated with Dodecanoic Acid and Ionic Liquid Additives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2777-2792. [PMID: 35195425 PMCID: PMC8908759 DOI: 10.1021/acs.langmuir.1c02848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Two ionic liquids, tributylmethylphosphonium dimethylphosphate (PP) and 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMP), as lubricant additives in polyalphaolefin (PAO8) were studied under boundary lubricating conditions on two types of steel (AISI 52100 bearing steel and AISI 316L stainless steel). The tribological behavior of these ILs was compared with dodecanoic acid, a well-known organic friction modifier. This study employs a ball-on-disk tribometer with an alumina ball as a counterpart. A range of advanced analytical tools are used to analyze the tribofilms, including scanning electron microscopy equipped with a focused ion beam, scanning transmission electron microscopy equipped with X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A quartz crystal microbalance with dissipation was used to study the surface adsorption of the additives on iron- and stainless steel-coated sensors to reveal the adsorption kinetics, adsorbed layer mass, and bonding strength of the adsorbed layer on the metallic surfaces. The most important factors controlling friction and wear are the thickness and viscoelastic properties of the adsorbed layer, the thickness and chemical composition of the tribofilm, and the hardness and chemical composition of steel. Among all additives studied, BMP on stainless steel gives a strongly adsorbed layer and a durable tribofilm, resulting in low friction and excellent antiwear properties.
Collapse
Affiliation(s)
- Wahyu Wijanarko
- Norwegian
Tribology Center, Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
- Department
of Mechanical Engineering, Sepuluh Nopember
Institute of Technology (ITS), Surabaya 60111, Indonesia
| | - Hamid Khanmohammadi
- Norwegian
Tribology Center, Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Nuria Espallargas
- Norwegian
Tribology Center, Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
16
|
Park I, Hausen F, Baltruschat H. Friction on I‐modified Au(111) in a Tetraglyme Electrolyte. ChemElectroChem 2022. [DOI: 10.1002/celc.202101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Inhee Park
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Institute of Physical and Theoretical Chemistry 53117 Bonn GERMANY
| | - Florian Hausen
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Physical Chemistry 52425 Jülich GERMANY
| | - Helmut Baltruschat
- University of Bonn Inst. f. Physikalische u.Theoret. Chemie R�merstra�e 164-Abteilung Elektrochemie- 53117 Bonn GERMANY
| |
Collapse
|
17
|
Li H, Zhang Y, Jones S, Segalman R, Warr GG, Atkin R. Interfacial nanostructure and friction of a polymeric ionic liquid-ionic liquid mixture as a function of potential at Au(111) electrode interface. J Colloid Interface Sci 2022; 606:1170-1178. [PMID: 34487936 DOI: 10.1016/j.jcis.2021.08.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS The polymeric cations of polymeric ionic liquids (PILs) can adsorb from the bulk of a conventional ionic liquid (IL) to the Au(111) electrode interface and form a boundary layer. The interfacial properties of the PIL boundary layer may be tuned by potential. EXPERIMENTS Atomic force microscopy has been used to investigate the changes of surface morphology, normal and lateral forces of a 5 wt% PIL/IL mixture as a function of potential. FINDINGS Polymeric cations adsorb strongly to Au(111) and form a polymeric cation-enriched boundary layer at -1.0 V. This boundary layer binds less strongly to the surface at open circuit potential (OCP) and weakly at + 1.0 V. The polymeric cation chains are compressed at -1.0 V and OCP owing to electrical attractions with the electrode surface, but fully stretched at + 1.0 V due to electrical repulsions. The lateral forces of the 5 wt% PIL/IL mixture at -1.0 V and OCP are higher than at + 1.0 V as the polymeric cation-enriched boundary layer is rougher and has stronger interactions with the AFM probe; at + 1.0 V, the lateral force is low and comparable to pure conventional IL due to displacement of polymeric cations with conventional anions in the boundary layer.
Collapse
Affiliation(s)
- Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| | - Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Seamus Jones
- Department of Chemical Engineering and Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Rachel Segalman
- Department of Chemical Engineering and Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
18
|
Li Z, Morales-Collazo O, Chrostowski R, Brennecke JF, Mangolini F. In situ nanoscale evaluation of pressure-induced changes in structural morphology of phosphonium phosphate ionic liquid at single-asperity contacts. RSC Adv 2021; 12:413-419. [PMID: 35424509 PMCID: PMC8978665 DOI: 10.1039/d1ra08026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, we perform atomic force microscopy (AFM) experiments to evaluate in situ the dependence of the structural morphology of trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P6,6,6,14][DEHP]) ionic liquid (IL) on applied pressure. The experimental results obtained upon sliding a diamond-like-carbon-coated silicon AFM tip on mechanically polished steel at an applied pressure up to 5.5 ± 0.3 GPa indicate a structural transition of confined [P6,6,6,14][DEHP] molecules. This pressure-induced morphological change of [P6,6,6,14][DEHP] IL leads to the generation of a lubricious, solid-like interfacial layer, whose growth rate increases with applied pressure and temperature. The structural variation of [P6,6,6,14][DEHP] IL is proposed to derive from the well-ordered layering of the polar groups of ions separated by the apolar tails. These results not only shed new light on the structural organization of phosphonium-based ILs under elevated pressure, but also provide novel insights into the normal pressure-dependent lubrication mechanisms of ILs in general.
