1
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
2
|
Seitz C, Deveci İ, McCammon JA. Glycosylation and Crowded Membrane Effects on Influenza Neuraminidase Stability and Dynamics. J Phys Chem Lett 2023; 14:9926-9934. [PMID: 37903229 PMCID: PMC10641874 DOI: 10.1021/acs.jpclett.3c02524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023]
Abstract
All protein simulations are conducted with varying degrees of simplification, oftentimes with unknown ramifications about how these simplifications affect the interpretability of the results. In this work, we investigated how protein glycosylation and lateral crowding effects modulate an array of properties characterizing the stability and dynamics of influenza neuraminidase. We constructed three systems: (1) glycosylated neuraminidase in a whole virion (i.e., crowded membrane) environment, (2) glycosylated neuraminidase in its own lipid bilayer, and (3) unglycosylated neuraminidase in its own lipid bilayer. We saw that glycans tend to stabilize the protein structure and reduce its conformational flexibility while restricting the solvent movement. Conversely, a crowded membrane environment encouraged exploration of the free energy landscape and a large-scale conformational change, while making the protein structure more compact. Understanding these effects informs what factors one must consider in attempting to recapture the desired level of physical accuracy.
Collapse
Affiliation(s)
- Christian Seitz
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - İlker Deveci
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - J. Andrew McCammon
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Duan L, Tang B, Luo S, Xiong D, Wang Q, Xu X, Zhang JZH. Entropy driven cooperativity effect in multi-site drug optimization targeting SARS-CoV-2 papain-like protease. Cell Mol Life Sci 2023; 80:313. [PMID: 37796323 PMCID: PMC11072831 DOI: 10.1007/s00018-023-04985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Papain-like protease (PLpro), a non-structural protein encoded by SARS-CoV-2, is an important therapeutic target. Regions 1 and 5 of an existing drug, GRL0617, can be optimized to produce cooperativity with PLpro binding, resulting in stronger binding affinity. This work investigated the origin of the cooperativity using molecular dynamics simulations combined with the interaction entropy (IE) method. The regions' improvement exhibits cooperativity by calculating the binding free energies between the complex of PLpro-inhibitor. The thermodynamic integration method further verified the cooperativity generated in the drug improvement. To further determine the specific source of cooperativity, enthalpy and entropy in the complexes were calculated using molecular mechanics/generalized Born surface area and IE. The results show that the entropic change is an important contributor to the cooperativity. Our study also identified residues P248, Q269, and T301 that play a significant role in cooperativity. The optimization of the inhibitor stabilizes these residues and minimizes the entropic loss, and the cooperativity observed in the binding free energy can be attributed to the change in the entropic contribution of these residues. Based on our research, the application of cooperativity can facilitate drug optimization, and provide theoretical ideas for drug development that leverage cooperativity by reducing the contribution of entropy through multi-locus binding.
Collapse
Affiliation(s)
- Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - John Z H Zhang
- Faculty of Synthetic Biology and Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
- Department of Chemistry, New York University, New York, NY, 10003, USA.
| |
Collapse
|
4
|
Seitz C, Deveci İ, McCammon JA. Glycosylation and Crowded Membrane Effects on Influenza Neuraminidase Stability and Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.556910. [PMID: 37745347 PMCID: PMC10515755 DOI: 10.1101/2023.09.10.556910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
All protein simulations are conducted with varying degrees of simplifications, oftentimes with unknown ramifications on how these simplifications affect the interpretability of the results. In this work we investigated how protein glycosylation and lateral crowding effects modulate an array of properties characterizing the stability and dynamics of influenza neuraminidase. We constructed three systems: 1) Glycosylated neuraminidase in a whole virion (i.e. crowded membrane) environment 2) Glycosylated neuraminidase in its own lipid bilayer 3) Unglycosylated neuraminidase in its own lipid bilayer. We saw that glycans tend to stabilize the protein structure and reduce its conformational flexibility while restricting solvent movement. Conversely, a crowded membrane environment encouraged exploration of the free energy landscape and a large scale conformational change while making the protein structure more compact. Understanding these effects informs what factors one must consider while attempting to recapture the desired level of physical accuracy.
