1
|
Tarn MD, Sikora SNF, Porter GCE, Shim JU, Murray BJ. Homogeneous Freezing of Water Using Microfluidics. MICROMACHINES 2021; 12:223. [PMID: 33672200 PMCID: PMC7926757 DOI: 10.3390/mi12020223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023]
Abstract
The homogeneous freezing of water is important in the formation of ice in clouds, but there remains a great deal of variability in the representation of the homogeneous freezing of water in the literature. The development of new instrumentation, such as droplet microfluidic platforms, may help to constrain our understanding of the kinetics of homogeneous freezing via the analysis of monodisperse, size-selected water droplets in temporally and spatially controlled environments. Here, we evaluate droplet freezing data obtained using the Lab-on-a-Chip Nucleation by Immersed Particle Instrument (LOC-NIPI), in which droplets are generated and frozen in continuous flow. This high-throughput method was used to analyse over 16,000 water droplets (86 μm diameter) across three experimental runs, generating data with high precision and reproducibility that has largely been unrepresented in the microfluidic literature. Using this data, a new LOC-NIPI parameterisation of the volume nucleation rate coefficient (JV(T)) was determined in the temperature region of -35.1 to -36.9 °C, covering a greater JV(T) compared to most other microfluidic techniques thanks to the number of droplets analysed. Comparison to recent theory suggests inconsistencies in the theoretical representation, further implying that microfluidics could be used to inform on changes to parameterisations. By applying classical nucleation theory (CNT) to our JV(T) data, we have gone a step further than other microfluidic homogeneous freezing examples by calculating the stacking-disordered ice-supercooled water interfacial energy, estimated to be 22.5 ± 0.7 mJ m-2, again finding inconsistencies when compared to theoretical predictions. Further, we briefly review and compile all available microfluidic homogeneous freezing data in the literature, finding that the LOC-NIPI and other microfluidically generated data compare well with commonly used non-microfluidic datasets, but have generally been obtained with greater ease and with higher numbers of monodisperse droplets.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Sebastien N. F. Sikora
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| |
Collapse
|
2
|
Porter GCE, Sikora SNF, Shim JU, Murray BJ, Tarn MD. On-chip density-based sorting of supercooled droplets and frozen droplets in continuous flow. LAB ON A CHIP 2020; 20:3876-3887. [PMID: 32966480 DOI: 10.1039/d0lc00690d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The freezing of supercooled water to ice and the materials which catalyse this process are of fundamental interest to a wide range of fields. At present, our ability to control, predict or monitor ice formation processes is poor. The isolation and characterisation of frozen droplets from supercooled liquid droplets would provide a means of improving our understanding and control of these processes. Here, we have developed a microfluidic platform for the continuous flow separation of frozen from unfrozen picolitre droplets based on differences in their density, thus allowing the sorting of ice crystals and supercooled water droplets into different outlet channels with 94 ± 2% efficiency. This will, in future, facilitate downstream or off-chip processing of the frozen and unfrozen populations, which could include the analysis and characterisation of ice-active materials or the selection of droplets with a particular ice-nucleating activity.
Collapse
Affiliation(s)
- Grace C E Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Jung-Uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Benjamin J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mark D Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
3
|
Tarn MD, Sikora SNF, Porter GCE, Wyld BV, Alayof M, Reicher N, Harrison AD, Rudich Y, Shim JU, Murray BJ. On-chip analysis of atmospheric ice-nucleating particles in continuous flow. LAB ON A CHIP 2020; 20:2889-2910. [PMID: 32661539 DOI: 10.1039/d0lc00251h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ice-nucleating particles (INPs) are of atmospheric importance because they catalyse the freezing of supercooled cloud droplets, strongly affecting the lifetime and radiative properties of clouds. There is a need to improve our knowledge of the global distribution of INPs, their seasonal cycles and long-term trends, but our capability to make these measurements is limited. Atmospheric INP concentrations are often determined using assays involving arrays of droplets on a cold stage, but such assays are frequently limited by the number of droplets that can be analysed per experiment, often involve manual processing (e.g. pipetting of droplets), and can be susceptible to contamination. Here, we present a microfluidic platform, the LOC-NIPI (Lab-on-a-Chip Nucleation by Immersed Particle Instrument), for the generation of water-in-oil droplets and their freezing in continuous flow as they pass over a cold plate for atmospheric INP analysis. LOC-NIPI allows the user to define the number of droplets analysed by simply running the platform for as long as required. The use of small (∼100 μm diameter) droplets minimises the probability of contamination in any one droplet and therefore allows supercooling all the way down to homogeneous freezing (around -36 °C), while a temperature probe in a proxy channel provides an accurate measure of temperature without the need for temperature modelling. The platform was validated using samples of pollen extract and Snomax®, with hundreds of droplets analysed per temperature step and thousands of droplets being measured per experiment. Homogeneous freezing of purified water was studied using >10 000 droplets with temperature increments of 0.1 °C. The results were reproducible, independent of flow rate in the ranges tested, and the data compared well to conventional instrumentation and literature data. The LOC-NIPI was further benchmarked in a field campaign in the Eastern Mediterranean against other well-characterised instrumentation. The continuous flow nature of the system provides a route, with future development, to the automated monitoring of atmospheric INP at field sites around the globe.
