1
|
Jalilehvand F, Homayonia S, Zhang P, Ling CC. Gadolinium(III) complex formation with a β-cyclodextrin ligand: an XAS study of a potential MRI contrast agent. J Biol Inorg Chem 2023; 28:805-811. [PMID: 37981582 DOI: 10.1007/s00775-023-02027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023]
Abstract
In the search for improved and safer gadolinium-based magnetic resonance imaging (MRI) contrast agents, macrocyclic cyclodextrins (CDs) attract great interest. Our group previously synthesized a cyclodextrin-based ligand with 1,2,3-triazolmethyl residues conjugated to β-CD, called β-CD(A), which efficiently chelates Gd(III) ions. To probe the local structure around the Gd(III) ion in the 1:1 Gd(III): β-CD(A) complex in aqueous solution (pH 5.5), we used extended X-ray absorption fine structure (EXAFS) spectroscopy. Least-squares curve fitting of the Gd L3-edge EXAFS spectrum revealed 5 Gd-O (4 COO- and 1 H2O) and 4 Gd-N (from two imino and two 1,2,3-triazole groups) bonds around the Gd(III) ion with average distances 2.36 and 2.56 ± 0.02 Å, respectively. A similar EXAFS spectrum was obtained from an aqueous solution of the clinically used MRI contrast agent Na[Gd(DOTA)(H2O)], also 9-coordinated in its first shell. Careful analysis revealed that the mean Gd-N distance is shorter in the Gd(III): β-CD(A) (1:1) complex, indicating stronger Gd-N bonding and stronger Gd(III) complex formation than with the DOTA4- ligand. This is consistent with the lower free Gd3+ concentration found previously for the Gd(III): β-CD(A) (1:1) complex than for the [Gd(DOTA)(H2O)]- complex, and shows its potential as an MRI probe. EXAFS spectroscopy revealed a similar Gd(III) 9-coordination although slightly stronger for a modified β-cyclodextrin: Gd(III) 1:1 complex, [Gd(LH4)]7-, in aqueous solution than for the clinically used MRI contrast agent Na[Gd(DOTA)(H2O)].
Collapse
Affiliation(s)
- Farideh Jalilehvand
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Saba Homayonia
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Ping Zhang
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
2
|
Agnes M, Kasimati EM, Inclán M, Thanassoulas A, Miliotis G, Malanga M, Benkovics G, Nounesis G, García-España E, Bouziotis P, Lazarou YG, Miriagou V, Mavridis IM, Yannakopoulou K. Metal-binding cyclodextrins: Synthesis and complexation with Zn 2+ and Ga 3+ cations towards antimicrobial applications. Carbohydr Polym 2023; 321:121323. [PMID: 37739545 DOI: 10.1016/j.carbpol.2023.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Highly resistant bacteria producing metallo-β-lactamases (MBLs) to evade β-lactam antibiotics, constitute a major cause of life-threatening infections world-wide. MBLs exert their hydrolytic action via Zn2+ cations in their active center. Presently, there are no approved drugs to target MBLs and combat the associated antimicrobial resistance (AMR). Towards this issue, we have prepared a family of cyclodextrins substituted with iminodiacetic acid (IDA) on their narrow side, while the wider side is either unmodified or per-2,3-O-methylated. The molecules form strong coordination complexes with Zn2+ or Ga3+ cations in aqueous solution. Free and metal-complexed compounds have been thoroughly characterized regarding structures, pH-dependent ionization states, distribution of species in solution, pKa values and metal-binding constants. At neutral pH the multi-anionic hosts bind up to four Zn2+ or Ga3+ cations. In vitro, 50 μΜ of the compounds achieve complete re-sensitization of MBL-producing Gram-negative clinical bacterial strains resistant to the carbapenems imipenem and meropenem. Moreover, the radioactive complex [67Ga]Ga-β-IDACYD prepared, displays high radiochemical purity, sufficient stability both overtime and in the presence of human plasma apo-transferrin, thus providing an invaluable tool for future biodistribution and pharmacokinetic studies of β-IDACYDin vivo, prerequisites for the development of therapeutic protocols.
Collapse
Affiliation(s)
- Marco Agnes
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E´ & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece.
| | - Eleni Marina Kasimati
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E´ & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece.
| | - Mario Inclán
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E´ & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece; Institute of Molecular Science, Faculty of Chemistry, University of València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Angelos Thanassoulas
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research "Demokritos", Patr. Grigoriou E´ & 27 Neapoleos str., 15341 Aghia Paraskevi, Attiki, Greece.
| | - Georgios Miliotis
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Vas. Sophias 127, Athens 11521, Greece.
| | - Milo Malanga
- CycloLab SA, Cyclodextrin R&D Ltd, H-1097 Illatos út 7, Budapest, Hungary
| | - Gabor Benkovics
- CycloLab SA, Cyclodextrin R&D Ltd, H-1097 Illatos út 7, Budapest, Hungary
| | - George Nounesis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research "Demokritos", Patr. Grigoriou E´ & 27 Neapoleos str., 15341 Aghia Paraskevi, Attiki, Greece.
| | - Enrique García-España
- Institute of Molecular Science, Faculty of Chemistry, University of València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Penelope Bouziotis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research "Demokritos", Patr. Grigoriou E´ & 27 Neapoleos str., 15341 Aghia Paraskevi, Attiki, Greece.
| | - Yannis G Lazarou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E´ & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece.
| | - Vivi Miriagou
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Vas. Sophias 127, Athens 11521, Greece.
| | - Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E´ & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece.