Collapse
Affiliation(s)
- Christian Seitz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - İlker Deveci
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
Singh A, Maity A, Singh N. Structure and Dynamics of dsDNA in Cell-like Environments. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1587. [PMID: 36359677 PMCID: PMC9689892 DOI: 10.3390/e24111587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Deoxyribonucleic acid (DNA) is a fundamental biomolecule for correct cellular functioning and regulation of biological processes. DNA's structure is dynamic and has the ability to adopt a variety of structural conformations in addition to its most widely known double-stranded DNA (dsDNA) helix structure. Stability and structural dynamics of dsDNA play an important role in molecular biology. In vivo, DNA molecules are folded in a tightly confined space, such as a cell chamber or a channel, and are highly dense in solution; their conformational properties are restricted, which affects their thermodynamics and mechanical properties. There are also many technical medical purposes for which DNA is placed in a confined space, such as gene therapy, DNA encapsulation, DNA mapping, etc. Physiological conditions and the nature of confined spaces have a significant influence on the opening or denaturation of DNA base pairs. In this review, we summarize the progress of research on the stability and dynamics of dsDNA in cell-like environments and discuss current challenges and future directions. We include studies on various thermal and mechanical properties of dsDNA in ionic solutions, molecular crowded environments, and confined spaces. By providing a better understanding of melting and unzipping of dsDNA in different environments, this review provides valuable guidelines for predicting DNA thermodynamic quantities and for designing DNA/RNA nanostructures.
Collapse
|
6
|
Irukuvajjula SS, Reddy JG, Vadrevu R. Crowding by Poly(ethylene glycol) Destabilizes Chemotaxis Protein Y (CheY). Biochemistry 2022; 61:1431-1443. [PMID: 35796609 DOI: 10.1021/acs.biochem.2c00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prevailing understanding of various aspects of biochemical processes, including folding, stability, intermolecular interactions, and the binding of metals, substrates, and inhibitors, is derived from studies carried out under dilute and homogeneous conditions devoid of a crowding-related environment. The effect of crowding-induced modulation on the structure and stability of native and magnesium-dependent Chemotaxis Y (CheY), a bacterial signaling protein, was probed in the presence and absence of poly(ethylene glycol) (PEG). A combined analysis from circular dichroism, intrinsic and extrinsic fluorescence, and tryptophan fluorescence lifetime changes indicates that PEG perturbs the structure but leaves the thermal stability largely unchanged. Intriguingly, while the stability of the protein is enhanced in the presence of magnesium under dilute buffer conditions, PEG-induced crowding leads to reduced thermal stability in the presence of magnesium. Nuclear magnetic resonance (NMR) chemical shift perturbations and resonance broadening for a subset of residues indicate that PEG interacts specifically with a subset of hydrophilic and hydrophobic residues found predominantly in α helices, β strands, and in the vicinity of the metal-binding region. Thus, PEG prompted conformational perturbation, presumably provides a different situation for magnesium interaction, thereby perturbing the magnesium-prompted stability. In summary, our results highlight the dominance of enthalpic contributions between PEG and CheY via both hydrophilic and hydrophobic interactions, which can subtly affect the conformation, modulating the metal-protein interaction and stability, implying that in the context of cellular situation, structure, stability, and magnesium binding thermodynamics of CheY may be different from those measured in dilute solution.
Collapse
Affiliation(s)
- Shivkumar Sharma Irukuvajjula
- Department of Biological Sciences, Birla Institute of Technology & Science─Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad 500078, India
| | - Jithender G Reddy
- NMR Division, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Ministry of Science and Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology & Science─Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
7
|
Bazmi S, Wallin S. Crowding-induced protein destabilization in the absence of soft attractions. Biophys J 2022; 121:2503-2513. [PMID: 35672949 DOI: 10.1016/j.bpj.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
Abstract
It is generally assumed that volume exclusion by macromolecular crowders universally stabilizes the native states of proteins and destabilization suggests soft attractions between crowders and protein. Here we show that proteins can be destabilized even by crowders that are purely repulsive. With a coarse-grained sequence-based model, we study the folding thermodynamics of two sequences with different native folds, a helical hairpin and a β-barrel, in a range of crowder volume fractions, φc. We find that the native state, N, remains structurally unchanged under crowded conditions, while the size of the unfolded state, U, decreases monotonically with φc. Hence, for all φc>0, U is entropically disfavored relative to N. This entropy-centric view holds for the helical hairpin protein, which is stabilized under all crowded conditions as quantified by changes in either the folding midpoint temperature, Tm, or the free energy of folding. We find, however, that the β-barrel protein is destabilized under low-T, low-φc conditions. This destabilization can be understood from two characteristics of its folding: 1) a relatively compact U at T<Tm, such that U is only weakly disfavored entropically by the crowders; and 2) a transient, compact, and relatively low-energy nonnative state that has a maximum population of only a few percent at φc=0, but increasing monotonically with φc. Overall, protein destabilization driven by hard-core effects appears possible when a compaction of U leads to even a modest population of compact nonnative states that are energetically competitive with N.
