1
|
Essig YJ, Leszczyszyn OI, Almutairi N, Harrison-Smith A, Blease A, Zeitoun-Ghandour S, Webb SM, Blindauer CA, Stürzenbaum SR. Juggling cadmium detoxification and zinc homeostasis: A division of labour between the two C. elegans metallothioneins. CHEMOSPHERE 2024; 350:141021. [PMID: 38151062 PMCID: PMC11134313 DOI: 10.1016/j.chemosphere.2023.141021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The chemical properties of toxic cadmium and essential zinc are very similar, and organisms require intricate mechanisms that drive selective handling of metals. Previously regarded as unspecific "metal sponges", metallothioneins (MTLs) are emerging as metal selectivity filters. By utilizing C. elegans mtl-1 and mtl-2 knockout strains, metal accumulation in single worms, single copy fluorescent-tagged transgenes, isoform specific qPCR and lifespan studies it was possible to demonstrate that the handling of cadmium and zinc by the two C. elegans metallothioneins differs fundamentally: the MTL-2 protein can handle both zinc and cadmium, but when it becomes unavailable, either via a knockout or by elevated cadmium exposure, MTL-1 takes over zinc handling, leaving MTL-2 to sequester cadmium. This division of labour is reflected in the folding behaviour of the proteins: MTL-1 folded well in presence of zinc but not cadmium, the reverse was the case for MTL-2. These differences are in part mediated by a zinc-specific mononuclear His3Cys site in the C-terminal insertion of MTL-1; its removal affected the entire C-terminal domain and may shift its metal selectivity towards zinc. Overall, we uncover how metallothionein isoform-specific responses and protein properties allow C. elegans to differentiate between toxic cadmium and essential zinc.
Collapse
Affiliation(s)
- Yona J Essig
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | - Oksana I Leszczyszyn
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | - Norah Almutairi
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | | | - Alix Blease
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | | | - Sam M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Stephen R Stürzenbaum
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK.
| |
Collapse
|
2
|
Ranjbar S, Malcata FX. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules 2022; 27:1473. [PMID: 35268582 PMCID: PMC8911655 DOI: 10.3390/molecules27051473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process-with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.
Collapse
Affiliation(s)
- Saeed Ranjbar
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Danouche M, El Ghachtouli N, El Arroussi H. Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 2021; 7:e07609. [PMID: 34355100 PMCID: PMC8322293 DOI: 10.1016/j.heliyon.2021.e07609] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Heavy metal (HM) contamination of water bodies is a serious global environmental problem. Because they are not biodegradable, they can accumulate in food chains, causing various signs of toxicity to exposed organisms, including humans. Due to its effectiveness, low cost, and ecological aspect, phycoremediation, or the use of microalgae's ecological functions in the treatment of HMs contaminated wastewater, is one of the most recommended processes. This study aims to examine in depth the mechanisms involved in the phycoremediation of HMs by microalgae, it also provides an overview of the prospects for improving the productivity, selectivity, and cost-effectiveness of this bioprocess through physicochemical and genetic engineering applications. Firstly, this review proposes a detailed examination of the biosorption interactions between cell wall functional groups and HMs, and their complexation with extracellular polymeric substances released by microalgae in the extracellular environment under stress conditions. Subsequently, the metal transporters involved in the intracellular bioaccumulation of HMs as well as the main intracellular mechanisms including compartmentalization in cell organelles, enzymatic biotransformation, or photoreduction of HMs were also extensively reviewed. In the last section, future perspectives of physicochemical and genetic approaches that could be used to improve the phytoremediation process in terms of removal efficiency, selectivity for a targeted metal, or reduction of treatment time and cost are discussed, which paves the way for large-scale application of phytoremediation processes.
Collapse
Affiliation(s)
- Mohammed Danouche
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Naïma El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hicham El Arroussi
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- AgroBioScience (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| |
Collapse
|
4
|
Carrillo JT, Borthakur D. Methods for metal chelation in plant homeostasis: Review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:95-107. [PMID: 33826996 DOI: 10.1016/j.plaphy.2021.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/20/2021] [Indexed: 05/01/2023]
Abstract
Metal uptake, transport and storage in plants depend on specialized ligands with closely related functions. Individual studies differing by species, nutrient availability, tissue type, etc. are not comprehensive enough to understand plant metal homeostasis in its entirety. A thorough review is required that distinguishes the role of ligands directly involved in chelation from the myriad of plant responses to general stress. Distinguishing between the functions of metal chelating compounds is the primary focus of this review; reactive oxygen species mediation and other aspects of metal homeostasis are also discussed. High molecular weight ligands (polysaccharides, phytochelatin, metallothionein), low molecular weight ligands (nicotianamine, histidine, secondary metabolites) and select studies which demonstrate the complex nature of plant metal homeostasis are explored.