Collapse
Affiliation(s)
- Zixuan Li
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA
- Materials Science and Engineering Program, The University of Texas at Austin Austin TX 78712 USA
| | - Oscar Morales-Collazo
- McKetta Department of Chemical Engineering, The University of Texas at Austin Austin TX 78712 USA
| | - Robert Chrostowski
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA
- Materials Science and Engineering Program, The University of Texas at Austin Austin TX 78712 USA
| | - Joan F Brennecke
- McKetta Department of Chemical Engineering, The University of Texas at Austin Austin TX 78712 USA
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
19
|
Chatterjee R, Bhukta S, Dandela R. Ionic
liquid‐assisted
synthesis of
2‐amino‐3‐cyano‐4
H
‐chromenes: A sustainable overview. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rana Chatterjee
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology‐Indian Oil Odisha Campus Bhubaneswar India
| | - Swadhapriya Bhukta
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology‐Indian Oil Odisha Campus Bhubaneswar India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology‐Indian Oil Odisha Campus Bhubaneswar India
| |
Collapse
|
20
|
The Structure of the Electric Double Layer of the Protic Ionic Liquid [Dema][TfO] Analyzed by Atomic Force Spectroscopy. Int J Mol Sci 2021; 22:ijms222312653. [PMID: 34884462 PMCID: PMC8658030 DOI: 10.3390/ijms222312653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/05/2022] Open
Abstract
Protic ionic liquids are promising electrolytes for fuel cell applications. They would allow for an increase in operation temperatures to more than 100 °C, facilitating water and heat management and, thus, increasing overall efficiency. As ionic liquids consist of bulky charged molecules, the structure of the electric double layer significantly differs from that of aqueous electrolytes. In order to elucidate the nanoscale structure of the electrolyte–electrode interface, we employ atomic force spectroscopy, in conjunction with theoretical modeling using molecular dynamics. Investigations of the low-acidic protic ionic liquid diethylmethylammonium triflate, in contact with a platinum (100) single crystal, reveal a layered structure consisting of alternating anion and cation layers at the interface, as already described for aprotic ionic liquids. The structured double layer depends on the applied electrode potential and extends several nanometers into the liquid, whereby the stiffness decreases with increasing distance from the interface. The presence of water distorts the layering, which, in turn, significantly changes the system’s electrochemical performance. Our results indicate that for low-acidic ionic liquids, a careful adjustment of the water content is needed in order to enhance the proton transport to and from the catalytic electrode.
Collapse
|
21
|
Yan J, Mangolini F. Engineering encapsulated ionic liquids for next-generation applications. RSC Adv 2021; 11:36273-36288. [PMID: 35492767 PMCID: PMC9043619 DOI: 10.1039/d1ra05034f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Ionic liquids (ILs) have attracted considerable attention in several sectors (from energy storage to catalysis, from drug delivery to separation media) owing to their attractive properties, such as high thermal stability, wide electrochemical window, and high ionic conductivity. However, their high viscosity and surface tension compared to conventional organic solvents can lead to unfavorable transport properties. To circumvent undesired kinetics effects limiting mass transfer, the discretization of ILs into small droplets has been proposed as a method to increase the effective surface area and the rates of mass transfer. In the present review paper, we summarize the different methods developed so far for encapsulating ILs in organic or inorganic shells and highlight characteristic features of each approach, while outlining potential applications. The remarkable tunability of ILs, which derives from the high number of anions and cations currently available as well as their permutations, combines with the possibility of tailoring the composition, size, dispersity, and properties (e.g., mechanical, transport) of the shell to provide a toolbox for rationally designing encapsulated ILs for next-generation applications, including carbon capture, energy storage devices, waste handling, and microreactors. We conclude this review with an outlook on potential applications that could benefit from the possibility of encapsulating ILs in organic and inorganic shells. Encapsulated ionic liquids (ILs) are candidate materials for several applications owing to the attractive properties of ILs combined with the enhanced mass transfer rate obtained through the discretization of ILs in small capsules.![]()
Collapse
Affiliation(s)
- Jieming Yan
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA.,Materials Science and Engineering Program, The University of Texas at Austin Austin TX 78712 USA
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA.,Walker Department of Mechanical Engineering, The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
22
|
Di Lecce S, Kornyshev AA, Urbakh M, Bresme F. Structural effects in nanotribology of nanoscale films of ionic liquids confined between metallic surfaces. Phys Chem Chem Phys 2021; 23:22174-22183. [PMID: 34581331 DOI: 10.1039/d1cp03345j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room Temperature Ionic Liquids (RTILs) attract significant interest in nanotribology. However, their microscopic lubrication mechanism is still under debate. Here, using non-equilibrium molecular dynamics simulations, we investigate the lubrication performance of ultra-thin (<2 nm) films of [C2MIM]+ [NTf2]- confined between plane-parallel neutral surfaces of Au(111) or Au(100). We find that films consisting of tri-layers or bilayers, form ordered structures with a flat orientation of the imidazolium rings with respect to the gold surface plane. Tri-layers are unstable against loads >0.5 GPa, while bi-layers sustain pressures in the 1-2 GPa range. The compression of these films results in monolayers that can sustain loads of several GPa without significant loss in their lubrication performance. Surprisingly, in such ultra-thin films the imidazolium rings show higher orientational in-plane disorder, with and the rings adopting a tilted orientation with respect to the gold surface. The friction force and friction coefficient of the monolayers depends strongly on the structure of the gold plates, with the friction coefficient being four times higher for monolayers confined between Au(100) surfaces than for more compact Au(111) surfaces. We show that the general behaviour described here is independent of whether the metallic surfaces are modelled as polarizable or non-polarizable surfaces and speculate on the nature of this unexpected conclusion.