Collapse
Affiliation(s)
- Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland and Labrador, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland and Labrador, Canada.
| |
Collapse
|
8
|
Taylor MP, Vinci C, Suzuki R. Effects of macromolecular crowding on the folding of a polymer chain: A Wang-Landau simulation study. J Chem Phys 2020; 153:174901. [PMID: 33167653 DOI: 10.1063/5.0025640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A flexible polymer chain in the presence of inert macromolecular crowders will experience a loss of configurational entropy due to the crowder excluded volume. This entropy reduction will be most pronounced in good solvent conditions where the chain assumes an expanded coil conformation. For polymers that undergo a folding transition from a coil to a compact ordered state, as is the case for many globular proteins, macromolecular crowding is expected to stabilize the folded state and thereby shift the transition location. Here, we study such entropic stabilization effects for a tangent square-well sphere chain (monomer diameter σ) in the presence of hard-sphere (HS) crowders (diameter D ≥ σ). We use the Wang-Landau simulation algorithm to construct the density of states for this chain in a crowded environment and are thus able to directly compute the reduction in configurational entropy due to crowding. We study both a chain that undergoes all-or-none folding directly from the coil state and a chain that folds via a collapsed-globule intermediate state. In each case, we find an increase in entropic stabilization for the compact states with an increase in crowder density and, for fixed crowder density, with a decrease in crowder size (concentrated, small crowders have the largest effect). The crowder significantly reduces the average size for the unfolded states while having a minimal effect on the size of the folded states. In the athermal limit, our results directly provide the confinement free energy due to crowding for a HS chain in a HS solvent.
Collapse
Affiliation(s)
- Mark P Taylor
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| | | | - Ryogo Suzuki
- Department of Physics, Hiram College, Hiram, Ohio 44234, USA
| |
Collapse
|
9
|
Alas SDJ, González-Pérez PP, Beltrán HI. In silico minimalist approach to study 2D HP protein folding into an inhomogeneous space mimicking osmolyte effect: First trial in the search of foldameric backbones. Biosystems 2019; 181:31-43. [PMID: 31029589 DOI: 10.1016/j.biosystems.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
We have employed our bioinformatics workbench, named Evolution, a Multi-Agent System based architecture with lattice-bead-models, evolutionary-algorithms, and correlated-networks as inhomogeneous spaces, with different correlation lengths, mimicking osmolyte effect (molecular crowding), to in silico survey protein folding. Resolution is with hydrophobic-polar (H-P) sequences in inhomogeneous 2D square lattices, since general biophysicochemical trends consider i) that the backbone is one of the major components responsible for protein folding and ii) osmolyte effect plays an important role to better folding kinetics and reach deeper optima. We have designed foldamers, as square n × n (n = 3, 4, 5, 6) arrays of hydrophobic cores stabilized by H⋯H contacts, attached through short PP (P2) or long PPPP (P4) loops, giving rise to 8 sequences (S1 to S8) with known optimal scores. Designed sequences were folded into different inhomogeneous spaces and indeed crowded media induced deeper optima, being crowding necessary to best fold, but the space should be enough constrained to induce folding without banning chain movement. The constrained space plays an important role to reach the optimal structure, depending on designed foldamer sequence size, for an optimal correlation length, implying that media affects the folding pathways as happens in real systems. Designed structures were found, moreover, they undergo to degenerated states, both folding states could survey considering i) backbone information and ii) osmolyte effect. In nature, the proteins fold in different structures aiming to reach a global minimum, but a local minimum could be enough to the protein to be functional or dysfunctional.
Collapse
Affiliation(s)
- Salomón de Jesús Alas
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Ciudad de México, 05300, Mexico.
| | - Pedro Pablo González-Pérez
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Unidad Cuajimalpa, 05300, Ciudad de Mexico, Mexico
| | - Hiram Isaac Beltrán
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana Unidad Azcapotzalco, Ciudad de México, 02200, Mexico.
| |
Collapse
|
10
|
Rangubpit W, Kitjaruwankul S, Boonamnaj P, Sompornpisut P, Pandey R. Globular bundles and entangled network of proteins (CorA) by a coarse-grained Monte Carlo simulation. AIMS BIOPHYSICS 2019. [DOI: 10.3934/biophy.2019.2.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Molina JE, Vasquez-Echeverri A, Schwartz DC, Hernández-Ortiz JP. Discrete and Continuum Models for the Salt in Crowded Environments of Suspended Charged Particles. J Chem Theory Comput 2018; 14:4901-4913. [PMID: 30044624 DOI: 10.1021/acs.jctc.8b00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrostatic forces greatly affect the overall dynamics and diffusional activities of suspended charged particles in crowded environments. Accordingly, the concentration of counter- or co-ions in a fluid-''the salt"-determines the range, strength, and order of electrostatic interactions between particles. This environment fosters engineering routes for controlling directed assembly of particles at both the micro- and nanoscale. Here, we analyzed two computational modeling schemes that considered salt within suspensions of charged particles, or polyelectrolytes: discrete and continuum. Electrostatic interactions were included through a Green's function formalism, where the confined fundamental solution for Poisson's equation is resolved by the general geometry Ewald-like method. For the discrete model, the salt was considered as regularized point-charges with a specific valence and size, while concentration fields were defined for each ionic species for the continuum model. These considerations were evolved using Brownian dynamics of the suspended charged particles and the discrete salt ions, while a convection-diffusion transport equation, including the Nernst-Planck diffusion mechanism, accounted for the dynamics of the concentration fields. The salt/particle models were considered as suspensions under slit-confinement conditions for creating crowded "macro-ions", where density distributions and radial distribution functions were used to compare and differentiate computational models. Importantly, our analysis shows that disparate length scales or increased system size presented by the salt and suspended particles are best dealt with using concentration fields to model the ions. These findings were then validated by novel simulations of a semipermeable polyelectrolyte membrane, at the mesoscale, from which ionic channels emerged and enable ion conduction.
