1
|
Kaya SG, Hovan A, Fraaije MW. Engineering of LOV-domains for their use as protein tags. Arch Biochem Biophys 2025; 763:110228. [PMID: 39592071 DOI: 10.1016/j.abb.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Light-Oxygen-Voltage (LOV) domains are the protein-based light switches used in nature to trigger and regulate various processes. They allow light signals to be converted into metabolic signaling cascades. Various LOV-domain proteins have been characterized in the last few decades and have been used to develop light-sensitive tools in cell biology research. LOV-based applications exploit the light-driven regulation of effector elements to activate signaling pathways, activate genes, or locate proteins within cells. A relatively new application of an engineered small LOV-domain protein called miniSOG (mini singlet oxygen generator) is based on the light-induced formation of reactive oxygen species (ROS). The first miniSOG was engineered from a LOV domain from Arabidopsis thaliana. This engineered 14 kDa light-responsive flavin-containing protein can be exploited as protein tag for the light-triggered localized production of ROS. Such tunable ROS production by miniSOG or similarly redesigned LOV-domains can be of use in studies focused on subcellular phenomena but may also allow new light-fueled catalytic processes. This review provides an overview of the discovery of LOV domains and their development into tools for cell biology. It also highlights recent advancements in engineering LOV domains for various biotechnological applications and cell biology studies.
Collapse
Affiliation(s)
- Saniye G Kaya
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands
| | - Andrej Hovan
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic; Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovakia
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
2
|
Flores-Ibarra A, Maia RNA, Olasz B, Church JR, Gotthard G, Schapiro I, Heberle J, Nogly P. Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation. J Mol Biol 2024; 436:168356. [PMID: 37944792 DOI: 10.1016/j.jmb.2023.168356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The light-oxygen-voltage (LOV) domains of phototropins emerged as essential constituents of light-sensitive proteins, helping initiate blue light-triggered responses. Moreover, these domains have been identified across all kingdoms of life. LOV domains utilize flavin nucleotides as co-factors and undergo structural rearrangements upon exposure to blue light, which activates an effector domain that executes the final output of the photoreaction. LOV domains are versatile photoreceptors that play critical roles in cellular signaling and environmental adaptation; additionally, they can noninvasively sense and control intracellular processes with high spatiotemporal precision, making them ideal candidates for use in optogenetics, where a light signal is linked to a cellular process through a photoreceptor. The ongoing development of LOV-based optogenetic tools, driven by advances in structural biology, spectroscopy, computational methods, and synthetic biology, has the potential to revolutionize the study of biological systems and enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Flores-Ibarra
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Raiza N A Maia
- Department of Chemistry, The University of Texas at Austin, 78712-1224 Austin, TX, USA
| | - Bence Olasz
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | | | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Przemyslaw Nogly
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
3
|
Archipowa N, Wittmann L, Köckenberger J, Ertl FJ, Gleixner J, Keller M, Heinrich MR, Kutta RJ. Characterization of Fluorescent Dyes Frequently Used for Bioimaging: Photophysics and Photocatalytical Reactions with Proteins. J Phys Chem B 2023; 127:9532-9542. [PMID: 37903729 DOI: 10.1021/acs.jpcb.3c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Derivatives of the rhodamine-based dye 5-TAMRA (5-carboxy-tetramethylrhodamine) and the indocarbocyanine-type Cy3B (cyclized derivative of the cyanine dye Cy3), both representing important fluorophores frequently used for the labeling of biomolecules (proteins, nucleic acids) and bioactive compounds, such as receptor ligands, were photophysically investigated in aqueous solution, i.e., in neat phosphate-buffered saline (PBS) and in PBS supplemented with 1 wt % bovine serum albumin (BSA). The dyes exhibit comparable absorption (λabs,max: 550-569 nm) and emission wavelengths (λem,max: 580-582 nm), and similar S1 lifetimes (2.27-2.75 ns), and their excited state deactivation proceeds mainly via the lowest excited singlet state (triplet quantum yield ca. 1%). However, the probes show marked differences with respect to their fluorescence quantum yield and photostability. While 5-TAMRA shows a lower quantum yield (37-39%) than the Cy3B derivative (ca. 57%), its photostability is considerably higher compared to Cy3B. Generally, the impact of the protein on the photophysics is low. However, on prolonged illumination, both fluorescent dyes undergo a photocatalytic reaction with tryptophan residues of BSA mediated by sensitized singlet oxygen resulting in a tryptophan photoproduct with an absorption maximum around 330 nm. The overall results of this work will assist in choosing the right dye for the labeling of bioactive compounds, and the study demonstrates that experiments performed with 5-TAMRA or Cy3B-labeled compounds in a biological environment may be influenced by photochemical modification of experimentally relevant proteins at aromatic amino acid residues.
