1
|
Fatková K, Cajzl R, Burda JV. The vertical excitation energies and a lifetime of the two lowest singlet excited states of the conjugated polyenes from C2 to C22: Ab initio, DFT, and semiclassical MNDO-MD simulations. J Comput Chem 2023; 44:777-787. [PMID: 36444915 DOI: 10.1002/jcc.27040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022]
Abstract
Electronic excited states in the series of polyene molecules were explored. Optimal ground-state geometry was used for the evaluation of vertical excitation energies. Results of a chosen set of functionals were compared to post-HF methods (EOM-CCSD, NEVPT2, CASPT2, and MRCI). In addition, the semiempirical OM2/MNDO method using MRCISD computational level was confronted with the above-mentioned techniques. Despite the fact that the first excited state has a significant double-excitation character some functionals were able to qualitatively determine the correct state order (where the lowest excited state has a A g - character). The most successful functionals in transition energies predictions were PBE, TPSS and BLYP in Tamm-Dancoff approach (TDA), which had the smallest root-mean-square deviation (RMSD) scoring towards the experimental values. Regarding RMSD scoring, the OM2/MNDO method performed fairly well, too. Besides absorption spectra, lifetimes of the first two excited states were estimated based on a stochastic approach exploring a swarm of OM2/MNDO hopping dynamics using the Tully fewest switch algorithm for each molecule. The longest lifetime of the first excited state (S1 ) was found for decapentaene (about 5 ps). Further elongation of the conjugated chain caused a mild decrease of this value to ca 1.5 ps for docosaundecaene.
Collapse
Affiliation(s)
- Kateřina Fatková
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Radim Cajzl
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Jaroslav V Burda
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Yakovlev AG, Taisova AS, Fetisova ZG. Dynamic Stark effect in β and γ carotenes induced by photoexcitation of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus. PHOTOSYNTHESIS RESEARCH 2022; 154:291-302. [PMID: 36115930 DOI: 10.1007/s11120-022-00942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chlorosomes of green bacteria can be considered as a prototype of future artificial light-harvesting devices due to their unique property of self-assembly of a large number of bacteriochlorophyll (BChl) c/d/e molecules into compact aggregates. The presence of carotenoids (Cars) in chlorosomes is very important for photoprotection, light harvesting and structure stabilization. In this work, we studied for the first time the electrochromic band shift (Stark effect) in Cars of the phototrophic filamentous green bacterium Chloroflexus (Cfx.) aurantiacus induced by fs light excitation of the main pigment, BChl c. The high accuracy of the spectral measurements permitted us to extract a small wavy spectral feature, which, obviously, can be associated with the dynamic shift of the Car absorption band. A global analysis of spectroscopy data and theoretical modeling of absorption spectra showed that near 60% of Cars exhibited a red Stark shift of ~ 25 cm-1 and the remaining 40% exhibited a blue shift. We interpreted this finding as evidence of various orientations of Car in chlorosomes. We estimated the average value of the light-induced electric field strength in the place of Car molecules as ~ 106 V/cm and the average distance between Car and the neighboring BChl c as ~ 10 Å. We concluded that the dynamics of the Car electrochromic band shift mainly reflected the dynamics of exciton migration through the chlorosome toward the baseplate within ~ 1 ps. Our work has unambiguously shown that Cars are sensitive indicators of light-induced internal electric fields in chlorosomes.
Collapse
Affiliation(s)
- Andrei G Yakovlev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation.