Collapse
Affiliation(s)
- Jarol E Molina
- Departamento de Materiales y Nanotecnología , Universidad Nacional de Colombia-Medellín , Medellín 050034 , Colombia
| | - Alejandro Vasquez-Echeverri
- Departamento de Materiales y Nanotecnología , Universidad Nacional de Colombia-Medellín , Medellín 050034 , Colombia
| | - David C Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States.,The Biotechnology Center , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Juan P Hernández-Ortiz
- Departamento de Materiales y Nanotecnología , Universidad Nacional de Colombia-Medellín , Medellín 050034 , Colombia.,The Biotechnology Center , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States.,Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
12
|
Leuenberger P, Ganscha S, Kahraman A, Cappelletti V, Boersema PJ, von Mering C, Claassen M, Picotti P. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 2017; 355:355/6327/eaai7825. [PMID: 28232526 DOI: 10.1126/science.aai7825] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
Temperature-induced cell death is thought to be due to protein denaturation, but the determinants of thermal sensitivity of proteomes remain largely uncharacterized. We developed a structural proteomic strategy to measure protein thermostability on a proteome-wide scale and with domain-level resolution. We applied it to Escherichia coli, Saccharomyces cerevisiae, Thermus thermophilus, and human cells, yielding thermostability data for more than 8000 proteins. Our results (i) indicate that temperature-induced cellular collapse is due to the loss of a subset of proteins with key functions, (ii) shed light on the evolutionary conservation of protein and domain stability, and (iii) suggest that natively disordered proteins in a cell are less prevalent than predicted and (iv) that highly expressed proteins are stable because they are designed to tolerate translational errors that would lead to the accumulation of toxic misfolded species.
Collapse
Affiliation(s)
- Pascal Leuenberger
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland.,Systems Biology Graduate School PhD Program, ETHZ and University of Zurich, CH-8093 Zurich, Switzerland
| | - Stefan Ganscha
- Systems Biology Graduate School PhD Program, ETHZ and University of Zurich, CH-8093 Zurich, Switzerland.,Institute of Molecular Systems Biology, Department of Biology, ETHZ, CH-8093 Zurich, Switzerland
| | - Abdullah Kahraman
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Valentina Cappelletti
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland
| | - Paul J Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Manfred Claassen
- Institute of Molecular Systems Biology, Department of Biology, ETHZ, CH-8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland.
| |
Collapse
|
13
|
Palit S, He L, Hamilton WA, Yethiraj A, Yethiraj A. Combining Diffusion NMR and Small-Angle Neutron Scattering Enables Precise Measurements of Polymer Chain Compression in a Crowded Environment. PHYSICAL REVIEW LETTERS 2017; 118:097801. [PMID: 28306301 DOI: 10.1103/physrevlett.118.097801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 06/06/2023]
Abstract
The effect of particles on the behavior of polymers in solution is important in a number of important phenomena such as the effect of "crowding" proteins in cells, colloid-polymer mixtures, and nanoparticle "fillers" in polymer solutions and melts. In this Letter, we study the effect of spherical inert nanoparticles (which we refer to as "crowders") on the diffusion coefficient and radius of gyration of polymers in solution using pulsed-field-gradient NMR and small-angle neutron scattering (SANS), respectively. The diffusion coefficients exhibit a plateau below a characteristic polymer concentration, which we identify as the overlap threshold concentration c^{⋆}. Above c^{⋆}, in a crossover region between the dilute and semidilute regimes, the (long-time) self-diffusion coefficients are found, universally, to decrease exponentially with polymer concentration at all crowder packing fractions, consistent with a structural basis for the long-time dynamics. The radius of gyration obtained from SANS in the crossover regime changes linearly with an increase in polymer concentration, and must be extrapolated to c^{⋆} in order to obtain the radius of gyration of an individual polymer chain. When the polymer radius of gyration and crowder size are comparable, the polymer size is very weakly affected by the presence of crowders, consistent with recent computer simulations. There is significant chain compression, however, when the crowder size is much smaller than the polymer radius gyration.