Collapse
Affiliation(s)
- Nataliya Archipowa
- Institute of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany
| | - Lukas Wittmann
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Johannes Köckenberger
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
5
|
Ding Y, Zhao Z, Matysik J, Gärtner W, Losi A. Mapping the role of aromatic amino acids within a blue-light sensing LOV domain. Phys Chem Chem Phys 2021; 23:16767-16775. [PMID: 34319324 DOI: 10.1039/d1cp02217b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photosensing LOV (Light, Oxygen, Voltage) domains detect and respond to UVA/Blue (BL) light by forming a covalent adduct between the flavin chromophore and a nearby cysteine, via the decay of the flavin triplet excited state. LOV domains where the reactive cysteine has been mutated are valuable fluorescent tools for microscopy and as genetically encoded photosensitisers for reactive oxygen species. Besides being convenient tools for applications, LOV domains without the reactive cysteine (naturally occurring or engineered) can still be functionally photoactivated via formation of a neutral flavin radical. Tryptophans and tyrosines are held as the main partners as potential electron donors to the flavin excited states. In this work, we explore the relevance of aromatic amino acids in determining the photophysical features of the LOV protein Mr4511 from Methylobacterium radiotolerans by introducing point mutations into the C71S variant that does not form the covalent adduct. By using an array of spectroscopic techniques we measured the fluorescence quantum yields and lifetimes, the triplet yields and lifetimes, and the efficiency of singlet oxygen (SO) formation for eleven Mr4511 variants. Insertion of Trp residues at distances between 0.6 and 1.5 nm from the flavin chromophore results in strong quenching of the flavin excited triplet state and, at the shorter distances even of the singlet excited state. The mutation F130W (ca. 0.6 nm) completely quenches the singlet excited state, preventing triplet formation: in this case, even if the cysteine is present, the photo-adduct is not formed. Tyrosines are also quenchers for the flavin excited states, although not as efficient as Trp residues, as demonstrated with their substitution with the inert phenylalanine. For one of these variants, C71S/Y116F, we found that the quantum yield of formation for singlet oxygen is 0.44 in aqueous aerobic solution, vs 0.17 for C71S. Based on our study with Mr4511 and on literature data for other LOV domains we suggest that Trp and Tyr residues too close to the flavin chromophore (at distances less than 0.9 nm) reduce the yield of photoproduct formation and that introduction of inert Phe residues in key positions can help in developing efficient, LOV-based photosensitisers.
Collapse
Affiliation(s)
- Yonghong Ding
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
6
|
Yee EF, Oldemeyer S, Böhm E, Ganguly A, York DM, Kottke T, Crane BR. Peripheral Methionine Residues Impact Flavin Photoreduction and Protonation in an Engineered LOV Domain Light Sensor. Biochemistry 2021; 60:1148-1164. [PMID: 33787242 PMCID: PMC8107827 DOI: 10.1021/acs.biochem.1c00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proton-coupled electron transfer reactions play critical roles in many aspects of sensory phototransduction. In the case of flavoprotein light sensors, reductive quenching of flavin excited states initiates chemical and conformational changes that ultimately transmit light signals to downstream targets. These reactions generally require neighboring aromatic residues and proton-donating side chains for rapid and coordinated electron and proton transfer to flavin. Although photoreduction of flavoproteins can produce either the anionic (ASQ) or neutral semiquinone (NSQ), the factors that favor one over the other are not well understood. Here we employ a biologically active variant of the light-oxygen-voltage (LOV) domain protein VVD devoid of the adduct-forming Cys residue (VVD-III) to probe the mechanism of flavin photoreduction and protonation. A series of isosteric and conservative residue replacements studied by rate measurements, fluorescence quantum yields, FTIR difference spectroscopy, and molecular dynamics simulations indicate that tyrosine residues facilitate charge recombination reactions that limit sustained flavin reduction, whereas methionine residues facilitate radical propagation and quenching and also gate solvent access for flavin protonation. Replacement of a single surface Met residue with Leu favors formation of the ASQ over the NSQ and desensitizes photoreduction to oxidants. In contrast, increasing site hydrophilicity by Gln substitution promotes rapid NSQ formation and weakens the influence of the redox environment. Overall, the photoreactivity of VVD-III can be understood in terms of redundant electron donors, internal hole quenching, and coupled proton transfer reactions that all depend upon protein conformation, dynamics, and solvent penetration.
