1
|
Functionalized Carbon Nanohorns as Drug Delivery Platforms. Methods Mol Biol 2020. [PMID: 33113124 DOI: 10.1007/978-1-0716-0920-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Carbon nanohorns (CNHs) resembling a single-layered graphene sheet wrapped in a conical shape can be chemically modified in order to immobilize, carry, and release biologically active molecules. Here, we describe the major routes for the preparation of CNH-based drug delivery platforms, via covalent coupling and encapsulation, proficient to facilitate the design of sophisticated drug nanocarriers.
Collapse
|
2
|
Kagkoura A, Tagmatarchis N. Carbon Nanohorn-Based Electrocatalysts for Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1407. [PMID: 32707696 PMCID: PMC7408240 DOI: 10.3390/nano10071407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/06/2023]
Abstract
In the context of even more growing energy demands, the investigation of alternative environmentally friendly solutions, like fuel cells, is essential. Given their outstanding properties, carbon nanohorns (CNHs) have come forth as promising electrocatalysts within the nanocarbon family. Carbon nanohorns are conical nanostructures made of sp2 carbon sheets that form aggregated superstructures during their synthesis. They require no metal catalyst during their preparation and they are inexpensively produced in industrial quantities, affording a favorable candidate for electrocatalytic reactions. The aim of this article is to provide a comprehensive overview regarding CNHs in the field of electrocatalysis and especially, in oxygen reduction, methanol oxidation, and hydrogen evolution, as well as oxygen evolution from water splitting, underlining the progress made so far, and pointing out the areas where significant improvement can be achieved.
Collapse
Affiliation(s)
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
3
|
Pippa N, Stangel C, Kastanas I, Triantafyllopoulou E, Naziris N, Stellas D, Zhang M, Yudasaka M, Demetzos C, Tagmatarchis N. Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110114. [PMID: 31546408 DOI: 10.1016/j.msec.2019.110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
In the present work, the convergence of two different drug delivery systems is investigated, namely the combination of carbon nanohorns (CNHs) and liposomes. Our effort initially included the synthesis of two conversely charged carbon nanohorns and their subsequent analysis through various methods. The study of their effect on the thermotropic behavior of artificial membranes provided an essential assistance for the upcoming liposome preparation, which were estimated for their physicochemical properties. The presence of CNHs alters the calorimetric parameters of the lipids. We also prepared CNHs:liposome systems. The characteristic morphology and secondary spherical superstructure of CNHs is retained in the chimeric materials, suggesting that the interactions with the liposomes do not alter the dahlia-flower-like aggregation of CNHs. Both CNHs-liposome systems exhibit a relatively small cellular cytotoxicity in vitro, tested in mouse embryonic fibroblasts. To summarize, we developed CNHs:liposome platforms with a complete knowledge of their thermotropic, physicochemical, morphological and nanotoxicological characteristics.
Collapse
Affiliation(s)
- Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Ioannis Kastanas
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Dimitris Stellas
- Biomedical Research Foundation, Academy of Athens, Athens, Greece; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederic, MD, USA
| | - Minfang Zhang
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| |
Collapse
|
4
|
Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev 2016; 116:4850-83. [PMID: 27074223 DOI: 10.1021/acs.chemrev.5b00611] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbon nanohorns (sometimes also known as nanocones) are conical carbon nanostructures constructed from an sp(2) carbon sheet. Nanohorns require no metal catalyst in their synthesis, and can be produced in industrial quantities. They provide a realistic and useful alternative to carbon nanotubes, and possibly graphene, in a wide range of applications. They also have their own unique behavior due to their specific conical morphology. However, their research and development has been slowed by several factors, notably during synthesis, they aggregate into spherical clusters ∼100 nm in diameter, blocking functionalization and treatment of individual nanocones. This limitation has recently been overcome with a new approach to separating these "dahlia-like" clusters into individual nanocones. In this review, we describe the structure, synthesis, and topology of carbon nanohorns, and provide a detailed review of nanohorn chemistry.