Collapse
Affiliation(s)
- Swomitra Palit
- Department of Physics and Physical Oceanography, Memorial University, St. John's, Newfoundland A1B3X7, Canada
| | - Lilin He
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - William A Hamilton
- Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University, St. John's, Newfoundland A1B3X7, Canada
| |
Collapse
|
14
|
Danielsson J, Oliveberg M. Comparing protein behaviour in vitro and in vivo , what does the data really tell us? Curr Opin Struct Biol 2017; 42:129-135. [DOI: 10.1016/j.sbi.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
15
|
Bille A, Mohanty S, Irbäck A. Peptide folding in the presence of interacting protein crowders. J Chem Phys 2016; 144:175105. [PMID: 27155657 DOI: 10.1063/1.4948462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Using Monte Carlo methods, we explore and compare the effects of two protein crowders, BPTI and GB1, on the folding thermodynamics of two peptides, the compact helical trp-cage and the β-hairpin-forming GB1m3. The thermally highly stable crowder proteins are modeled using a fixed backbone and rotatable side-chains, whereas the peptides are free to fold and unfold. In the simulations, the crowder proteins tend to distort the trp-cage fold, while having a stabilizing effect on GB1m3. The extent of the effects on a given peptide depends on the crowder type. Due to a sticky patch on its surface, BPTI causes larger changes than GB1 in the melting properties of the peptides. The observed effects on the peptides stem largely from attractive and specific interactions with the crowder surfaces, and differ from those seen in reference simulations with purely steric crowder particles.
Collapse
Affiliation(s)
- Anna Bille
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Sandipan Mohanty
- Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
16
|
Schöppner P, Csaba G, Braun T, Daake M, Richter B, Lange OF, Zacharias M, Zimmer R, Haslbeck M. Regulatory Implications of Non-Trivial Splicing: Isoform 3 of Rab1A Shows Enhanced Basal Activity and Is Not Controlled by Accessory Proteins. J Mol Biol 2016; 428:1544-57. [PMID: 26953259 DOI: 10.1016/j.jmb.2016.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023]
Abstract
Alternative splicing often affects structured and highly conserved regions of proteins, generating so called non-trivial splicing variants of unknown structure and cellular function. The human small G-protein Rab1A is involved in the regulation of the vesicle transfer from the ER to Golgi. A conserved non-trivial splice variant lacks nearly 40% of the sequence of the native Rab1A, including most of the regulatory interaction sites. We show that this variant of Rab1A represents a stable and folded protein, which is still able to bind nucleotides and co-localizes with membranes. Nevertheless, it should be mentioned that compared to other wild-typeRabGTPases, the measured nucleotide binding affinities are dramatically reduced in the variant studied. Furthermore, the Rab1A variant forms hetero-dimers with wild-type Rab1A and its presence in the cell enhances the efficiency of alkaline phosphatase secretion. However, this variant shows no specificity for GXP nucleotides, a constantly enhanced GTP hydrolysis activity and is no longer controlled by GEF or GAP proteins, indicating a new regulatory mechanism for the Rab1A cycle via alternative non-trivial splicing.
Collapse
Affiliation(s)
- Patricia Schöppner
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Gergely Csaba
- Department of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333 München, Germany
| | - Tatjana Braun
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Marina Daake
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Bettina Richter
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Oliver F Lange
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department, Technische Universität München, James-Franck-Strasse 1, 85747 Garching, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333 München, Germany.
| | - Martin Haslbeck
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
17
|
Bille A, Linse B, Mohanty S, Irbäck A. Equilibrium simulation of trp-cage in the presence of protein crowders. J Chem Phys 2015; 143:175102. [DOI: 10.1063/1.4934997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Anna Bille
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Björn Linse
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Sandipan Mohanty
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
18
|
Gorczyca SM, Chapman CD, Robertson-Anderson RM. Universal scaling of crowding-induced DNA mobility is coupled with topology-dependent molecular compaction and elongation. SOFT MATTER 2015; 11:7762-8. [PMID: 26303877 DOI: 10.1039/c5sm01882j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using single-molecule fluorescence microscopy and particle-tracking techniques, we elucidate the role DNA topology plays in the diffusion and conformational dynamics of crowded DNA molecules. We focus on large (115 kbp), double-stranded ring and linear DNA crowded by varying concentrations (0-40%) of dextran (10, 500 kDa) that mimic cellular conditions. By tracking the center-of-mass and measuring the lengths of the major and minor axes of single DNA molecules, we characterize both DNA mobility reduction as well as crowding-induced conformational changes (from random spherical coils). We reveal novel topology-dependent conformations, with single ring molecules undergoing compaction to ordered spherical configurations ∼20% smaller than dilute random coils, while linear DNA elongates by ∼2-fold. Surprisingly, these highly different conformations result in nearly identical exponential mobility reduction dependent solely on crowder volume fraction Φ, revealing a universal critical crowding concentration of Φc≅ 2.3. Beyond Φc DNA exhibits topology-independent conformational relaxation dynamics despite highly distinct topology-driven conformations. Our collective results reveal that topology-dependent conformational changes, unique to crowded environments, enable DNA to overcome the classically expected mobility reduction that high-viscosity crowded environments impose. Such coupled universal dynamics suggest a mechanism for DNA to maintain sufficient mobility required for wide-ranging biological processes despite severe cellular crowding.