Collapse
Affiliation(s)
- Silvia Di Lecce
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College, London, W12 0BZ London, UK.
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College, London, W12 0BZ London, UK.
| | - Michael Urbakh
- School of Chemistry and The Sackler Center for Computational Molecular and Materials, Science, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College, London, W12 0BZ London, UK.
| |
Collapse
|
23
|
Dean JM, Coles SW, Saunders WR, McCluskey AR, Wolf MJ, Walker AB, Morgan BJ. Overscreening and Underscreening in Solid-Electrolyte Grain Boundary Space-Charge Layers. PHYSICAL REVIEW LETTERS 2021; 127:135502. [PMID: 34623837 DOI: 10.1103/physrevlett.127.135502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Polycrystalline solids can exhibit material properties that differ significantly from those of equivalent single-crystal samples, in part, because of a spontaneous redistribution of mobile point defects into so-called space-charge regions adjacent to grain boundaries. The general analytical form of these space-charge regions is known only in the dilute limit, where defect-defect correlations can be neglected. Using kinetic Monte Carlo simulations of a three-dimensional Coulomb lattice gas, we show that grain boundary space-charge regions in nondilute solid electrolytes exhibit overscreening-damped oscillatory space-charge profiles-and underscreening-decay lengths that are longer than the corresponding Debye length and that increase with increasing defect-defect interaction strength. Overscreening and underscreening are known phenomena in concentrated liquid electrolytes, and the observation of functionally analogous behavior in solid electrolyte space-charge regions suggests that the same underlying physics drives behavior in both classes of systems. We therefore expect theoretical approaches developed to study nondilute liquid electrolytes to be equally applicable to future studies of solid electrolytes.
Collapse
Affiliation(s)
- Jacob M Dean
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Samuel W Coles
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - William R Saunders
- Department of Physics, University of Bath, Claverton Down BA2 7AY, United Kingdom
| | - Andrew R McCluskey
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
- European Spallation Source ERIC, P.O. Box 176, SE-221 00, Lund, Sweden
| | - Matthew J Wolf
- Department of Physics, University of Bath, Claverton Down BA2 7AY, United Kingdom
| | - Alison B Walker
- Department of Physics, University of Bath, Claverton Down BA2 7AY, United Kingdom
| | - Benjamin J Morgan
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| |
Collapse
|
24
|
Burgess D, Li N, Rosik N, Fryer PJ, McRobbie I, Zhang H, Zhang ZJ. Surface-Grafted Poly(ionic liquid) that Lubricates in Both Non-polar and Polar Solvents. ACS Macro Lett 2021; 10:907-913. [PMID: 34306821 PMCID: PMC8296680 DOI: 10.1021/acsmacrolett.1c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
![]()
We show that a surface-grafted
polymer brush, 1-n-butyl-3-vinyl imidazolium bromide-based
poly(ionic liquids), is
able to reduce the interfacial friction by up to 66% and 42% in dodecane
and water, respectively. AFM-based force spectroscopy reveals that
the polymer brush adopts distinctively different interfacial conformations:
swollen in water but collapsed in dodecane. Minimal surface adhesion
was observed with both polymer conformations, which can be attributed
to steric repulsion as the result of a swollen conformation in water
or surface solvation when the hydrophobic fraction of the polymer
was exposed to the dodecane. The work brings additional insight on
the polymer lubrication mechanism, which expands the possible design
of the polymer architecture for interfacial lubrication and modification.