Collapse
Affiliation(s)
- Estella F. Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Elena Böhm
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Abir Ganguly
- Laboratory for Biomolecular Simulation Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Hartman T, Reisnerová M, Chudoba J, Svobodová E, Archipowa N, Kutta RJ, Cibulka R. Photocatalytic Oxidative [2+2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure. Chempluschem 2021; 86:373-386. [DOI: 10.1002/cplu.202000767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Tomáš Hartman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Martina Reisnerová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Josef Chudoba
- Central Laboratories University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Eva Svobodová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Nataliya Archipowa
- Manchester Institute of Biotechnology and School of Chemistry The University of Manchester Manchester M1 7DN United Kingdom
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry University of Regensburg 93040 Regensburg Germany
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
8
|
Deazaflavin reductive photocatalysis involves excited semiquinone radicals. Nat Commun 2020; 11:3174. [PMID: 32576821 PMCID: PMC7311442 DOI: 10.1038/s41467-020-16909-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022] Open
Abstract
Flavin-mediated photocatalytic oxidations are established in synthetic chemistry. In contrast, their use in reductive chemistry is rare. Deazaflavins with a much lower reduction potential are even better suited for reductive chemistry rendering also deazaflavin semiquinones as strong reductants. However, no direct evidence exists for the involvement of these radical species in reductive processes. Here, we synthesise deazaflavins with different substituents at C5 and demonstrate their photocatalytic activity in the dehalogenation of p-halogenanisoles with best performance under basic conditions. Mechanistic investigations reveal a consecutive photo-induced electron transfer via the semiquinone form of the deazaflavin as part of a triplet-correlated radical pair after electron transfer from a sacrificial electron donor to the triplet state. A second electron transfer from the excited semiquinone to p-halogenanisoles triggers the final product formation. This study provides first evidence that the reductive power of excited deazaflavin semiquinones can be used in photocatalytic reductive chemistry. Flavins and deazaflavins are well suited for photoredox processes but their application in photoreductions is challenging. Here, the authors provide direct evidence of the high reductive power of excited deazaflavin semiquinones and their application in catalytic photodehalogenations.
Collapse
|
9
|
Brosi R, Illarionov B, Heidinger L, Kim RR, Fischer M, Weber S, Bacher A, Bittl R, Schleicher E. Coupled Methyl Group Rotation in FMN Radicals Revealed by Selective Deuterium Labeling. J Phys Chem B 2020; 124:1678-1690. [PMID: 32011886 DOI: 10.1021/acs.jpcb.9b11331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavin semiquinones are common intermediate redox states in flavoproteins, and thus, knowledge of their electronic structure is essential for fully understanding their chemistry and chemical versatility. In this contribution, we use a combination of high-field electron nuclear double resonance spectroscopy and selective deuterium labeling of flavin mononucleotide (FMN) with subsequent incorporation as cofactor into a variant Avena sativa LOV domain to extract missing traits of the electronic structure of a protein-bound FMN radical. From these experiments, precise values of small proton hyperfine and deuterium nuclear quadrupole couplings could be extracted. Specifically, isotropic hyperfine couplings of -3.34, -0.11, and +0.91 MHz were obtained for the protons H(6), H(9), and H(7α), respectively. These values are discussed in the light of specific protein-cofactor interactions. Furthermore, the temperature behavior of the H(7α) methyl-group rotation elicited by its energy landscape was analyzed in greater detail. Pronounced interplay between the two methyl groups at C(7) and C(8) of FMN could be revealed. Most strikingly, this rotational behavior could be modulated by selective deuterium editing.
Collapse
Affiliation(s)
- Richard Brosi
- Fachbereich Physik, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Boris Illarionov
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Lorenz Heidinger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Ryu-Ryun Kim
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Adelbert Bacher
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.,Fakultät für Chemie, Technische Universität München, Lichtenbergstr. 4, 80247 Garching, Germany
| | - Robert Bittl
- Fachbereich Physik, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Andrikopoulos PC, Liu Y, Picchiotti A, Lenngren N, Kloz M, Chaudhari AS, Precek M, Rebarz M, Andreasson J, Hajdu J, Schneider B, Fuertes G. Femtosecond-to-nanosecond dynamics of flavin mononucleotide monitored by stimulated Raman spectroscopy and simulations. Phys Chem Chem Phys 2020; 22:6538-6552. [PMID: 31994556 DOI: 10.1039/c9cp04918e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Flavin mononucleotide (FMN) belongs to the large family of flavins, ubiquitous yellow-coloured biological chromophores that contain an isoalloxazine ring system. As a cofactor in flavoproteins, it is found in various enzymes and photosensory receptors, like those featuring the light-oxygen-voltage (LOV) domain. The photocycle of FMN is triggered by blue light and proceeds via a cascade of intermediate states. In this work, we have studied isolated FMN in an aqueous solution in order to elucidate the intrinsic electronic and vibrational changes of the chromophore upon excitation. The ultrafast transitions of excited FMN were monitored through the joint use of femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy encompassing a time window between 0 ps and 6 ns with 50 fs time resolution. Global analysis of the obtained transient visible absorption and transient Raman spectra in combination with extensive quantum chemistry calculations identified unambiguously the singlet and triplet FMN populations and addressed solvent dynamics effects. The good agreement between the experimental and theoretical spectra facilitated the assignment of electronic transitions and vibrations. Our results represent the first steps towards more complex experiments aimed at tracking structural changes of FMN embedded in light-inducible proteins upon photoexcitation.