Collapse
Affiliation(s)
- Stephanie M Gorczyca
- Department of Physics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | | | | |
Collapse
|
19
|
Macdonald B, McCarley S, Noeen S, van Giessen AE. Protein–Protein Interactions Affect Alpha Helix Stability in Crowded Environments. J Phys Chem B 2015; 119:2956-67. [DOI: 10.1021/jp512630s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bryanne Macdonald
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| | - Shannon McCarley
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| | - Sundus Noeen
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| | - Alan E. van Giessen
- Department of Chemistry, Mount Holyoke College, 50 College Street, South
Hadley, Massachusetts 01075, United States
| |
Collapse
|
20
|
Feig M, Sugita Y. Reaching new levels of realism in modeling biological macromolecules in cellular environments. J Mol Graph Model 2013; 45:144-56. [PMID: 24036504 DOI: 10.1016/j.jmgm.2013.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
Abstract
An increasing number of studies are aimed at modeling cellular environments in a comprehensive and realistic fashion. A major challenge in these efforts is how to bridge spatial and temporal scales over many orders of magnitude. Furthermore, there are additional challenges in integrating different aspects ranging from questions about biomolecular stability in crowded environments to the description of reactive processes on cellular scales. In this review, recent studies with models of biomolecules in cellular environments at different levels of detail are discussed in terms of their strengths and weaknesses. In particular, atomistic models, implicit representations of cellular environments, coarse-grained and spheroidal models of biomolecules, as well as the inclusion of reactive processes via reaction-diffusion models are described. Furthermore, strategies for integrating the different models into a comprehensive description of cellular environments are discussed.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry & Molecular Biology and Department of Chemistry, Michigan State University, 603 Wilson Road, BCH 218, East Lansing, MI 48824, United States; RIKEN Quantitative Biology Center, International Medical Device Alliance (IMDA) 6F, 1-6-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | | |
Collapse
|
21
|
Ultrafast electron transfer in riboflavin binding protein in macromolecular crowding of nano-sized micelle. Biochimie 2012; 94:2673-80. [DOI: 10.1016/j.biochi.2012.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/06/2012] [Indexed: 11/20/2022]
|
22
|
Kurniawan NA, Enemark S, Rajagopalan R. Crowding Alters the Folding Kinetics of a β-Hairpin by Modulating the Stability of Intermediates. J Am Chem Soc 2012; 134:10200-8. [DOI: 10.1021/ja302943m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Søren Enemark
- Singapore-MIT Alliance, National University of Singapore, Singapore 117576
| | - Raj Rajagopalan
- Singapore-MIT Alliance, National University of Singapore, Singapore 117576
| |
Collapse
|
23
|
Predeus AV, Gul S, Gopal SM, Feig M. Conformational sampling of peptides in the presence of protein crowders from AA/CG-multiscale simulations. J Phys Chem B 2012; 116:8610-20. [PMID: 22429139 DOI: 10.1021/jp300129u] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macromolecular crowding is recognized as an important factor influencing folding and conformational dynamics of proteins and nucleic acids. Previous views of crowding have focused on the mostly entropic volume exclusion effect of crowding, but recent studies are indicating the importance of enthalpic effects, in particular, changes in electrostatic interactions due to crowding. Here, temperature replica exchange molecular dynamics simulations of trp-cage and melittin in the presence of explicit protein crowders are presented to further examine the effect of protein crowders on peptide dynamics. The simulations involve a three-component multiscale modeling scheme where the peptides are represented at an atomistic level, the crowder proteins at a coarse-grained level, and the surrounding aqueous solvent as implicit solvent. This scheme optimally balances a physically realistic description for the peptide with computational efficiency. The multiscale simulations were compared with simulations of the same peptides in different dielectric environments with dielectric constants ranging from 5 to 80. It is found that the sampling in the presence of the crowders resembles sampling with reduced dielectric constants between 10 and 40. Furthermore, diverse conformational ensembles are generated in the presence of crowders including partially unfolded states for trp-cage. These findings emphasize the importance of enthalpic interactions over volume exclusion effects in describing the effects of cellular crowding.