| | - Alexandra S Taisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation
| | - Zoya G Fetisova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russian Federation
| |
Collapse
|
3
|
Lim B, Jung H, Yoo H, Park M, Yang H, Chung WJ, Koo S. Synthetic Strategy for Tetraphenyl-Substituted All- E
-Carotenoids with Improved Molecular Properties. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Boram Lim
- Department of Chemistry; Myongji University; Myongji-Ro 116, Cheoin-Gu 17058 Yongin Gyeonggi-Do Korea
| | - Hyunuk Jung
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116, Cheoin-Gu 17058 Yongin Gyeonggi-Do Korea
| | - Hyebin Yoo
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116, Cheoin-Gu 17058 Yongin Gyeonggi-Do Korea
| | - Myeongnam Park
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116, Cheoin-Gu 17058 Yongin Gyeonggi-Do Korea
| | - Huijeong Yang
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116, Cheoin-Gu 17058 Yongin Gyeonggi-Do Korea
| | - Wook-Jin Chung
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116, Cheoin-Gu 17058 Yongin Gyeonggi-Do Korea
| | - Sangho Koo
- Department of Chemistry; Myongji University; Myongji-Ro 116, Cheoin-Gu 17058 Yongin Gyeonggi-Do Korea
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116, Cheoin-Gu 17058 Yongin Gyeonggi-Do Korea
| |
Collapse
|
4
|
A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection. Proc Natl Acad Sci U S A 2020; 117:6502-6508. [PMID: 32139606 DOI: 10.1073/pnas.1920923117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carotenoids play a number of important roles in photosynthesis, primarily providing light-harvesting and photoprotective energy dissipation functions within pigment-protein complexes. The carbon-carbon double bond (C=C) conjugation length of carotenoids (N), generally between 9 and 15, determines the carotenoid-to-(bacterio)chlorophyll [(B)Chl] energy transfer efficiency. Here we purified and spectroscopically characterized light-harvesting complex 2 (LH2) from Rhodobacter sphaeroides containing the N = 7 carotenoid zeta (ζ)-carotene, not previously incorporated within a natural antenna complex. Transient absorption and time-resolved fluorescence show that, relative to the lifetime of the S1 state of ζ-carotene in solvent, the lifetime decreases ∼250-fold when ζ-carotene is incorporated within LH2, due to transfer of excitation energy to the B800 and B850 BChls a These measurements show that energy transfer proceeds with an efficiency of ∼100%, primarily via the S1 → Qx route because the S1 → S0 fluorescence emission of ζ-carotene overlaps almost perfectly with the Qx absorption band of the BChls. However, transient absorption measurements performed on microsecond timescales reveal that, unlike the native N ≥ 9 carotenoids normally utilized in light-harvesting complexes, ζ-carotene does not quench excited triplet states of BChl a, likely due to elevation of the ζ-carotene triplet energy state above that of BChl a These findings provide insights into the coevolution of photosynthetic pigments and pigment-protein complexes. We propose that the N ≥ 9 carotenoids found in light-harvesting antenna complexes represent a vital compromise that retains an acceptable level of energy transfer from carotenoids to (B)Chls while allowing acquisition of a new, essential function, namely, photoprotective quenching of harmful (B)Chl triplets.
Collapse
|
5
|
Šebelík V, Kloz M, Rebarz M, Přeček M, Kang EH, Choi TL, Christensen RL, Polívka T. Spectroscopy and excited state dynamics of nearly infinite polyenes. Phys Chem Chem Phys 2020; 22:17867-17879. [PMID: 32766621 DOI: 10.1039/d0cp02465a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Steady-state and transient absorption spectra with <50 fs time resolution were obtained for two conjugated polymers, both with ≈200 conjugated double bonds (N), constrained in planar, stable, polyene frameworks. Solutions of the polymers exhibit the same S2 → S1 → S* → S0 decay pathway observed for the N = 11-19 polyene oligomers and for zeaxanthin homologues with N = 11-23. Comparisons with the excited state dynamics of polydiactylene and a much longer, more disordered polyene polymer (poly(DEDPM)) show that the S2, S1, and S* lifetimes of the four polymers are almost identical. The S* signals in the polymers are assigned to absorption from vibrationally excited ground states. In spite of significant heterogeneities and variations in conjugation lengths in these long polyenes, their S0 → S2 absorptions are vibronically-resolved in room temperature solutions with electronic origins at ≈600 nm. The limiting wavelength for the S0 → S2 transitions is consistent with the persistence of bond length alternation in the electronic ground states and a HOMO-LUMO band gap in polyenes with N ≈ 200. The coincidence of the well-resolved S0 → S2 electronic origins and the convergence of the excited state lifetimes in the four polymers point to a common, "nearly infinite" polyene limit.