Collapse
Affiliation(s)
- Prokopis C Andrikopoulos
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kutta RJ, Archipowa N, Scrutton NS. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster. Phys Chem Chem Phys 2018; 20:28767-28776. [PMID: 30417904 PMCID: PMC6250122 DOI: 10.1039/c8cp04671a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023]
Abstract
Drosophila melanogaster cryptochrome functions as the primary blue-light receptor that mediates circadian photo entrainment. Absorption of a photon leads to reduction of the protein-bound FAD via consecutive electron transfer along a conserved tryptophan tetrad resembling the signalling state required for conformational changes and induction of subsequent signalling cascades. However, how the initial photochemistry and subsequent dark processes leading to downstream signalling are linked to each other at the molecular level is still poorly understood. Here, we investigated in detail the initial photochemical events in DmCRY by time-resolved and stationary absorption spectroscopy combined with quantum chemical and molecular dynamics calculations. We resolved the early events along the conserved tryptophan tetrad and the final deprotonation of the terminal tryptophanyl radical cation. These initial events lead to conformational changes, such as the known C-terminal tail release, Trp decomposition, and finally FAD release providing evidence that DmCRY does not undergo a photocycle. We propose that light is a negative regulator of DmCRY stability even under in vitro conditions where the proteasomal machinery is missing, that is in line with its biological function, i.e. entrainment of the circadian clock.
Collapse
Affiliation(s)
- Roger Jan Kutta
- Manchester Institute of Biotechnology (MIB) and School of Chemistry
, The University of Manchester
,
131 Princess Street
, Manchester
, M1 7DN
, UK
.
| | - Nataliya Archipowa
- Manchester Institute of Biotechnology (MIB) and School of Chemistry
, The University of Manchester
,
131 Princess Street
, Manchester
, M1 7DN
, UK
.
| | - Nigel Shaun Scrutton
- Manchester Institute of Biotechnology (MIB) and School of Chemistry
, The University of Manchester
,
131 Princess Street
, Manchester
, M1 7DN
, UK
.
| |
Collapse
|
12
|
Tsukuno H, Ozeki K, Kobayashi I, Hisatomi O, Mino H. Flavin-Radical Formation in the Light-Oxygen-Voltage-Sensing Domain of the Photozipper Blue-light Sensor Protein. J Phys Chem B 2018; 122:8819-8823. [PMID: 30157376 DOI: 10.1021/acs.jpcb.8b05808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formation of the neutral flavin radical in the light-oxygen-voltage-sensing (LOV-sensing) domain of photozipper, based on VfAUREO1, was investigated by electron paramagnetic resonance spectroscopy. The flavin radical was observed in the presence of dithiothreitol by illumination of a LOV-domain mutant (C254S), in which a photoactive cysteine residue in close proximity to flavin was replaced with a serine. The radical did not form under low initial protein-concentration conditions (less than 20 μM). The flavin radicals accumulated with logistic time-dependent kinetics when the protein concentrations were higher than 30 μM. These results indicate that the radical is produced by concerted reactions involving protein interactions and that the radical is formed from the LOV dimer but not the LOV monomer. In contrast, logistic time dependencies were not observed for the sample adapted to the dark following radical formation by illumination, indicating that initialization of the proton pathway is essential for this fast sensing reaction.