Collapse
Affiliation(s)
- Alexander V Predeus
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | |
Collapse
|
24
|
Samiotakis A, Cheung MS. Folding dynamics of Trp-cage in the presence of chemical interference and macromolecular crowding. I. J Chem Phys 2012; 135:175101. [PMID: 22070323 DOI: 10.1063/1.3656691] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins fold and function in the crowded environment of the cell's interior. In the recent years it has been well established that the so-called "macromolecular crowding" effect enhances the folding stability of proteins by destabilizing their unfolded states for selected proteins. On the other hand, chemical and thermal denaturation is often used in experiments as a tool to destabilize a protein by populating the unfolded states when probing its folding landscape and thermodynamic properties. However, little is known about the complicated effects of these synergistic perturbations acting on the kinetic properties of proteins, particularly when large structural fluctuations, such as protein folding, have been involved. In this study, we have first investigated the folding mechanism of Trp-cage dependent on urea concentration by coarse-grained molecular simulations where the impact of urea is implemented into an energy function of the side chain and/or backbone interactions derived from the all-atomistic molecular dynamics simulations with urea through a Boltzmann inversion method. In urea solution, the folding rates of a model miniprotein Trp-cage decrease and the folded state slightly swells due to a lack of contact formation between side chains at the terminal regions. In addition, the equilibrium m-values of Trp-cage from the computer simulations are in agreement with experimental measurements. We have further investigated the combined effects of urea denaturation and macromolecular crowding on Trp-cage's folding mechanism where crowding agents are modeled as hard-spheres. The enhancement of folding rates of Trp-cage is most pronounced by macromolecular crowding effect when the extended conformations of Trp-cast dominate at high urea concentration. Our study makes quantitatively testable predictions on protein folding dynamics in a complex environment involving both chemical denaturation and macromolecular crowding effects.
Collapse
|
25
|
The effect of macromolecular crowding, ionic strength and calcium binding on calmodulin dynamics. PLoS Comput Biol 2011; 7:e1002114. [PMID: 21829336 PMCID: PMC3145654 DOI: 10.1371/journal.pcbi.1002114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/23/2011] [Indexed: 11/20/2022] Open
Abstract
The flexibility in the structure of calmodulin (CaM) allows its binding to over 300 target proteins in the cell. To investigate the structure-function relationship of CaM, we combined methods of computer simulation and experiments based on circular dichroism (CD) to investigate the structural characteristics of CaM that influence its target recognition in crowded cell-like conditions. We developed a unique multiscale solution of charges computed from quantum chemistry, together with protein reconstruction, coarse-grained molecular simulations, and statistical physics, to represent the charge distribution in the transition from apoCaM to holoCaM upon calcium binding. Computationally, we found that increased levels of macromolecular crowding, in addition to calcium binding and ionic strength typical of that found inside cells, can impact the conformation, helicity and the EF hand orientation of CaM. Because EF hand orientation impacts the affinity of calcium binding and the specificity of CaM's target selection, our results may provide unique insight into understanding the promiscuous behavior of calmodulin in target selection inside cells. Proteins are workhorses for driving biological functions inside cells. Calmodulin (CaM) is a protein that can carry cellular signals by triggered conformational changes due to calcium binding that alters target binding. Interestingly, CaM is able to bind over 300 targets. One of the challenges in characterizing CaM's ability to bind multiple targets lies in that CaM is a flexible protein and its structure is easily modulated by the physicochemical changes in its surroundings, particularly inside a complex cellular milieu. In order to determine structure-function relationships of CaM, we employed a combined approach of experiments, computer simulations and statistical physics in the investigation of the effect of calcium-binding, salt concentration, and macromolecular crowding on CaM. The results revealed unique folding energy landscapes of CaM in the absence and presence of calcium ions and the structural implications of CaM are interpreted under cell-like conditions. Further, a large conformational change in CaM in response to environmental impacts, dictates the packing of local helices that may be critical to its function of target binding and recognition among vast target selections.
Collapse
|
26
|
Tsao D, Shabalina SA, Gauthier J, Dokholyan NV, Diatchenko L. Disruptive mRNA folding increases translational efficiency of catechol-O-methyltransferase variant. Nucleic Acids Res 2011; 39:6201-12. [PMID: 21486747 PMCID: PMC3152328 DOI: 10.1093/nar/gkr165] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Catechol-O-methyltransferase (COMT) is a major enzyme controlling catecholamine levels that plays a central role in cognition, affective mood and pain perception. There are three common COMT haplotypes in the human population reported to have functional effects, divergent in two synonymous and one nonsynonymous position. We demonstrate that one of the haplotypes, carrying the non-synonymous variation known to code for a less stable protein, exhibits increased protein expression in vitro. This increased protein expression, which would compensate for lower protein stability, is solely produced by a synonymous variation (C166T) situated within the haplotype and located in the 5′ region of the RNA transcript. Based on mRNA secondary structure predictions, we suggest that structural destabilization near the start codon caused by the T allele could be related to the observed increase in COMT expression. Our folding simulations of the tertiary mRNA structures demonstrate that destabilization by the T allele lowers the folding transition barrier, thus decreasing the probability of occupying its native state. These data suggest a novel structural mechanism whereby functional synonymous variations near the translation initiation codon affect the translation efficiency via entropy-driven changes in mRNA dynamics and present another example of stable compensatory genetic variations in the human population.