Collapse
Affiliation(s)
- Nikolaos Karousis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Irene Suarez-Martinez
- Nanochemistry Research Institute, Department of Physics, Curtin University of Technology , P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Christopher P Ewels
- Institut des Materiaux Jean Rouxel, CNRS, Université de Nantes , 2 Rue de la Houssiniere, BP32229, 44322 Nantes, France
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
5
|
Xu X, Zhang M, Wang L, Zhang S, Liu M, Long N, Qi X, Cui Z, Zhang L. Determination of Rhodamine B in Food Using Ionic Liquid–Coated Multiwalled Carbon Nanotube–Based Ultrasound-Assisted Dispersive Solid-Phase Microextraction Followed by High-Performance Liquid Chromatography. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0345-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Campisciano V, La Parola V, Liotta LF, Giacalone F, Gruttadauria M. Fullerene-ionic-liquid conjugates: a new class of hybrid materials with unprecedented properties. Chemistry 2015; 21:3327-34. [PMID: 25589382 DOI: 10.1002/chem.201406067] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 11/10/2022]
Abstract
A modular approach has been followed for the synthesis of a series of fullerene-ionic-liquid (IL) hybrids in which the number of IL moieties (two or twelve), anion, and cation have been varied. The combination of C60 and IL give rise to new unique properties in the conjugates such as solubility in water, which was higher than 800 mg mL(-1) in several cases. In addition, one of the C60 -IL hybrids has been employed for the immobilization of palladium nanoparticles through ion exchange followed by reduction with sodium borohydride. Surprisingly, during the reduction several carbon nanostructures were formed that comprised nano-onions and nanocages with few-layer graphene sidewalls, which have been characterized by means of thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray analysis (SEM-EDAX), and high-resolution transmission electron microscopy (HRTEM). Finally, the material thus obtained was successfully applied as catalyst in Suzuki and Mizoroki-Heck reactions in a concentration of just 0.2 mol %. In the former process it was recyclable for five runs with no loss in activity.
Collapse
Affiliation(s)
- Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze s/n, Ed. 17, 90128 Palermo (Italy)
| | | | | | | | | |
Collapse
|
7
|
A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water. Anal Chim Acta 2014; 852:88-96. [DOI: 10.1016/j.aca.2014.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 11/18/2022]
|
8
|
Chronopoulos D, Karousis N, Ichihashi T, Yudasaka M, Iijima S, Tagmatarchis N. Benzyne cycloaddition onto carbon nanohorns. NANOSCALE 2013; 5:6388-6394. [PMID: 23736828 DOI: 10.1039/c3nr01755a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A facile approach for the covalent functionalization of carbon nanohorns (CNHs) based on the benzyne cycloaddition reaction is presented. The benzynes were in situ generated from either anthranilic acid by decomposition of the internal benzenediazonium-2-carboxylate or from 2-(trimethylsilyl)-phenyl triflate by fluoride ion attack at the silicon atom followed by displacement of the trimethylsilyl group under mild conditions. Moreover, the functionalization reaction was tested and performed under conventional conditions as well as under microwave irradiation. Modified CNHs possessing fused rings onto their graphitic skeleton were fully characterized by means of complementary spectroscopic techniques, thermogravimetric analysis, electron microscopy and light scattering. Moreover, Sonogashira coupling with propargyl alcohol followed by condensation with thioctic acid, to the iodo-modified CNHs obtained from the cycloaddition reaction of 2-amino-5-iodobenzoic acid with CNHs, resulted in the preparation of a new CNH-based material in which endocyclic disulfides are extended from the fused rings onto CNHs. The latter moieties were used to immobilize gold nanoparticles, furnishing the CNH-Au(nano) hybrid material, in which the former were identified with the aid of UV-Vis and EDX spectroscopy.
Collapse
Affiliation(s)
- Demetrios Chronopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | | | | | | | | | | |
Collapse
|
9
|
Xu J, Shingaya Y, Tomimoto H, Kubo O, Nakayama T. Irreversible and reversible structural deformation and electromechanical behavior of carbon nanohorns probed by conductive AFM. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1169-1174. [PMID: 21433282 DOI: 10.1002/smll.201002148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 02/03/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Jianxun Xu
- Nano Functionality Integration Group, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | | | |
Collapse
|
10
|
Karousis N, Ichihashi T, Yudasaka M, Iijima S, Tagmatarchis N. Microwave-assisted functionalization of carbon nanohornsvia [2+1] nitrenes cycloaddition. Chem Commun (Camb) 2011; 47:1604-6. [DOI: 10.1039/c0cc03101a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Abstract
Single-walled carbon nanohorns (SWCNHs) are horn-shaped single-walled tubules with a conical tip. They are generally synthesized by laser ablation of pure graphite without using metal catalyst with high production rate and high yield, and typically form radial aggregates. SWCNHs are essentially metal-free and very pure, which avoids cumbersome purification and makes them user-friendly and environmentally benign. Currently, SWCNHs have been widely studied for various applications, such as gas storage, adsorption, catalyst support, drug delivery system, magnetic resonance analysis, electrochemistry, biosensing application, photovoltaics and photoelectrochemical cells, photodynamic therapy, fuel cells, and so on. This review outlines the research progress on SWCNHs, including their properties, functionalization, applications, and outlook.
Collapse
Affiliation(s)
- Shuyun Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | |
Collapse
|
12
|
Neouze MA. About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00616e] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|