Collapse
Affiliation(s)
- Hiroyuki Tsukuno
- Division of Material Science, Graduate School of Science , Nagoya University , Chikusa-ku, Furo-cho, Nagoya 464-8602 , Japan
| | - Kohei Ozeki
- Division of Material Science, Graduate School of Science , Nagoya University , Chikusa-ku, Furo-cho, Nagoya 464-8602 , Japan
| | - Itsuki Kobayashi
- Department of Earth and Space Science, Graduate School of Science , Osaka University , Osaka 560-0043 , Japan
| | - Osamu Hisatomi
- Department of Earth and Space Science, Graduate School of Science , Osaka University , Osaka 560-0043 , Japan
| | - Hiroyuki Mino
- Division of Material Science, Graduate School of Science , Nagoya University , Chikusa-ku, Furo-cho, Nagoya 464-8602 , Japan
| |
Collapse
|
13
|
Magerl K, Stambolic I, Dick B. Switching from adduct formation to electron transfer in a light-oxygen-voltage domain containing the reactive cysteine. Phys Chem Chem Phys 2018; 19:10808-10819. [PMID: 28271102 DOI: 10.1039/c6cp08370f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
LOV (light-, oxygen- or voltage-sensitive) domains act as photosensory units of many prokaryotic and eukaryotic proteins. Upon blue light excitation they undergo a photocycle via the excited triplet state of their flavin chromophore yielding the flavin-cysteinyl adduct. Adduct formation is highly conserved among all LOV domains and constitutes the primary step of LOV domain signaling. But recently, it has been shown that signal propagation can also be triggered by flavin photoreduction to the neutral semiquinone offering new prospects for protein engineering. This, however, requires mutation of the photo-active Cys. Here, we report on LOV1 mutants of C. reinhardtii phototropin in which adduct formation is suppressed although the photo-active Cys is present. Introduction of a Tyr into the LOV core induces a proton coupled electron transfer towards the flavin chromophore. Flavin radical species are formed via either the excited flavin singlet or triplet state depending on the geometry of donor and acceptor. This photoreductive pathway resembles the photoreaction observed in other blue light photoreceptors, e.g. blue-light sensors using flavin adenine dinucleotide (BLUF) domains or cryptochromes. The ability to tune the photoreactivity of the flavin chromophore inside the LOV core has implications for the mechanism of adduct formation in the wild type and may be of use for protein engineering.
Collapse
Affiliation(s)
- Kathrin Magerl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| | | | | |
Collapse
|
14
|
Kopka B, Magerl K, Savitsky A, Davari MD, Röllen K, Bocola M, Dick B, Schwaneberg U, Jaeger KE, Krauss U. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci Rep 2017; 7:13346. [PMID: 29042655 PMCID: PMC5645311 DOI: 10.1038/s41598-017-13420-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Blue-light absorption by the flavin chromophore in light, oxygen, voltage (LOV) photoreceptors triggers photochemical reactions that lead to the formation of a flavin-cysteine adduct. While it has long been assumed that adduct formation is essential for signaling, it was recently shown that LOV photoreceptor variants devoid of the photoactive cysteine can elicit a functional response and that flavin photoreduction to the neutral semiquinone radical is sufficient for signal transduction. Currently, the mechanistic basis of the underlying electron- (eT) and proton-transfer (pT) reactions is not well understood. We here reengineered pT into the naturally not photoreducible iLOV protein, a fluorescent reporter protein derived from the Arabidopsis thaliana phototropin-2 LOV2 domain. A single amino-acid substitution (Q489D) enabled efficient photoreduction, suggesting that an eT pathway is naturally present in the protein. By using a combination of site-directed mutagenesis, steady-state UV/Vis, transient absorption and electron paramagnetic resonance spectroscopy, we investigate the underlying eT and pT reactions. Our study provides strong evidence that several Tyr and Trp residues, highly conserved in all LOV proteins, constitute the eT pathway for flavin photoreduction, suggesting that the propensity for photoreduction is evolutionary imprinted in all LOV domains, while efficient pT is needed to stabilize the neutral semiquinone radical.
Collapse
Affiliation(s)
- Benita Kopka
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Kathrin Magerl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.,IBG-1: Biotechnologie, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.
| |
Collapse
|
15
|
Vertebrate Cryptochromes are Vestigial Flavoproteins. Sci Rep 2017; 7:44906. [PMID: 28317918 PMCID: PMC5357904 DOI: 10.1038/srep44906] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
All cryptochromes are currently classified as flavoproteins. In animals their best-described role is as components of the circadian clock. This circadian function is variable, and can be either light-dependent or -independent; the molecular origin of this difference is unknown. Type I animal cryptochromes are photoreceptors that entrain an organism's clock to its environment, whereas Type II (including mammals) regulate circadian timing in a light-independent manner. Here, we reveal that, in contrast to Type I, Type II animal cryptochromes lack the structural features to securely bind the photoactive flavin cofactor. We provide a molecular basis for the distinct circadian roles of different animal cryptochromes, which also has significant implications for the putative role of Type II cryptochromes in animal photomagnetoreception.
Collapse
|
16
|
Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue. Nat Commun 2015; 6:10079. [PMID: 26648256 PMCID: PMC4682037 DOI: 10.1038/ncomms10079] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/30/2015] [Indexed: 01/19/2023] Open
Abstract
Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. Light-oxygen-voltage receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here, the authors show that these proteins can react to light even when devoid of the adduct-forming cysteine.