Collapse
Affiliation(s)
- David Burgess
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Na Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, People’s Republic of China
| | - Nicole Rosik
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Peter J. Fryer
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Ian McRobbie
- Innospec Inc., Innospec Manufacturing Park, Oil Sites Road, Ellesmere Port, Cheshire, CH65 4EY, United Kingdom
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, People’s Republic of China
| | - Zhenyu J. Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
25
|
Elbourne A, Besford QA, Meftahi N, Crawford RJ, Daeneke T, Greaves TL, McConville CF, Bryant G, Bryant SJ, Christofferson AJ. The Impact of Water on the Lateral Nanostructure of a Deep Eutectic Solvent–Solid Interface. Aust J Chem 2021. [DOI: 10.1071/ch21078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deep eutectic solvents (DESs) are tuneable solvents with attractive properties for numerous applications. Their structure–property relationships are still under investigation, especially at the solid–liquid interface. Moreover, the influence of water on interfacial nanostructure must be understood for process optimization. Here, we employ a combination of atomic force microscopy and molecular dynamics simulations to determine the lateral and surface-normal nanostructure of the DES choline chloride:glycerol at the mica interface with different concentrations of water. For the neat DES system, the lateral nanostructure is driven by polar interactions. The surface adsorbed layer forms a distinct rhomboidal symmetry, with a repeat spacing of ~0.9 nm, comprising all DES species. The adsorbed nanostructure remains largely unchanged in 75 mol-% DES compared with pure DES, but at 50 mol-%, the structure is broken and there is a compromise between the native DES and pure water structure. By 25 mol-% DES, the water species dominates the adsorbed liquid layer, leaving very few DES species aggregates at the interface. In contrast, the near-surface surface-normal nanostructure, over a depth of ~3 nm from the surface, remains relatively unchanged down to 25 mol-% DES where the liquid arrangement changed. These results demonstrate not only the significant influence that water has on liquid nanostructure, but also show that there is an asymmetric effect whereby water disrupts the nanostructure to a greater degree closer to the surface. This work provides insight into the complex interactions between DES and water and may enhance their optimization for surface-based applications.
Collapse
|
26
|
|
27
|
A Presentation of Ionic Liquids as Lubricants: Some Critical Comments. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ionic liquids (ILs) are liquid materials at room temperature with an ionic intrinsic nature. The electrostatic interactions therefore play a pivotal role in dictating their inner structure, which is then expected to be far from the traditional pattern of classical simple liquids. Therefore, the strength of such interactions and their long-range effects are responsible for the ionic liquid high viscosity, a fact that itself suggests their possible use as lubricants. More interestingly, the possibility to establish a wide scenario of possible interactions with solid surfaces constitutes a specific added value in this use. In this framework, the ionic liquid complex molecular structure and the huge variety of possible interactions cause a complex aggregation pattern which can depend on the presence of the solid surface itself. Although there is plenty of literature focusing on the lubricant properties of ionic liquids and their applications, the aim of this contribution is, instead, to furnish to the reader a panoramic view of this exciting problematic, commenting on interesting and speculative aspects which are sometimes neglected in standard works and trying to furnish an enriched vision of the topic. The present work constitutes an easy-to-read critical point of view which tries to interact with the imagination of readers, hopefully leading to the discovery of novel aspects and interconnections and ultimately stimulating new ideas and research.
Collapse
|
28
|
Perez-Martinez CS, Groves TS, Perkin S. Controlling adhesion using AC electric fields across fluid films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:31LT02. [PMID: 34020441 DOI: 10.1088/1361-648x/ac03d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate reversible and switchable actuation using AC electric fields to bring two surfaces separated by a thin film of ionic fluid in and out of adhesive contact. Using a surface force balance we apply electric fields normal to a crossed-cylinder contact and measure directly the adhesive force and surface separation with sub-molecular resolution. Taking advantage of the oscillatory structural force acting between the surfaces across the fluid, which we show to be unaffected by the AC field, we pick between the distinct (quantized) adhesive states through precise tuning of the field. This proof-of-concept indicates exquisite control of surface interactions using an external field.
Collapse
Affiliation(s)
- Carla S Perez-Martinez
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Timothy S Groves
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
29
|
Gao Q, Tsai W, Balke N. In situ and operando force‐based atomic force microscopy for probing local functionality in energy storage materials. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qiang Gao
- Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin USA
| | - Wan‐Yu Tsai
- Chemical Science Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Nina Balke
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
30
|
Han M, Zhang R, Gewirth AA, Espinosa-Marzal RM. Nanoheterogeneity of LiTFSI Solutions Transitions Close to a Surface and with Concentration. NANO LETTERS 2021; 21:2304-2309. [PMID: 33616411 DOI: 10.1021/acs.nanolett.1c00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water-in-salt (WIS) electrolytes composed of 21 m LiTFSI have recently emerged as a safe and environmentally friendly alternative to conventional organic electrolytes in Li-ion batteries. Several studies have emphasized the relation between the high conductivity of WIS electrolytes and their nanoscale structure. Combining force measurements with a surface forces apparatus and atomic force microscopy, this study describes the nanoheterogeneity of LiTFSI solutions as a function of concentration and distance from a negatively charged (mica) surface. We report various nanostructures coexisting in the WIS electrolyte, whose size increases with concentration and is influenced by the proximity of the mica surface. Two key concentration thresholds are identified, beyond which a transition of behavior is observed. The careful scrutinization on the concentration-dependent nanostructures lays groundwork for designing novel electrolytes in future energy storage devices.
Collapse
Affiliation(s)
- Mengwei Han
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ruixian Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Groves TS, Perez-Martinez CS, Lhermerout R, Perkin S. Surface Forces and Structure in a Water-in-Salt Electrolyte. J Phys Chem Lett 2021; 12:1702-1707. [PMID: 33560858 DOI: 10.1021/acs.jpclett.0c03718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water-in-salt electrolytes are a fascinating new class of highly concentrated aqueous solutions with wide electrochemical stability windows that make them viable as aqueous battery electrolytes. However, the high ion concentration of water-in-salt electrolytes means that these systems are poorly understood when compared to more dilute electrolyte solutions. Here, we present direct surface force measurements across thin films of a water-in-salt electrolyte at several concentrations. We find that the electrolyte adopts a layered structure at charged interfaces composed of a nanostructure of a hydrated cation and nonaqueous anion-rich domains. These observations will aid in the interpretation of capacitance and double-layer behavior of water-in-salt electrolytes with consequences for their use in energy storage devices.