Collapse
Affiliation(s)
- Mark D Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Grace C E Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Bethany V Wyld
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | - Matan Alayof
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Reicher
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Benjamin J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Kamijo Y, Derda R. Freeze-Float Selection of Ice Nucleators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:359-364. [PMID: 30509075 DOI: 10.1021/acs.langmuir.8b02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this manuscript, we developed a screening system that employs the difference in density between liquid water and ice (0.9998 g/cm3 vs 0.9168 g/cm3 at 0 °C) to identify ice-nucleating agents (INAs) that are encapsulated into droplets of water suspended in silicone oil of intermediate density (0.939 g/cm3). Droplets of liquid water stably reside at the interface of the silicone oil and perfluoro oil (1.6658 g/cm3); freezing causes the aqueous droplets to float to the top of the silicone oil layer. We demonstrated the feasibility of this screening system by using droplets that contained well-defined ice-nucleator Snomax. The droplets with and without Snomax froze at different temperatures and separated into two groups in our system. We employed the screening system to test samples that have different ice-nucleating activities. Starting from known ice-nucleating active bacteria Pseudomonas syringae, we confirmed that droplets that contain an increasing amount of ice-nucleating bacteria per droplet exhibit a dose-dependent increase in ice nucleation. When droplets containing different amounts of P. syringae were separated using a freeze-float setup, we observed that the droplets that floated at higher temperature contained more ice-nucleating active bacteria. The outlined system, thus, permits simple power-free separation of droplets that contain effective INA from those that contain weak or no INA. Such a setup can be used as a starting point for the development of high-throughput approaches for the discovery of new INAs.
Collapse
Affiliation(s)
- Yuki Kamijo
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Ratmir Derda
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
5
|
Abstract
Many proofs of concept have demonstrated the potential of microfluidics in cell biology. However, the technology remains inaccessible to many biologists, as it often requires complex manufacturing facilities (such as soft lithography) and uses materials foreign to cell biology (such as polydimethylsiloxane). Here, we present a method for creating microfluidic environments by simply reshaping fluids on a substrate. For applications in cell biology, we use cell media on a virgin Petri dish overlaid with an immiscible fluorocarbon. A hydrophobic/fluorophilic stylus then reshapes the media into any pattern by creating liquid walls of fluorocarbon. Microfluidic arrangements suitable for cell culture are made in minutes using materials familiar to biologists. The versatility of the method is demonstrated by creating analogs of a common platform in cell biology, the microtiter plate. Using this vehicle, we demonstrate many manipulations required for cell culture and downstream analysis, including feeding, replating, cloning, cryopreservation, lysis plus RT-PCR, transfection plus genome editing, and fixation plus immunolabeling (when fluid walls are reconfigured during use). We also show that mammalian cells grow and respond to stimuli normally, and worm eggs develop into adults. This simple approach provides biologists with an entrée into microfluidics.
Collapse
|
6
|
Tarn MD, Sikora SNF, Porter GCE, O’Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ. The study of atmospheric ice-nucleating particles via microfluidically generated droplets. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:52. [PMID: 29720926 PMCID: PMC5915516 DOI: 10.1007/s10404-018-2069-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 103-106 ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK's annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | - Daniel O’Sullivan
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Mike Adams
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Thomas F. Whale
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | | | - Jesús Vergara-Temprado
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Theodore W. Wilson
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Owlstone Medical Ltd., 127 Science Park, Cambridge, CB4 0GD UK
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | |
Collapse
|
7
|
Hauptmann A, Handle KF, Baloh P, Grothe H, Loerting T. Does the emulsification procedure influence freezing and thawing of aqueous droplets? J Chem Phys 2016; 145:211923. [DOI: 10.1063/1.4965434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Astrid Hauptmann
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Karl F. Handle
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Philipp Baloh
- Institute of Materials Chemistry, Vienna University of Technology, A-1060 Vienna, Austria
| | - Hinrich Grothe
- Institute of Materials Chemistry, Vienna University of Technology, A-1060 Vienna, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. Proc Natl Acad Sci U S A 2013; 110:1309-14. [PMID: 23300286 DOI: 10.1073/pnas.1213603110] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules.
Collapse
|
9
|
Scheeline A, Behrens RL. Potential of levitated drops to serve as microreactors for biophysical measurements. Biophys Chem 2012; 165-166:1-12. [DOI: 10.1016/j.bpc.2012.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/18/2012] [Accepted: 03/18/2012] [Indexed: 01/15/2023]
|
10
|
Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:016601. [PMID: 22790308 DOI: 10.1088/0034-4885/75/1/016601] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.
Collapse
Affiliation(s)
- Ralf Seemann
- Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|