Collapse
Affiliation(s)
- Václav Šebelík
- Institute of Physics, Faculty of Science, University of South Bohemia, České Budjovice, Czech Republic.
| | - Miroslav Kloz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní BřeŽany, Czech Republic
| | - Mateusz Rebarz
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní BřeŽany, Czech Republic
| | - Martin Přeček
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní BřeŽany, Czech Republic
| | - Eun-Hye Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | | | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, České Budjovice, Czech Republic.
| |
Collapse
|
6
|
Chen Y, Guo M, Yang J, Chen J, Xie B, Sun Z. Potential TSPO Ligand and Photooxidation Quencher Isorenieratene from Arctic Ocean Rhodococcus sp. B7740. Mar Drugs 2019; 17:md17060316. [PMID: 31146377 PMCID: PMC6627809 DOI: 10.3390/md17060316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Due to its special aromatic structure, isorenieratene is thought to be an active natural antioxidant and photo/UV damage inhibitor. In this work, isorenieratene that was extracted from Rhodococcus sp. B7740 isolated from the Arctic Ocean, showed excellent scavenging ability of both singlet oxygen and hydroxyl radical in the UVB-induced auto-oxidation process using the EPR method. Within an ARPE-19 cell model damaged by UVB radiation, isorenieratene showed fine protective effects (1.13 ± 0.03 fold) compared with macular xanthophylls (MXs) through upregulating of tspo. The molecular docking was firstly performed to investigate the interaction of isorenieratene with TSPO as a special ligand. Results showed isorenieratene might form a better binding conformation (S-score −8.5438) than MXs and indicate that isorenieratene not only can function as a direct antioxidant but also activate tspo in ARPE-19 cells. Thus, isorenieratene might ease the UV-related damages including age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Yashu Chen
- Natural Product Laboratory, Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mengyao Guo
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jifang Yang
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo 315100, China.
| | - Jigang Chen
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo 315100, China.
| | - Bijun Xie
- Natural Product Laboratory, Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhida Sun
- Natural Product Laboratory, Department of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Llansola-Portoles MJ, Pascal AA, Robert B. Electronic and vibrational properties of carotenoids: from in vitro to in vivo. J R Soc Interface 2018; 14:rsif.2017.0504. [PMID: 29021162 DOI: 10.1098/rsif.2017.0504] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are among the most important organic compounds present in Nature and play several essential roles in biology. Their configuration is responsible for their specific photophysical properties, which can be tailored by changes in their molecular structure and in the surrounding environment. In this review, we give a general description of the main electronic and vibrational properties of carotenoids. In the first part, we describe how the electronic and vibrational properties are related to the molecular configuration of carotenoids. We show how modifications to their configuration, as well as the addition of functional groups, can affect the length of the conjugated chain. We describe the concept of effective conjugation length, and its relationship to the S0 → S2 electronic transition, the decay rate of the S1 energetic level and the frequency of the ν1 Raman band. We then consider the dependence of these properties on extrinsic parameters such as the polarizability of their environment, and how this information (S0 → S2 electronic transition, ν1 band position, effective conjugation length and polarizability of the environment) can be represented on a single graph. In the second part of the review, we use a number of specific examples to show that the relationships can be used to disentangle the different mechanisms tuning the functional properties of protein-bound carotenoids.
Collapse
Affiliation(s)
- Manuel J Llansola-Portoles
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Andrew A Pascal
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Bruno Robert
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
8
|
Excited-state dynamics of 3,3′-dihydroxyisorenieratene and (3R,3′R)-zeaxanthin: Observation of vibrationally hot S0 species. Arch Biochem Biophys 2018; 646:137-144. [DOI: 10.1016/j.abb.2018.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
|
9
|
Haas S, de Beer D, Klatt JM, Fink A, Rench RM, Hamilton TL, Meyer V, Kakuk B, Macalady JL. Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat. Front Microbiol 2018; 9:858. [PMID: 29755448 PMCID: PMC5934491 DOI: 10.3389/fmicb.2018.00858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/13/2018] [Indexed: 11/24/2022] Open
Abstract
We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 μmol photons m-2 s-1, and UV light (<400 nm) was the most abundant part of the spectrum followed by green wavelengths (475–530 nm). We measured a light-dependent carbon uptake rate of 14.5 nmol C cm-2 d-1. A 16S rRNA clone library of the green surface mat layer was dominated (74%) by a cluster (>97% sequence identity) of clones affiliated with Prosthecochloris, a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (β-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3–6 μmol L-1) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm-3 d-1). The anoxic water column was oligotrophic and low in dissolved organic carbon (175–228 μmol L-1). High concentrations of pyrite (FeS2; 1–47 μmol cm-3) together with low microbial process rates (sulfate reduction, CO2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3–22.2 μmol cm-3) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.