Collapse
|
17
|
Kutta RJ, Magerl K, Kensy U, Dick B. A search for radical intermediates in the photocycle of LOV domains. Photochem Photobiol Sci 2015; 14:288-99. [PMID: 25380177 DOI: 10.1039/c4pp00155a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LOV domains are the light sensitive parts of phototropins and many other light-activated enzymes that regulate the response to blue light in plants and algae as well as some fungi and bacteria. Unlike all other biological photoreceptors known so far, the photocycle of LOV domains involves the excited triplet state of the chromophore. This chromophore is flavin mononucleotide (FMN) which forms a covalent adduct with a cysteine residue in the signaling state. Since the formation of this adduct from the triplet state involves breaking and forming of two bonds as well as a change from the triplet to the singlet spin state, various intermediates have been proposed, e.g. a protonated triplet state (3)FMNH(+), the radical anion (2)FMN˙(-), or the neutral semiquinone radical (2)FMNH˙. We performed an extensive search for these intermediates by two-dimensional transient absorption (2D-TA) with a streak camera. However, no transient with a rate constant between the decay of fluorescence and the decay of the triplet state could be detected. Analysis of the decay associated difference spectra results in quantum yields for the formation of the adduct from the triplet of ΦA(LOV1) ≈ 0.75 and ΦA(LOV2) ≈ 0.80. This is lower than the values ΦA(LOV1) ≈ 0.95 and ΦA(LOV2) ≈ 0.99 calculated from the rate constants, giving indirect evidence of an intermediate that reacts either to form the adduct or to decay back to the ground state. Since there is no measurable delay between the decay of the triplet and the formation of the adduct, we conclude that this intermediate reacts much faster than it is formed. The LOV1-C57S mutant shows a weak and slowly decaying (τ > 100 μs) transient whose decay associated spectrum has bands at 375 and 500 nm, with a shoulder at 400 nm. This transient is insensitive to the pH change in the range 6.5-10.0 but increases on addition of β-mercaptoethanol as the reducing agent. We assign this intermediate to the radical anion which is protected from protonation by the protein. We propose that the adduct is formed via the same intermediate by combination of the radical ion pair.
Collapse
Affiliation(s)
- Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053 Regensburg, Germany.
| | | | | | | |
Collapse
|
18
|
The photochemical mechanism of a B12-dependent photoreceptor protein. Nat Commun 2015; 6:7907. [PMID: 26264192 PMCID: PMC4557120 DOI: 10.1038/ncomms8907] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023] Open
Abstract
The coenzyme B12-dependent photoreceptor protein, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids in response to light. On binding of coenzyme B12 the monomeric apoprotein forms tetramers in the dark, which bind operator DNA thus blocking transcription. Under illumination the CarH tetramer dissociates, weakening its affinity for DNA and allowing transcription. The mechanism by which this occurs is unknown. Here we describe the photochemistry in CarH that ultimately triggers tetramer dissociation; it proceeds via a cob(III)alamin intermediate, which then forms a stable adduct with the protein. This pathway is without precedent and our data suggest it is independent of the radical chemistry common to both coenzyme B12 enzymology and its known photochemistry. It provides a mechanistic foundation for the emerging field of B12 photobiology and will serve to inform the development of a new class of optogenetic tool for the control of gene expression. Coenzyme B12 traditionally acts as cofactor to light-independent metabolic enzymes in bacteria and humans. Here, Kutta et al. present a time-resolved photochemical description of a B12-dependent photoreceptor protein, which represents a mechanistic foundation for B12 photobiology.
Collapse
|
19
|
Westberg M, Holmegaard L, Pimenta FM, Etzerodt M, Ogilby PR. Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. J Am Chem Soc 2015; 137:1632-42. [PMID: 25575190 DOI: 10.1021/ja511940j] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Singlet oxygen, O(2)(a(1)Δ(g)), plays a key role in many processes of cell signaling. Limitations in mechanistic studies of such processes are generally associated with the difficulty of controlling the amount and location of O(2)(a(1)Δ(g)) production in or on a cell. As such, there is great need for a system that (a) selectively produces O(2)(a(1)Δ(g)) in appreciable and accurately quantifiable yields and (b) can be localized in a specific place at the suborganelle level. A genetically encodable, protein-encased photosensitizer is one way to achieve this goal. Through a systematic and rational approach involving mutations to a LOV2 protein that binds the chromophore flavin mononucleotide (FMN), we have developed a promising photosensitizer that overcomes many of the problems that affect related systems currently in use. Specifically, by decreasing the extent of hydrogen bonding between FMN and a specific amino acid residue in the local protein environment, we decrease the susceptibility of FMN to undesired photoinitiated electron-transfer reactions that kinetically compete with O(2)(a(1)Δ(g)) production. As a consequence, our protein-encased FMN system produces O(2)(a(1)Δ(g)) with the uniquely large quantum efficiency of 0.25 ± 0.03. We have also quantified other key photophysical parameters that characterize this sensitizer system, including unprecedented H(2)O/D(2)O solvent isotope effects on the O(2)(a(1)Δ(g)) formation kinetics and yields. As such, our results facilitate future systematic developments in this field.