Collapse
Affiliation(s)
- Timothy S Groves
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 2JD, U.K
| | | | - Romain Lhermerout
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 2JD, U.K
| |
Collapse
|
32
|
Elbourne A, Meftahi N, Greaves TL, McConville CF, Bryant G, Bryant SJ, Christofferson AJ. Nanostructure of a deep eutectic solvent at solid interfaces. J Colloid Interface Sci 2021; 591:38-51. [PMID: 33592524 DOI: 10.1016/j.jcis.2021.01.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Deep eutectic solvents (DESs) are an attractive class of tunable solvents. However, their uptake for relevant applications has been limited due to a lack of detailed information on their structure-property relationships, both in the bulk and at interfaces. The lateral nanostructure of the DES-solid interfaces is likely to be more complex than previously reported and requires detailed, high-resolution investigation. EXPERIMENTS We employ a combination of high-resolution amplitude-modulated atomic force microscopy and molecular dynamics simulations to elucidate the lateral nanostructure of a DES at the solid-liquid interface. Specifically, the lateral and near-surface nanostructure of the DES choline chloride:glycerol is probed at the mica and highly-ordered pyrolytic graphite interfaces. FINDINGS The lateral nanostructure of the DES-solid interface is heterogeneous and well-ordered in both systems. At the mica interface, the DES is strongly ordered via polar interactions. The adsorbed layer has a distinct rhomboidal symmetry with a repeat spacing of ~0.9 nm comprising all DES species. At the highly ordered pyrolytic graphite interface, the adsorbed layer appears distinctly different, forming an apolor-driven row-like structure with a repeat spacing of ~0.6 nm, which largely excludes the chloride ion. The interfacial nanostructure results from a delicate balance of substrate templating, liquid-liquid interactions, species surface affinity, and packing constraints of cations, anions, and molecular components within the DES. For both systems, distinct near-surface nanostructural layering is observed, which becomes more pronounced close to the substrate. The surface nanostructures elucidated here significantly expand our understanding of DES interfacial behavior and will enhance the optimization of DES systems for surface-based applications.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Tamar L Greaves
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Christopher F McConville
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| | | |
Collapse
|
33
|
Nyberg E, Schneidhofer C, Pisarova L, Dörr N, Minami I. Ionic Liquids as Performance Ingredients in Space Lubricants. Molecules 2021; 26:molecules26041013. [PMID: 33672952 PMCID: PMC7918859 DOI: 10.3390/molecules26041013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Abstract
Low vapor pressure and several other outstanding properties make room-temperature ionic liquids attractive candidates as lubricants for machine elements in space applications. Ensuring sufficient liquid lubricant supply under space conditions is challenging, and consequently, such tribological systems may operate in boundary lubrication conditions. Under such circumstances, effective lubrication requires the formation of adsorbed or chemically reacted boundary films to prevent excessive friction and wear. In this work, we evaluated hydrocarbon-mimicking ionic liquids, designated P-SiSO, as performance ingredients in multiply alkylated cyclopentane (MAC). The tribological properties under vacuum or various atmospheres (air, nitrogen, carbon dioxide) were measured and analyzed. Thermal vacuum outgassing and electric conductivity were meas- ured to evaluate ‘MAC & P-SiSO’ compatibility to the space environment, including the secondary effects of radiation. Heritage space lubricants—MAC and perfluoroalkyl polyethers (PFPE)—were employed as references. The results corroborate the beneficial lubricating performance of incorporating P-SiSO in MAC, under vacuum as well as under various atmospheres, and demonstrates the feasibility for use as a multifunctional additive in hydrocarbon base oils, for use in space exploration applications.
Collapse
Affiliation(s)
- Erik Nyberg
- Department of Engineering Sciences and Mathematics, Division of Machine Elements, Luleå University of Technology, SE-97187 Luleå, Sweden;
- Correspondence:
| | | | - Lucia Pisarova
- AC2T Research GmbH, AT-2700 Wiener Neustadt, Austria; (C.S.); (L.P.); (N.D.)
| | - Nicole Dörr
- AC2T Research GmbH, AT-2700 Wiener Neustadt, Austria; (C.S.); (L.P.); (N.D.)
| | - Ichiro Minami
- Department of Engineering Sciences and Mathematics, Division of Machine Elements, Luleå University of Technology, SE-97187 Luleå, Sweden;
| |
Collapse
|
34
|
Rudnev AV. Electrodeposition of lanthanides from ionic liquids and deep eutectic solvents. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lanthanides belong to the most important raw materials and are highly demanded in high-tech industry. Low-temperature electrochemical deposition of lanthanides and lanthanide-based alloys for recycling and obtaining functional materials can provide a real alternative to the currently used high-temperature electrolysis of molten salts. The review summarizes the advancements in the field of electrodeposition of lanthanides from organic ionic systems, such as ionic liquids and deep eutectic solvents. The growing interest in these ionic systems is due to their excellent physicochemical properties, in particular non-volatility, thermal and electrochemical stability. The review also discusses further prospects and potential of the electrochemical approach for obtaining lanthanide-containing advanced materials.