Collapse
Affiliation(s)
- Sebastian Haas
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Judith M Klatt
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Artur Fink
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rebecca McCauley Rench
- Geosciences Department, Pennsylvania State University, University Park, PA, United States
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, United States
| | - Volker Meyer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Brian Kakuk
- Bahamas Caves Research Foundation, Marsh Harbour, Bahamas
| | - Jennifer L Macalady
- Geosciences Department, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
10
|
Kim M, Jung H, Aragonès AC, Díez-Pérez I, Ahn KH, Chung WJ, Kim D, Koo S. Role of Ring Ortho Substituents on the Configuration of Carotenoid Polyene Chains. Org Lett 2018; 20:493-496. [PMID: 29319322 DOI: 10.1021/acs.orglett.7b03930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 9-(Z)-configuration was exclusively obtained in the carotenoid polyene chain irrespective of olefination and disconnection methods for terminal ortho-unsubstituted benzene rings. The 2,6-dimethyl substituents in the terminal rings secure an all-(E)-polyene structure. The single molecular conductance of the pure 9-(Z)-carotene was measured for the first time to be 1.53 × 10-4 ± 6.37 × 10-5G0, whose value was 47% that of the all-(E)-carotene ((3.23 × 10-4) ± (1.23 × 10-4) G0).
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Energy Science and Technology and Department of Chemistry, Myongji University , Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
| | - Hyunuk Jung
- Department of Energy Science and Technology and Department of Chemistry, Myongji University , Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
| | - Albert C Aragonès
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Ismael Díez-Pérez
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London , Britannia House, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi-Do 17104, Korea
| | - Wook-Jin Chung
- Department of Energy Science and Technology and Department of Chemistry, Myongji University , Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
| | - Dahye Kim
- Department of Energy Science and Technology and Department of Chemistry, Myongji University , Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
| | - Sangho Koo
- Department of Energy Science and Technology and Department of Chemistry, Myongji University , Myongji-Ro 116, Cheoin-Gu, Yongin, Gyeonggi-Do 17058, Korea
| |
Collapse
|
11
|
Lim B, Oh ET, Im J, Lee KS, Jung H, Kim M, Kim D, Oh JT, Bae SH, Chung WJ, Ahn KH, Koo S. Systematic Synthesis of Diphenyl-Substituted Carotenoids as Molecular Wires. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Boram Lim
- Department of Chemistry; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
- Department of Nano Science and Engineering; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
- Biodesign Institute; Department of Physics; Arizona State University; 85287 Tempe Arizona USA
| | - Eun-Taek Oh
- Department of Nano Science and Engineering; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
| | - JongOne Im
- Biodesign Institute; Department of Physics; Arizona State University; 85287 Tempe Arizona USA
| | - Kyu Sang Lee
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
| | - Hyunuk Jung
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
| | - Minsoo Kim
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
| | - Dahye Kim
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
| | - Jung Taek Oh
- Department of Nano Science and Engineering; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
| | - Sung-Hee Bae
- Department of Nano Science and Engineering; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
| | - Wook-Jin Chung
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry; Kyung Hee University; 17104 Yongin Gyeonggi-Do Korea
| | - Sangho Koo
- Department of Chemistry; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
- Department of Nano Science and Engineering; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
- Department of Energy Science and Technology; Myongji University; Myongji-Ro 116 17058 Cheoin-Gu, Yongin Gyeonggi-Do Korea
| |
Collapse
|
12
|
Kosumi D, Kajikawa T, Sakaguchi K, Katsumura S, Hashimoto H. Excited state properties of β-carotene analogs incorporating a lactone ring. Phys Chem Chem Phys 2017; 19:3000-3009. [PMID: 28079227 DOI: 10.1039/c6cp06828f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carotenoids possessing a carbonyl group along their polyene backbone exhibit unique excited state properties due to the occurrence of intramolecular charge transfer (ICT) in the excited state. In fact, the ICT characteristics of naturally occurring carbonyl carotenoids play an essential role in the highly efficient energy transfer that proceeds in aquatic photosynthetic antenna systems. In the present study, we synthesized two short-chain polyene carotenoids incorporating a lactone ring, denoted as BL-7 and BL-8, having seven and eight conjugated double bonds (n = 7 and 8), respectively. The excited state properties of these compounds were directly compared to those of their non-carbonyl counterparts to clarify the role of the carbonyl group in the generation of ICT. The energies of the optically allowed S2 states for BL-7 and BL-8 were found to be more than 0.3 eV (2400 cm-1) below those of non-carbonyl short β-carotene homologs. Ultrafast spectroscopic data demonstrated various solvent polarity-induced effects, including the appearance of stimulated emission in the near-IR region in the case of BL-7, and significant lifetime shortening of the lowest-lying singlet S1 excited states of both BL-7 and BL-8. These results suggest that these compounds exhibit ICT characteristics.