Collapse
Affiliation(s)
- Michael Westberg
- Center for Oxygen Microscopy and Imaging, Chemistry Department and ‡Department of Molecular Biology and Genetics, Aarhus University , DK-8000, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
20
|
Williamson HR, Dow BA, Davidson VL. Mechanisms for control of biological electron transfer reactions. Bioorg Chem 2014; 57:213-221. [PMID: 25085775 PMCID: PMC4285783 DOI: 10.1016/j.bioorg.2014.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
Electron transfer (ET) through and between proteins is a fundamental biological process. The rates and mechanisms of these ET reactions are controlled by the proteins in which the redox centers that donate and accept electrons reside. The protein influences the magnitudes of the ET parameters, the electronic coupling and reorganization energy that are associated with the ET reaction. The protein can regulate the rates of the ET reaction by requiring reaction steps to optimize the system for ET, leading to kinetic mechanisms of gated or coupled ET. Amino acid residues in the segment of the protein through which long range ET occurs can also modulate the ET rate by serving as staging points for hopping mechanisms of ET. Specific examples are presented to illustrate these mechanisms by which proteins control rates of ET reactions.
Collapse
Affiliation(s)
- Heather R Williamson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Brian A Dow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States.
| |
Collapse
|
21
|
Factors that control the chemistry of the LOV domain photocycle. PLoS One 2014; 9:e87074. [PMID: 24475227 PMCID: PMC3903614 DOI: 10.1371/journal.pone.0087074] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/20/2013] [Indexed: 12/26/2022] Open
Abstract
Algae, plants, bacteria and fungi contain Light-Oxygen-Voltage (LOV) domains that function as blue light sensors to control cellular responses to light. All LOV domains contain a bound flavin chromophore that is reduced upon photon absorption and forms a reversible, metastable covalent bond with a nearby cysteine residue. In Avena sativa LOV2 (AsLOV2), the photocycle is accompanied by an allosteric conformational change that activates the attached phototropin kinase in the full-length protein. Both the conformational change and formation of the cysteinyl-flavin adduct are stabilized by the reduction of the N5 atom in the flavin's isoalloxazine ring. In this study, we perform a mutational analysis to investigate the requirements for LOV2 to photocycle. We mutated all the residues that interact with the chromophore isoalloxazine ring to inert functional groups but none could fully inhibit the photocycle except those to the active-site cysteine. However, electronegative side chains in the vicinity of the chromophore accelerate the N5 deprotonation and the return to the dark state. Mutations to the N414 and Q513 residues identify a potential water gate and H₂O coordination sites. These residues affect the electronic nature of the chromophore and photocycle time by helping catalyze the N5 reduction leading to the completion of the photocycle. In addition, we demonstrate that dehydration leads to drastically slower photocycle times. Finally, to investigate the requirements of an active-site cysteine for photocycling, we moved the nearby cysteine to alternative locations and found that some variants can still photocycle. We propose a new model of the LOV domain photocycle that involves all of these components.
Collapse
|
22
|
Domratcheva T, Udvarhelyi A, Shahi ARM. Computational spectroscopy, dynamics, and photochemistry of photosensory flavoproteins. Methods Mol Biol 2014; 1146:191-228. [PMID: 24764094 DOI: 10.1007/978-1-4939-0452-5_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Extensive interest in photosensory proteins stimulated computational studies of flavins and flavoproteins in the past decade. This review is dedicated to the three central topics of these studies: calculations of flavin UV-visible and IR spectra, simulated dynamics of photoreceptor proteins, and flavin photochemistry. Accordingly, this chapter is divided into three parts; each part describes corresponding computational protocols, summarizes computational results, and discusses the emerging mechanistic picture.
Collapse
Affiliation(s)
- Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany,
| | | | | |
Collapse
|
23
|
Fraikin GY, Strakhovskaya MG, Rubin AB. Biological photoreceptors of light-dependent regulatory processes. BIOCHEMISTRY (MOSCOW) 2013; 78:1238-53. [DOI: 10.1134/s0006297913110047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Peter E, Dick B, Baeurle SA. Signaling pathway of a photoactivable Rac1-GTPase in the early stages. Proteins 2012; 80:1350-62. [DOI: 10.1002/prot.24031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/17/2011] [Accepted: 12/29/2011] [Indexed: 12/18/2022]
|
25
|
Peter E, Dick B, Baeurle SA. Signals of LOV1: a computer simulation study on the wildtype LOV1-domain of Chlamydomonas reinhardtii and its mutants. J Mol Model 2011; 18:1375-88. [PMID: 21761179 DOI: 10.1007/s00894-011-1165-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/24/2011] [Indexed: 01/12/2023]
Abstract
Phototropins are photoreceptors regulating the blue-light response in plants and bacteria. They consist of two LOV (light oxygen voltage sensitive) domains each containing a non-covalently bound flavin-mononucleotide (FMN) chromophore, which are connected to a serine/threonine-kinase. Upon illumination, the LOV-domains undergo conformational changes, triggering a signal cascade in the organism through kinase activation. Here, we present results from molecular dynamics simulations in which we investigate the signal transduction pathway of the wildtype LOV1-domain of Chlamydomonas reinhardtii and a methyl-mercaptan (MM) adduct of its Cys57Gly-mutant at the molecular level. In particular, we analyzed the effect of covalent-bond formation between the reactive cysteine Cys57 and the FMN-reaction center, as well as the subsequent charge redistribution, on the spatio-dynamical behavior of the LOV1-domain. We compare the calculation results with experimental data and demonstrate that these adduct state characteristics have an important influence on the response of this photosensor. The light-induced changes implicate primarily an alteration of the surface charge distribution through rearrangement of the highly flexible Cα-, Dα- and Eα-helices including the Glu51-Lys91-salt bridge on the hydrophilic side of the protein domain and a β-sheet tightening process via coupling of the Aβ- and Bβ-strands. Our findings confirm the aptitude of the LOV1-domain to function as a dimerization partner, allowing the green alga to adapt its reproduction and growth speed to the environmental conditions.