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patr. Grigoriou E´ & 27 Neapoleos str., 15341, Aghia Paraskevi, Attiki, Greece.
| |
Collapse
|
3
|
Sembo-Backonly BS, Estour F, Gouhier G. Cyclodextrins: promising scaffolds for MRI contrast agents. RSC Adv 2021; 11:29762-29785. [PMID: 35479531 PMCID: PMC9040919 DOI: 10.1039/d1ra04084g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful tool for non-invasive, high-resolution three-dimensional medical imaging of anatomical structures such as organs and tissues. The use of contrast agents based on gadolinium chelates started in 1988 to improve the quality of the image, since researchers and industry focused their attention on the development of more efficient and stable structures. This review is about the state of the art of MRI contrast agents based on cyclodextrin scaffolds. Chemical engineering strategies are herein reported including host-guest inclusion complexation and covalent linkages. It also offers descriptions of the MRI properties and in vitro and in vivo biomedical applications of these emerging macrostructures. It highlights that these supramolecular associations can improve the image contrast, the sensitivity, and the efficiency of MRI diagnosis by targeting cancer tumors and other diseases with success proving the great potential of this natural macrocycle.
Collapse
Affiliation(s)
- Berthe Sandra Sembo-Backonly
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| | - François Estour
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| | - Géraldine Gouhier
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| |
Collapse
|
4
|
Simke J, Böckermann T, Bergander K, Klabunde S, Hansen MR, Ravoo BJ. Photoresponsive host-guest chemistry and relaxation time of fluorinated cyclodextrin and arylazopyrazole-functionalized DOTA metal complexes. Org Biomol Chem 2021; 19:2186-2191. [PMID: 33624672 DOI: 10.1039/d0ob02482a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Light-responsive modulation of the longitudinal (T1) and transversal relaxation times of a fluorinated cyclodextrin has been achieved by host-guest complexation with arylazopyrazole-modified metal complexes in aqueous solution. This supramolecular concept can potentially be applied to the development of contrast agents for 19F magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Julian Simke
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, D-48149 Münster, Germany.
| | - Till Böckermann
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, D-48149 Münster, Germany.
| | - Klaus Bergander
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, D-48149 Münster, Germany.
| | - Sina Klabunde
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, D-48149 Münster, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, D-48149 Münster, Germany.
| |
Collapse
|
5
|
Zultanski SL, Kuhl N, Zhong W, Cohen RD, Reibarkh M, Jurica J, Kim J, Weisel L, Ekkati AR, Klapars A, Gauthier DR, McCabe Dunn JM. Mechanistic Understanding of a Robust and Scalable Synthesis of Per(6-deoxy-6-halo)cyclodextrins, Versatile Intermediates for Cyclodextrin Modification. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susan L. Zultanski
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Nadine Kuhl
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Wendy Zhong
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ryan D. Cohen
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jon Jurica
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jungchul Kim
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lauren Weisel
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Anil R. Ekkati
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Artis Klapars
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Donald R. Gauthier
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jamie M. McCabe Dunn
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
6
|
Nakamura T, Yonemura S, Akatsuka S, Nabeshima T. Synthesis of Single Isomeric Complexes with Dissymmetric Structures Using Macrocyclic Homooligomers. Angew Chem Int Ed Engl 2020; 60:3080-3086. [DOI: 10.1002/anie.202011348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Sota Yonemura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Shunya Akatsuka
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
7
|
Nakamura T, Yonemura S, Akatsuka S, Nabeshima T. Synthesis of Single Isomeric Complexes with Dissymmetric Structures Using Macrocyclic Homooligomers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Sota Yonemura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Shunya Akatsuka
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
8
|
Champagne PL, Barbot C, Zhang P, Han X, Gaamoussi I, Hubert-Roux M, Bertolesi GE, Gouhier G, Ling CC. Synthesis and Unprecedented Complexation Properties of β-Cyclodextrin-Based Ligand for Lanthanide Ions. Inorg Chem 2018; 57:8964-8977. [DOI: 10.1021/acs.inorgchem.8b00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pier-Luc Champagne