Collapse
Affiliation(s)
- Daisuke Kosumi
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| | - Takayuki Kajikawa
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kazuhiko Sakaguchi
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeo Katsumura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337, Japan and Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, Faculty of Science and Technology, Kwansei Gakuin University, Japan.
| |
Collapse
|
13
|
Magdaong NCM, Niedzwiedzki DM, Goodson C, Blankenship RE. Carotenoid-to-Bacteriochlorophyll Energy Transfer in the LH1–RC Core Complex of a Bacteriochlorophyll b Containing Purple Photosynthetic Bacterium Blastochloris viridis. J Phys Chem B 2016; 120:5159-71. [DOI: 10.1021/acs.jpcb.6b04307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikki Cecil M. Magdaong
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, St.
Louis, Missouri 63130 United States
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| | - Dariusz M. Niedzwiedzki
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| | - Carrie Goodson
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| | - Robert E. Blankenship
- Department
of Biology, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
- Department of Chemistry, Washington University in Saint Louis, One Brookings Drive, St.
Louis, Missouri 63130 United States
- Photosynthetic
Antenna Research Center, Washington University in Saint Louis, One Brookings
Drive, St. Louis, Missouri 63130 United States
| |
Collapse
|
14
|
Mauck CM, Brown KE, Horwitz NE, Wasielewski MR. Fast Triplet Formation via Singlet Exciton Fission in a Covalent Perylenediimide-β-apocarotene Dyad Aggregate. J Phys Chem A 2015; 119:5587-96. [DOI: 10.1021/acs.jpca.5b01048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Catherine M. Mauck
- Department of Chemistry and Argonne-Northwestern Solar Energy Research
(ANSER) Center, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Kristen E. Brown
- Department of Chemistry and Argonne-Northwestern Solar Energy Research
(ANSER) Center, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Noah E. Horwitz
- Department of Chemistry and Argonne-Northwestern Solar Energy Research
(ANSER) Center, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne-Northwestern Solar Energy Research
(ANSER) Center, Northwestern University, 2145 North Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
15
|
Matěnová M, Lorelei Horhoiu V, Dang FX, Pospíšil P, Alster J, Burda JV, Balaban TS, Pšenčík J. Energy transfer in aggregates of bacteriochlorophyll c self-assembled with azulene derivatives. Phys Chem Chem Phys 2015; 16:16755-64. [PMID: 24999619 DOI: 10.1039/c4cp01311e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteriochlorophyll (BChl) c is the main light-harvesting pigment of certain photosynthetic bacteria. It is found in the form of self-assembled aggregates in the so-called chlorosomes. Here we report the results of co-aggregation experiments of BChl c with azulene and its tailored derivatives. We have performed spectroscopic and quantum chemical characterization of the azulenes, followed by self-assembly experiments. The results show that only azulenes with sufficient hydrophobicity are able to induce aggregation of BChl c. Interestingly, only azulene derivatives possessing a conjugated phenyl ring were capable of efficient (∼50%) excitation energy transfer to BChl molecules. These aggregates represent an artificial light-harvesting complex with enhanced absorption between 220 and 350 nm compared to aggregates of pure BChl c. The results provide insight into the principles of self-assembly of BChl aggregates and suggest an important role of the π-π interactions in efficient energy transfer.