Collapse
Affiliation(s)
- Emanuel Peter
- Department of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | | |
Collapse
|
26
|
Losi A, Gärtner W. Old Chromophores, New Photoactivation Paradigms, Trendy Applications: Flavins in Blue Light-Sensing Photoreceptors†. Photochem Photobiol 2011; 87:491-510. [DOI: 10.1111/j.1751-1097.2011.00913.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Raffelberg S, Mansurova M, Gärtner W, Losi A. Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen-bonding network. J Am Chem Soc 2011; 133:5346-56. [PMID: 21410163 DOI: 10.1021/ja1097379] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An extended hydrogen-bonding (HB) network stabilizes the isoalloxazine ring of the flavin mononucleotide (FMN) chromophore within the photosensing LOV domain of blue-light protein receptors, via interactions between the C(2)═O, N(3)H, C(4)═O, and N(5) groups and conserved glutamine and asparagine residues. In this work we studied the influence of the HB network on the efficiency, kinetics, and energetics of a LOV protein photocycle, involving the reversible formation of a FMN-cysteine covalent adduct. The following results were found for mutations of the conserved amino acids N94, N104, and Q123 in the Bacillus subtilis LOV protein YtvA: (i) Increased (N104D, N94D) or strongly reduced (N94A) rate of adduct formation; this latter mutation extends the lifetime of the flavin triplet state, i.e., adduct formation, more than 60-fold, from 2 μs for the wild-type (WT) protein to 129 μs. (ii) Acceleration of the overall photocycle for N94S, N94A, and Q123N, with recovery lifetimes 20, 45, and 85 times faster than for YtvA-WT, respectively. (iii) Slight modifications of FMN spectral features, correlated with the polarization of low-energy transitions. (iv) Strongly reduced (N94S) or suppressed (Q123N) structural volume changes accompanying adduct formation, as determined by optoacoustic spectroscopy. (v) Minor effects on the quantum yield, with the exception of a considerable reduction for Q123N, i.e., 0.22 vs 0.49 for YtvA-WT. The data stress the importance of the HB network in modulating the photocycle of LOV domains, while at the same time establishing a link with functional responses.
Collapse
Affiliation(s)
- Sarah Raffelberg
- Max-Planck-Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim, Germany
| | | | | | | |
Collapse
|
28
|
Megerle U, Wenninger M, Kutta RJ, Lechner R, König B, Dick B, Riedle E. Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds. Phys Chem Chem Phys 2011; 13:8869-80. [DOI: 10.1039/c1cp20190e] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Arents JC, Perez MA, Hendriks J, Hellingwerf KJ. On the midpoint potential of the FAD chromophore in a BLUF-domain containing photoreceptor protein. FEBS Lett 2010; 585:167-72. [PMID: 21110976 DOI: 10.1016/j.febslet.2010.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 09/30/2010] [Accepted: 11/18/2010] [Indexed: 11/24/2022]
Abstract
The redox-midpoint potential of the FAD chromophore in the BLUF domain of anti-transcriptional regulator AppA from Rhodobacter sphaeroides equals ∼-260mV relative to the calomel electrode. Altering the structure of its chromophore-binding pocket through site-directed mutagenesis brings this midpoint potential closer to that of free flavin in aqueous solution. The redox-midpoint potential of this BLUF domain is intermediate between those of LOV domains and Cryptochromes, which may rationalize the primary photochemistry observed in these three flavin-containing photoreceptor families. These results also imply that LOV domains, among the flavin-containing photosensory receptors, are least sensitive to intracellular chemical reduction in the dark.
Collapse
Affiliation(s)
- Jos C Arents
- Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|