The bibliography includes 219 references.
Collapse
|
35
|
Di Lecce S, Kornyshev AA, Urbakh M, Bresme F. Lateral Ordering in Nanoscale Ionic Liquid Films between Charged Surfaces Enhances Lubricity. ACS NANO 2020; 14:13256-13267. [PMID: 33054180 DOI: 10.1021/acsnano.0c05043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electric fields modify the structural and dynamical properties of room temperature ionic liquids (RTILs) providing a physical principle to develop tunable lubrication devices. Using nonequilibrium molecular dynamics atomistic simulations, we investigate the impact of the composition of imidazolium RTILs on the in-plane ordering of ionic layers in nanogaps. We consider imidazolium cations and widely used anions featuring different molecular structures, spherical ([BF4]-), elongated surfactant-like ([C2SO4]-), and elongated with a more delocalized charge ([NTf2]-). The interplay of surface charge, surface polarity, and anion geometry enables the formation of crystal-like structures in [BF4]- and [NTf2]- nanofilms, while [C2SO4]- nanofilms form disordered layers. We study how the ordering of the ionic liquid lubricant in the nanogap affects friction. Counterintuitively, we find that the friction force decreases with the ability of the RTILs to form crystal-like structures in the confined region. The crystallization can be activated or inhibited by changing the polarity of the surface, providing a mechanism to tune friction with electric fields.
Collapse
Affiliation(s)
- Silvia Di Lecce
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, U.K
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, U.K
| | - Michael Urbakh
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, U.K
| |
Collapse
|
36
|
Hallett JE, Hayler HJ, Perkin S. Nanolubrication in deep eutectic solvents. Phys Chem Chem Phys 2020; 22:20253-20264. [PMID: 32966447 DOI: 10.1039/d0cp03787g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report surface force balance measurements of the normal surface force and friction between two mica surfaces separated by a nanofilm of the deep eutectic solvent ethaline. Ethaline, a 1 : 2 mixture of choline chloride and ethylene glycol, was studied under dry conditions, under ambient conditions and with added water, revealing surface structural layers and quantised frictional response highly sensitive to water content, including regions of super-lubric behaviour under dry conditions and with added water. We also report exceptionally long-ranged electrostatic repulsion far in excess of that predicted by Debye-Hückel theory for a system with such high electrolyte content, consistent with previously reported observations of "underscreening" in ionic liquid and concentrated aqueous electrolyte systems [Smith et al., J. Phys. Chem. Lett., 2016, 7(12), 2157].
Collapse
Affiliation(s)
- James E Hallett
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Hannah J Hayler
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
37
|
Polymeric imidazolium ionic liquid-tagged manganese Schiff base complex: an efficient catalyst for the Biginelli reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04230-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Mashhoori M, Sandaroos R, Zeraatkar Moghaddam A. Highly Proficient Poly Ionic Liquid Functionalized Mn(III) Schiff‐Base Catalyst for Green Synthesis of Chromene Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202001518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Reza Sandaroos
- Department of Chemistry, Faculty of ScienceUniversity of Birjand Birjand Iran
| | | |
Collapse
|
39
|
Funari R, Matsumoto A, de Bruyn JR, Shen AQ. Rheology of the Electric Double Layer in Electrolyte Solutions. Anal Chem 2020; 92:8244-8253. [DOI: 10.1021/acs.analchem.0c00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Riccardo Funari
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Atsushi Matsumoto
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - John R. de Bruyn
- Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
40
|
Wang Y, Li L. Uncovering the Underlying Mechanisms Governing the Solidlike Layering of Ionic Liquids (ILs) on Mica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2743-2756. [PMID: 32101445 DOI: 10.1021/acs.langmuir.9b03865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Significant progress has been made in understanding the IL-solid interface in the past three decades, and a key finding is that ILs can form solidlike layers at the interface. It has been recognized that the electrostatic forces at the solid-IL interface and self-assembly of ILs are key enablers of the IL layering. However, regarding the layering structure of ILs, research from different laboratories is not consistent; i.e., the number of solidlike layers could range from 0 to ∼60, indicating the complexity of the underlying mechanisms and/or the existence of overlooked key parameters. In the current review, we will discuss the underlying mechanisms and key parameters governing the layering of ILs on mica, the most studied model solid. First, we will present the experimental findings from various laboratories, both consistent and contradictory ones, and summarize the current understanding of the governing mechanisms. Then, we will discuss the possible key parameters, including the structure of ILs, surface modification and contamination of mica, and cosolvent impacting the solidlike layering of ILs. Finally, we will discuss future research directions in uncovering the underlying mechanisms.