Collapse
Affiliation(s)
- Martina Matěnová
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fuciman M, Keşan G, LaFountain AM, Frank HA, Polívka T. Tuning the spectroscopic properties of aryl carotenoids by slight changes in structure. J Phys Chem B 2015; 119:1457-67. [PMID: 25558974 DOI: 10.1021/jp512354r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two carotenoids with aryl rings were studied by femtosecond transient absorption spectroscopy and theoretical computational methods, and the results were compared with those obtained from their nonaryl counterpart, β-carotene. Although isorenieratene has more conjugated C═C bonds than β-carotene, its effective conjugation length, Neff, is shorter than of β-carotene. This is evidenced by a longer S1 lifetime and higher S1 energy of isorenieratene compared to the values for β-carotene. On the other hand, although isorenieratene and renierapurpurin have the same π-electron conjugated chain structure, Neff is different for these two carotenoids. The S1 lifetime of renierapurpurin is shorter than that of isorenieratene, indicating a longer Neff for renierapurpurin. This conclusion is also consistent with a lower S1 energy of renierapurpurin compared to those of the other carotenoids. Density functional theory (DFT) was used to calculate equilibrium geometries of ground and excited states of all studied carotenoids. The terminal ring torsion in the ground state of isorenieratene (41°) is very close to that of β-carotene (45°), but equilibration of the bond lengths within the aryl rings indicates that the each aryl ring forms its own conjugated system. This results in partial detachment of the aryl rings from the overall conjugation making Neff of isorenieratene shorter than that of β-carotene. The different position of the methyl group at the aryl ring of renierapurpurin diminishes the aryl ring torsion to ∼20°. This planarization results in a longer Neff than that of isorenieratene, rationalizing the observed differences in spectroscopic properties.
Collapse
Affiliation(s)
- Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branišovská 1760, 37005 České Budějovice, Czech Republic
| | | | | | | | | |
Collapse
|
17
|
Niedzwiedzki DM, Cranston L. Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids. Phys Chem Chem Phys 2015; 17:13245-56. [DOI: 10.1039/c5cp00836k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photophysical properties of two typical aryl carotenoids, okenone and chlorobactene, were studied with application of femtosecond and microsecond time-resolved absorption spectroscopies.
Collapse
Affiliation(s)
- Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research Center and Department of Chemistry
- Washington University in St Louis
- USA
| | - Laura Cranston
- Institute of Molecular Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- University of Glasgow
- Glasgow Biomedical Research Centre
| |
Collapse
|
18
|
Macernis M, Sulskus J, Malickaja S, Robert B, Valkunas L. Resonance Raman Spectra and Electronic Transitions in Carotenoids: A Density Functional Theory Study. J Phys Chem A 2014; 118:1817-25. [DOI: 10.1021/jp406449c] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mindaugas Macernis
- Theoretical
Physics Department, Faculty of Physics, Vilnius University, Saulėtekio al. 9, LT-10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
| | - Juozas Sulskus
- Theoretical
Physics Department, Faculty of Physics, Vilnius University, Saulėtekio al. 9, LT-10222 Vilnius, Lithuania
| | - Svetlana Malickaja
- Theoretical
Physics Department, Faculty of Physics, Vilnius University, Saulėtekio al. 9, LT-10222 Vilnius, Lithuania
| | - Bruno Robert
- Institut
de Biologie et de Technologie de Saclay, CEA, UMR 8221 CNRS, University Paris Sud, CEA Saclay, 91191 Gif sur Yvette, Paris, France
| | - Leonas Valkunas
- Theoretical
Physics Department, Faculty of Physics, Vilnius University, Saulėtekio al. 9, LT-10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius, Lithuania
| |
Collapse
|
19
|
Pšenčík J, Butcher SJ, Tuma R. Chlorosomes: Structure, Function and Assembly. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
20
|
Genome rearrangements of Streptomyces albus J1074 lead to the carotenoid gene cluster activation. Appl Microbiol Biotechnol 2013; 98:795-806. [PMID: 24337397 DOI: 10.1007/s00253-013-5440-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Streptomyces albus J1074 is a derivative of the S. albus G1 strain defective in SalG1 restriction-modification system. Genome sequencing of S. albus J1074 revealed that the size of its chromosome is 6.8 Mb with unusually short terminal arms of only 0.3 and 0.4 Mb. Here we present our attempts to evaluate the dispensability of subtelomeric regions of the S. albus J1074 chromosome. A number of large site-directed genomic deletions led to circularization of the S. albus J1074 chromosome and to the overall genome reduction by 307 kb. Two spontaneous mutants with an activated carotenoid cluster were obtained. Genome sequencing and transcriptome analysis indicated that phenotypes of these mutants resulted from the right terminal 0.42 Mb chromosomal region deletion, followed by the carotenoid cluster amplification. Our results indicate that the right terminal 0.42 Mb fragment is dispensable under laboratory conditions. In contrast, the left terminal arm of the S. albus J1074 chromosome contains essential genes and only 42 kb terminal region is proved to be dispensable. We identified overexpressed carotenoid compounds and determined fitness costs of the large genomic rearrangements.