Collapse
Affiliation(s)
- Douglas Tsao
- Department of Chemistry, Center for Neurosensory Disorders, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
27
|
Waegele MM, Gai F. Power-law dependence of the melting temperature of ubiquitin on the volume fraction of macromolecular crowders. J Chem Phys 2011; 134:095104. [PMID: 21385002 PMCID: PMC3064690 DOI: 10.1063/1.3556671] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/31/2011] [Indexed: 11/14/2022] Open
Abstract
The dependence of the melting temperature increase (ΔT(m)) of the protein ubiquitin on the volume fraction (ϕ) of several commonly used macromolecular crowding agents (dextran 6, 40, and 70 and ficoll 70) was quantitatively examined and compared to a recently developed theoretical crowding model, i.e., ΔT(m) ∼ (R(g)∕R(c))(α)φ(α∕3). We found that in the current case this model correctly predicts the power-law dependence of ΔT(m) on φ but significantly overestimates the role of the size (i.e., R(c)) of the crowding agent. In addition, we found that for ubiquitin the exponent α is in the range of 4.1-6.5, suggesting that the relation of α=3∕(3ν-1) is a better choice for estimating α based on the Flory coefficient (ν) of the polypeptide chain. Taken together these findings highlight the importance of improving our knowledge and theoretical treatment of the microcompartmentalization of the commonly used model crowding agents.
Collapse
Affiliation(s)
- Matthias M Waegele
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
28
|
Gershenson A, Gierasch LM. Protein folding in the cell: challenges and progress. Curr Opin Struct Biol 2011; 21:32-41. [PMID: 21112769 PMCID: PMC3072030 DOI: 10.1016/j.sbi.2010.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023]
Abstract
It is hard to imagine a more extreme contrast than that between the dilute solutions used for in vitro studies of protein folding and the crowded, compartmentalized, sticky, spatially inhomogeneous interior of a cell. This review highlights recent research exploring protein folding in the cell with a focus on issues that are generally not relevant to in vitro studies of protein folding, such as macromolecular crowding, hindered diffusion, cotranslational folding, molecular chaperones, and evolutionary pressures. The technical obstacles that must be overcome to characterize protein folding in the cell are driving methodological advances, and we draw attention to several examples, such as fluorescence imaging of folding in cells and genetic screens for in-cell stability.
Collapse
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
29
|
Wojciechowski M, Szymczak P, Cieplak M. The influence of hydrodynamic interactions on protein dynamics in confined and crowded spaces-assessment in simple models. Phys Biol 2010; 7:046011. [PMID: 21119219 DOI: 10.1088/1478-3975/7/4/046011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We consider several systems that are confined within a softly repulsive sphere. The first one is a model protein, crambin, which is described by a structure-based coarse grained model. We demonstrate that the folding process is accelerated by the hydrodynamic interactions (HI) in a way that depends on the radius of the sphere. The tighter the encompassing sphere, the smaller the effect, independent of the nature of the starting conformations. The second system is a protein surrounded by protein-like softly repulsive spheres that make the confined space crowded. In this case, the HI shorten the folding times in a way which depends on the degree of crowdedness only weakly. The third system is a collection of spheres that are meant to represent molecules. We show that confinement increases association times. We also observe that the HI either facilitate or obstruct association of two spheres depending on the crowding conditions. The dependence of the association time on crowdedness in the confining sphere is qualitatively distinct from that derived by Wieczorek and Zielenkiewicz for a cube with the periodic boundary conditions.
Collapse
|
30
|
Tsao D, Minton AP, Dokholyan NV. A didactic model of macromolecular crowding effects on protein folding. PLoS One 2010; 5:e11936. [PMID: 20689808 PMCID: PMC2914742 DOI: 10.1371/journal.pone.0011936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/08/2010] [Indexed: 12/27/2022] Open
Abstract
A didactic model is presented to illustrate how the effect of macromolecular crowding on protein folding and association is modeled using current analytical theory and discrete molecular dynamics. While analytical treatments of crowding may consider the effect as a potential of average force acting to compress a polypeptide chain into a compact state, the use of simulations enables the presence of crowding reagents to be treated explicitly. Using an analytically solvable toy model for protein folding, an approximate statistical thermodynamic method is directly compared to simulation in order to gauge the effectiveness of current analytical crowding descriptions. Both methodologies are in quantitative agreement under most conditions, indication that both current theory and simulation methods are capable of recapitulating aspects of protein folding even by utilizing a simplistic protein model.
Collapse
Affiliation(s)
- Douglas Tsao
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Allen P. Minton
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|