Collapse
Affiliation(s)
- Yali Wang
- Department of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi, P.R. China 719000
- Department of Chemical & Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Lei Li
- Department of Chemical & Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
41
|
Fatty acid-derived ionic liquids as renewable lubricant additives: Effect of chain length and unsaturation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112322] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Park S, McDaniel JG. Interference of electrical double layers: Confinement effects on structure, dynamics, and screening of ionic liquids. J Chem Phys 2020; 152:074709. [DOI: 10.1063/1.5144260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Suehyun Park
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Jesse G. McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
43
|
Lhermerout R, Perkin S. A new methodology for a detailed investigation of quantized friction in ionic liquids. Phys Chem Chem Phys 2020; 22:455-466. [PMID: 31781711 DOI: 10.1039/c9cp05422g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When confined at the nanoscale between smooth surfaces, an ionic liquid forms a structured film responding to shear in a quantized way, i.e., with a friction coefficient indexed by the number of layers in the gap. So far, only a few experiments have been performed to study this phenomenon, because of the delicate nature of the measurements. We propose a new methodology to measure friction with a surface force balance, based on the simultaneous application of normal and lateral motions to the surfaces, allowing for a more precise, comprehensive and rapid determination of the friction response. We report on proof-of-concept experiments with an ionic liquid confined between mica surfaces in dry or wet conditions, showing the phenomenon of quantized friction with an unprecedented resolution. First, we show that the variation of the kinetic friction force with the applied load for a given layer is not linear, but can be quantitatively described by two additive contributions that are respectively proportional to the load and to the contact area. Then, we find that humidity improves the resistance of the layers to be squeezed-out and extends the range of loads in which the liquid behaves as a superlubricant, interpreted by an enhanced dissolution of the potassium ions on the mica leading to a larger surface charge. There, we note a liquid-like friction behavior, and observe in certain conditions a clear variation of the kinetic friction force over two decades of shearing velocities, that does not obey a simple Arrhenius dynamics.
Collapse
Affiliation(s)
- Romain Lhermerout
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.
| | | |
Collapse
|
44
|
Ntim S, Sulpizi M. Role of image charges in ionic liquid confined between metallic interfaces. Phys Chem Chem Phys 2020; 22:10786-10791. [DOI: 10.1039/d0cp00409j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atomistic molecular dynamics simulations unveil a minor role of metal polarisation at ionic liquid/gold interface and provide a novel description of the interface where long range effects are seen in dynamical properties up to 10 nm from surface.
Collapse
Affiliation(s)
- Samuel Ntim
- Institut für Physik
- Johannes Gutenberg Universität
- 55128-Mainz
- Germany
| | | |
Collapse
|
45
|
Cai M, Yu Q, Liu W, Zhou F. Ionic liquid lubricants: when chemistry meets tribology. Chem Soc Rev 2020; 49:7753-7818. [PMID: 33135717 DOI: 10.1039/d0cs00126k] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ionic liquids (ILs) have emerged as potential lubricants in 2001. Subsequently, there has been tremendous research interest in ILs from the tribology society since their discovery as novel synthetic lubricating materials. This also expands the research area of ILs. Consistent with the requirement of searching for alternative and eco-friendly lubricants, IL lubrication will experience further development in the coming years. Herein, we review the research progress of IL lubricants. Generally, the tribological properties of IL lubricants as lubricating oils, additives and thin films are reviewed in detail and their lubrication mechanisms discussed. Considering their actual applications, the flexible design of ILs allows the synthesis of task-specific and tribologically interesting ILs to overcome the drawbacks of the application of ILs, such as high cost, poor compatibility with traditional oils, thermal oxidization and corrosion. Nowadays, increasing research is focused on halogen-free ILs, green ILs, synthesis-free ILs and functional ILs. In addition to their macroscopic properties, the nanoscopic performance of ILs on a small scale and in small gaps is also important in revealing their tribological mechanisms. It has been shown that when sliding surfaces are compressed, in comparison with a less polar molecular lubricant, ion pairs resist "squeeze out" due to the strong interaction between the ions of ILs and oppositely charged surfaces, resulting in a film that remains in place at higher shear forces. Thus, the lubricity of ILs can be externally controlled in situ by applying electric potentials. In summary, ILs demonstrate sufficient design versatility as a type of model lubricant for meeting the requirements of mechanical engineering. Accordingly, their perspectives and future development are discussed in this review.