Collapse
|
21
|
Ostroumov EE, Mulvaney RM, Anna JM, Cogdell RJ, Scholes GD. Energy Transfer Pathways in Light-Harvesting Complexes of Purple Bacteria as Revealed by Global Kinetic Analysis of Two-Dimensional Transient Spectra. J Phys Chem B 2013; 117:11349-62. [DOI: 10.1021/jp403028x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evgeny E. Ostroumov
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| | - Rachel M. Mulvaney
- Glasgow Biomedical Research
Centre, IBLS, University of Glasgow, 126
Place, Glasgow G12 8TA, Scotland, U.K
| | - Jessica M. Anna
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| | - Richard J. Cogdell
- Glasgow Biomedical Research
Centre, IBLS, University of Glasgow, 126
Place, Glasgow G12 8TA, Scotland, U.K
| | - Gregory D. Scholes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, M5S 3H6, Canada
| |
Collapse
|
22
|
Abstract
Chlorosomes are large light-harvesting complexes found in three phyla of anoxygenic photosynthetic bacteria. Chlorosomes are primarily composed of self-assembling pigment aggregates. In addition to the main pigment, bacteriochlorophyll c, d, or e, chlorosomes also contain variable amounts of carotenoids. Here, we use X-ray scattering and electron cryomicroscopy, complemented with absorption spectroscopy and pigment analysis, to compare the morphologies, structures, and pigment compositions of chlorosomes from Chloroflexus aurantiacus grown under two different light conditions and Chlorobaculum tepidum. High-purity chlorosomes from C. aurantiacus contain about 20% more carotenoid per bacteriochlorophyll c molecule when grown under low light than when grown under high light. This accentuates the light-harvesting function of carotenoids, in addition to their photoprotective role. The low-light chlorosomes are thicker due to the overall greater content of pigments and contain domains of lamellar aggregates. Experiments where carotenoids were selectively extracted from intact chlorosomes using hexane proved that they are located in the interlamellar space, as observed previously for species belonging to the phylum Chlorobi. A fraction of the carotenoids are localized in the baseplate, where they are bound differently and cannot be removed by hexane. In C. tepidum, carotenoids cannot be extracted by hexane even from the chlorosome interior. The chemical structure of the pigments in C. tepidum may lead to π-π interactions between carotenoids and bacteriochlorophylls, preventing carotenoid extraction. The results provide information about the nature of interactions between bacteriochlorophylls and carotenoids in the protein-free environment of the chlorosome interior.