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Cécile Barbot
- Normandie Université, COBRA, UMR 6014, FR 3038, INSA Rouen, CNRS, IRIB, IRCOF 1 rue Tesnière 76821 Mont-Saint-Aignan, France
| | - Ping Zhang
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Xuekun Han
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Issam Gaamoussi
- Normandie Université, COBRA, UMR 6014, FR 3038, INSA Rouen, CNRS, IRIB, IRCOF 1 rue Tesnière 76821 Mont-Saint-Aignan, France
| | - Marie Hubert-Roux
- Normandie Université, COBRA, UMR 6014, FR 3038, INSA Rouen, CNRS, IRIB, IRCOF 1 rue Tesnière 76821 Mont-Saint-Aignan, France
| | - Gabriel E. Bertolesi
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Géraldine Gouhier
- Normandie Université, COBRA, UMR 6014, FR 3038, INSA Rouen, CNRS, IRIB, IRCOF 1 rue Tesnière 76821 Mont-Saint-Aignan, France
| | - Chang-Chun Ling
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
9
|
MRI probes based on C6-peracetate β-cyclodextrins: Synthesis, gadolinium complexation and in vivo relaxivity studies. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Lai WF, Rogach AL, Wong WT. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 2018; 46:6379-6419. [PMID: 28930330 DOI: 10.1039/c7cs00040e] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides bearing a basket-shaped topology with an "inner-outer" amphiphilic character. The abundance of hydroxyl groups enables CDs to be functionalized with multiple targeting ligands and imaging elements. The imaging time, and the payload of different imaging elements, can be tuned by taking advantage of the commercial availability of CDs with different sizes of the cavity. This review aims to offer an outlook of the chemistry and engineering of CDs for the development of molecular probes. Complexation thermodynamics of CDs, and the corresponding implications for probe design, are also presented with examples demonstrating the structural and physiochemical roles played by CDs in the full ambit of molecular imaging. We hope that this review not only offers a synopsis of the current development of CD-based molecular probes, but can also facilitate translation of the incremental advancements from the laboratory to real biomedical applications by illuminating opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.
| | | | | |
Collapse
|
11
|
Abstract
This review focuses on metal complexes of cyclodextrin (CyD) derivatives designed for application as therapeutics or diagnostics. We discuss examples of metalloprotein models (hemoglobin, superoxide dismutase and catalase) based on cyclodextrins. The hydrophobic microenvironment of CyDs stabilizes the Fe(II) porphyrin system that can reversibly bind O2 or CO in water. Superoxide dismutase/catalase mimetics exploit functionalization with CyDs, which increase their solubility and biological activity. Furthermore, CyDs have been used as scaffolds to obtain multicenter metal complexes: paramagnetic systems act as high-performance contrast agents for magnetic resonance imaging applications. Finally, we review CyD ligands, whose use appears promising in metal chelation therapy, as CyD moiety confers additional properties to the ligands.
Collapse
|
12
|
Zgani I, Idriss H, Barbot C, Djedaïni-Pilard F, Petit S, Hubert-Roux M, Estour F, Gouhier G. Positive variation of the MRI signal via intramolecular inclusion complexation of a C-2 functionalized β-cyclodextrin. Org Biomol Chem 2017; 15:564-569. [DOI: 10.1039/c6ob02583h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of a contrast agent based on a β-cyclodextrin is reported. An enhancement of relaxivity in the presence of an intramolecular inclusion complex is observed.
Collapse
Affiliation(s)
- I. Zgani
- Normandie Univ
- COBRA
- UMR 6014
- FR 3038
- INSA Rouen
| | - H. Idriss
- Normandie Univ
- COBRA
- UMR 6014
- FR 3038
- INSA Rouen
| | - C. Barbot
- Normandie Univ
- COBRA
- UMR 6014
- FR 3038
- INSA Rouen
| | | | - S. Petit
- Normandie Univ
- SMS
- EA 3233
- 76821 Mont Saint Aignan Cedex
- France
| | | | - F. Estour
- Normandie Univ
- COBRA
- UMR 6014
- FR 3038
- INSA Rouen
| | - G. Gouhier
- Normandie Univ
- COBRA
- UMR 6014
- FR 3038
- INSA Rouen
| |
Collapse
|
13
|
Mavridis IM, Yannakopoulou K. Anionic cyclodextrins as versatile hosts for pharmaceutical nanotechnology: Synthesis, drug delivery, enantioselectivity, contrast agents for MRI. Int J Pharm 2015; 492:275-90. [DOI: 10.1016/j.ijpharm.2015.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
|
14
|
Density functional dependence of molecular geometries in lanthanide(III) complexes relevant to bioanalytical and biomedical applications. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.08.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Platas-Iglesias C. The Solution Structure and Dynamics of MRI Probes Based on Lanthanide(III) DOTA as Investigated by DFT and NMR Spectroscopy. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201101164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|