Collapse
Affiliation(s)
- Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. and State Key Laboratory of Solidification Processing, College of Materials Science and Technology, Northwestern Polytechnical University, 127 YouyiXi Road, Xi an 710072, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
46
|
Hjalmarsson N, Bergendal E, Wang YL, Munavirov B, Wallinder D, Glavatskih S, Aastrup T, Atkin R, Furó I, Rutland MW. Electro-Responsive Surface Composition and Kinetics of an Ionic Liquid in a Polar Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15692-15700. [PMID: 31581771 DOI: 10.1021/acs.langmuir.9b02119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The quartz crystal microbalance (QCM) has been used to study how the interfacial layer of an ionic liquid dissolved in a polar oil at low weight percentages responds to changes in applied potential. The changes in surface composition at the QCM gold surface depend on both the magnitude and sign of the applied potential. The time-resolved response indicates that the relaxation kinetics are limited by the diffusion of ions in the interfacial region and not in the bulk, since there is no concentration dependence. The measured mass changes cannot be explained only in terms of simple ion exchange; the relative molecular volumes of the ions and the density changes in response to ion exclusion must be considered. The relaxation behavior of the potential between the electrodes upon disconnecting the applied potential is more complex than that observed for pure ionic liquids, but a measure of the surface charge can be extracted from the exponential decay when the rapid initial potential drop is accounted for. The adsorbed film at the gold surface consists predominantly of ionic liquid despite the low concentration, which is unsurprising given the surtactant-like structures of (some of) the ionic liquid ions. Changes in response to potential correspond to changes in the relative numbers of cations and anions, rather than a change in the oil composition. No evidence for an electric field induced change in viscosity is observed. This work shows conclusively that electric potentials can be used to control the surface composition, even in an oil-based system, and paves the way for other ion solvent studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergei Glavatskih
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems , Ghent University , B-9000 , Ghent , Belgium
| | | | - Rob Atkin
- School of Molecular Sciences , University of Western Australia , 6009 Perth , Australia
| | | | - Mark W Rutland
- Surfaces, Processes and Formulation , RISE Research Institutes of Sweden , SE-50115 Stockholm , Sweden
| |
Collapse
|
47
|
Antunes M, Campinhas AS, de Sá Freire M, Caetano F, Diogo HP, Colaço R, Branco LC, Saramago B. Deep eutectic solvents (DES) based on sulfur as alternative lubricants for silicon surfaces. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Pivnic K, Bresme F, Kornyshev AA, Urbakh M. Structural Forces in Mixtures of Ionic Liquids with Organic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15410-15420. [PMID: 31657581 DOI: 10.1021/acs.langmuir.9b02121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using molecular dynamics simulations, we study the impact of electrode charging and addition of solvent (acetonitrile, ACN) on structural forces of the BMIM PF6 ionic liquid (IL) confined by surfaces at nanometer separations. We establish relationships between the structural forces and the microscopic structure of the confined liquid. Depending on the structural arrangements of cations and anions across the nanofilm, the load-induced squeeze-out of liquid layers occurs via one-layer or bilayer steps. The cations confined between charged plates orient with their aliphatic chain perpendicular to the surface planes and link two adjacent IL layers. These structures facilitate the squeeze-out of single layers. For both pure IL and IL-ACN mixtures, we observe a strong dependence of nanofilm structure on the surface charge density, which affects the simulated pressure-displacement curves. Addition of solvent to the IL modifies the layering in the confined film. At high electrode charges and high dilution of IL (below 10% molar fraction), the layered structure of the nanofilm is less well defined. We predict a change in the squeeze-out mechanism under pressure, from a discontinuous squeeze-out (for high IL concentrations) to an almost continuous one (for low IL concentrations). Importantly, our simulations show that charged electrodes are coated with ions even at low IL concentrations. These ion-rich layers adjacent to the charged plate surfaces are not squeezed out even under very high normal pressures of ∼5 GPa. Hence, we demonstrate the high performance of IL-solvent mixtures to protect surfaces from wear and to provide lubrication at high loads.
Collapse
Affiliation(s)
- Karina Pivnic
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Fernando Bresme
- Department of Chemistry , Molecular Sciences Research Hub, Imperial College London , W12 0BZ 2AZ London , United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Alexei A Kornyshev
- Department of Chemistry , Molecular Sciences Research Hub, Imperial College London , W12 0BZ 2AZ London , United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Michael Urbakh
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science , Tel Aviv University , Tel Aviv 6997801 , Israel
| |
Collapse
|
49
|
Vučemilović-Alagić N, Banhatti RD, Stepić R, Wick CR, Berger D, Gaimann MU, Baer A, Harting J, Smith DM, Smith AS. Insights from molecular dynamics simulations on structural organization and diffusive dynamics of an ionic liquid at solid and vacuum interfaces. J Colloid Interface Sci 2019; 553:350-363. [DOI: 10.1016/j.jcis.2019.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
|
50
|
Ouyang W, Ramakrishna SN, Rossi A, Urbakh M, Spencer ND, Arcifa A. Load and Velocity Dependence of Friction Mediated by Dynamics of Interfacial Contacts. PHYSICAL REVIEW LETTERS 2019; 123:116102. [PMID: 31573261 DOI: 10.1103/physrevlett.123.116102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Studying the frictional properties of interfaces with dynamic chemical bonds advances understanding of the mechanism underlying rate and state laws, and offers new pathways for the rational control of frictional response. In this work, we revisit the load dependence of interfacial chemical-bond-induced (ICBI) friction experimentally and find that the velocity dependence of friction can be reversed by changing the normal load. We propose a theoretical model, whose analytical solution allows us to interpret the experimental data on timescales and length scales that are relevant to experimental conditions. Our work provides a promising avenue for exploring the dynamics of ICBI friction.
Collapse
Affiliation(s)
- Wengen Ouyang
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5,CH-8093 Zurich, Switzerland
| | - Antonella Rossi
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5,CH-8093 Zurich, Switzerland
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, I-09100 Cagliari, Italy
| | - Michael Urbakh
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5,CH-8093 Zurich, Switzerland
| | - Andrea Arcifa
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5,CH-8093 Zurich, Switzerland
| |
Collapse
|