Collapse
|
23
|
Cerezo J, Zúñiga J, Bastida A, Requena A, Pedro Cerón-Carrasco J. Conformational changes of β-carotene and zeaxanthin immersed in a model membrane through atomistic molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:6527-38. [DOI: 10.1039/c3cp43947j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Kloz M, Pillai S, Kodis G, Gust D, Moore TA, Moore AL, van Grondelle R, Kennis JTM. Carotenoid Photoprotection in Artificial Photosynthetic Antennas. J Am Chem Soc 2011; 133:7007-15. [DOI: 10.1021/ja1103553] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miroslav Kloz
- Biophysics Section, Departments of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | - Smitha Pillai
- Department of Chemistry & Biochemistry and The Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Gerdenis Kodis
- Department of Chemistry & Biochemistry and The Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Devens Gust
- Department of Chemistry & Biochemistry and The Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Thomas A. Moore
- Department of Chemistry & Biochemistry and The Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Ana L. Moore
- Department of Chemistry & Biochemistry and The Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1605, United States
| | - Rienk van Grondelle
- Biophysics Section, Departments of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | - John T. M. Kennis
- Biophysics Section, Departments of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
25
|
Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H. Ultrafast excited state dynamics of fucoxanthin: excitation energy dependent intramolecular charge transfer dynamics. Phys Chem Chem Phys 2011; 13:10762-70. [DOI: 10.1039/c0cp02568b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Kloz M, Grondelle RV, Kennis JT. Wavelength-modulated femtosecond stimulated raman spectroscopy—approach towards automatic data processing. Phys Chem Chem Phys 2011; 13:18123-33. [DOI: 10.1039/c1cp21650c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Excited-state properties of the 16 kDa red carotenoid protein from Arthrospira maxima. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:30-5. [DOI: 10.1016/j.bbabio.2010.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/21/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
28
|
Polívka T, Frank HA. Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 2010; 43:1125-34. [PMID: 20446691 DOI: 10.1021/ar100030m] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carotenoids are naturally occurring pigments that absorb light in the spectral region in which the sun irradiates maximally. These molecules transfer this energy to chlorophylls, initiating the primary photochemical events of photosynthesis. Carotenoids also regulate the flow of energy within the photosynthetic apparatus and protect it from photoinduced damage caused by excess light absorption. To carry out these functions in nature, carotenoids are bound in discrete pigment-protein complexes in the proximity of chlorophylls. A few three-dimensional structures of these carotenoid complexes have been determined by X-ray crystallography. Thus, the stage is set for attempting to correlate the structural information with the spectroscopic properties of carotenoids to understand the molecular mechanism(s) of their function in photosynthetic systems. In this Account, we summarize current spectroscopic data describing the excited state energies and ultrafast dynamics of purified carotenoids in solution and bound in light-harvesting complexes from purple bacteria, marine algae, and green plants. Many of these complexes can be modified using mutagenesis or pigment exchange which facilitates the elucidation of correlations between structure and function. We describe the structural and electronic factors controlling the function of carotenoids as energy donors. We also discuss unresolved issues related to the nature of spectroscopically dark excited states, which could play a role in light harvesting. To illustrate the interplay between structural determinations and spectroscopic investigations that exemplifies work in the field, we describe the spectroscopic properties of four light-harvesting complexes whose structures have been determined to atomic resolution. The first, the LH2 complex from the purple bacterium Rhodopseudomonas acidophila, contains the carotenoid rhodopin glucoside. The second is the LHCII trimeric complex from higher plants which uses the carotenoids lutein, neoxanthin, and violaxanthin to transfer energy to chlorophyll. The third, the peridinin-chlorophyll-protein (PCP) from the dinoflagellate Amphidinium carterae, is the only known complex in which the bound carotenoid (peridinin) pigments outnumber the chlorophylls. The last is xanthorhodopsin from the eubacterium Salinibacter ruber. This complex contains the carotenoid salinixanthin, which transfers energy to a retinal chromophore. The carotenoids in these pigment-protein complexes transfer energy with high efficiency by optimizing both the distance and orientation of the carotenoid donor and chlorophyll acceptor molecules. Importantly, the versatility and robustness of carotenoids in these light-harvesting pigment-protein complexes have led to their incorporation in the design and synthesis of nanoscale antenna systems. In these bioinspired systems, researchers are seeking to improve the light capture and use of energy from the solar emission spectrum.
Collapse
Affiliation(s)
- Tomáš Polívka
- Institute of Physical Biology, University of South Bohemia, Zámek 136, 373 33 Nové Hrady, Czech Republic
- Biological Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Harry A. Frank
- Department of Chemistry, 55 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3060
| |
Collapse
|