Collapse
Affiliation(s)
- James T Carrillo
- University of Hawaii at Manoa, Department of Molecular Biology and Bioengineering, 1955 East-West Road, Agricultural Sciences 218, Honolulu, HI, 96822, USA.
| | - Dulal Borthakur
- University of Hawaii at Manoa, Department of Molecular Biology and Bioengineering, 1955 East-West Road, Agricultural Sciences 218, Honolulu, HI, 96822, USA.
| |
Collapse
|
5
|
Salim A, Chesnov S, Freisinger E. Metallation pathway of a plant metallothionein: Cicer arietinum MT2. J Inorg Biochem 2020; 210:111157. [PMID: 32622214 DOI: 10.1016/j.jinorgbio.2020.111157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022]
Abstract
The plant metallothionein 2 protein from Cicer arietinum (cicMT2) is a typical member of the plant MT subfamily p2 that is characterized by an N- and C-terminal cysteine- (Cys-)rich, metal binding sequence connected by a long cysteine-free linker region. cicMT2 coordinates up to five ZnII or CdII ions by its 14 cysteine thiolate groups forming a single metal-thiolate cluster. While MTs from other phyla are considerably well-studied, many details about plant MTs are missing. In this study the metallation pathway of cicMT2 is investigated using mass spectrometry. To evaluate the influence of the linker region as well as the interplay of the two Cys-rich stretches, the full-length cicMT2 protein as well as the individual Cys-rich domains with and without the linker region were analysed. Up to three CdII ions can be coordinated by the eight Cys residues of the N-terminal part and up to two CdII ions by the six Cys residues of the C-terminal sequence. However, no preferential binding to either of the two sequences is observed, which is in-line with the closely similar apparent binding constants of the individual domains obtained from competition reactions with the chelator 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid. The combination of limited proteolytic digestion, mass spectrometry, dynamic light scattering, size-exclusion chromatography, and 19F NMR spectroscopy enables us to draw conclusions about the overall protein-fold and the cluster formation process.
Collapse
Affiliation(s)
- Alma Salim
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Serge Chesnov
- University of Zurich/ETH Zurich, Functional Genomics Centre Zurich, Zurich, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Balzano S, Sardo A, Blasio M, Chahine TB, Dell’Anno F, Sansone C, Brunet C. Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Front Microbiol 2020; 11:517. [PMID: 32431671 PMCID: PMC7216689 DOI: 10.3389/fmicb.2020.00517] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
The persistence of heavy metals (HMs) in the environment causes adverse effects to all living organisms; HMs accumulate along the food chain affecting different levels of biological organizations, from cells to tissues. HMs enter cells through transporter proteins and can bind to enzymes and nucleic acids interfering with their functioning. Strategies used by microalgae to minimize HM toxicity include the biosynthesis of metal-binding peptides that chelate metal cations inhibiting their activity. Metal-binding peptides include genetically encoded metallothioneins (MTs) and enzymatically produced phytochelatins (PCs). A number of techniques, including genetic engineering, focus on increasing the biosynthesis of MTs and PCs in microalgae. The present review reports the current knowledge on microalgal MTs and PCs and describes the state of art of their use for HM bioremediation and other putative biotechnological applications, also emphasizing on techniques aimed at increasing the cellular concentrations of MTs and PCs. In spite of the broad metabolic and chemical diversity of microalgae that are currently receiving increasing attention by biotechnological research, knowledge on MTs and PCs from these organisms is still limited to date.
Collapse
Affiliation(s)
- Sergio Balzano
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | - Martina Blasio
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | | | | | | | | |
Collapse
|
7
|
Imam HT, Blindauer CA. Differential reactivity of closely related zinc(II)-binding metallothioneins from the plant Arabidopsis thaliana. J Biol Inorg Chem 2018; 23:137-154. [PMID: 29218630 PMCID: PMC5756572 DOI: 10.1007/s00775-017-1516-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/12/2017] [Indexed: 12/04/2022]
Abstract
The dynamics of metal binding to and transfer from metalloproteins involved in metal homeostasis are important for understanding cellular distribution of metal ions. The dicotyledonous plant Arabidopsis thaliana has two type 4 seed-specific metallothionein homologues, MT4a and MT4b, with likely roles in zinc(II) homeostasis. These two metallothioneins are 84% identical, with full conservation of all metal-binding cysteine and histidine residues. Yet, differences in their spatial and temporal expression patterns suggested divergence in their biological roles. To investigate whether biological functions are reflected in molecular properties, we compare aspects of zinc(II)-binding dynamics of full-length MT4a and MT4b, namely the pH dependence of zinc(II) binding and protein folding, and zinc(II) transfer to the chelator EDTA. UV-Vis and NMR spectroscopies as well as native electrospray ionisation mass spectrometry consistently showed that transfer from Zn6MT4a is considerably faster than from Zn6MT4b, with pseudo-first-order rate constants for the fastest observed step of k obs = 2.8 × 10-4 s-1 (MT4b) and k obs = 7.5 × 10-4 s-1 (MT4a) (5 µM protein, 500 µM EDTA, 25 mM Tris buffer, pH 7.33, 298 K). 2D heteronuclear NMR experiments allowed locating the most labile zinc(II) ions in domain II for both proteins. 3D homology models suggest that reactivity of this domain is governed by the local environment around the mononuclear Cys2His2 site that is unique to type 4 MTs. Non-conservative amino acid substitutions in this region affect local electrostatics as well as whole-domain dynamics, with both effects rendering zinc(II) ions bound to MT4a more reactive in metal transfer reactions. Therefore, domain II of MT4a is well suited to rapidly release its bound zinc(II) ions, in broad agreement with a previously suggested role of MT4a in zinc(II) transport and delivery to other proteins.
Collapse
Affiliation(s)
- Hasan T Imam
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | | |
Collapse
|
8
|
Mierek-Adamska A, Dąbrowska GB, Blindauer CA. The type 4 metallothionein from Brassica napus seeds folds in a metal-dependent fashion and favours zinc over other metals. Metallomics 2018; 10:1430-1443. [DOI: 10.1039/c8mt00161h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapeseed MT4 only folds properly in the presence of Zn2+ and thus may serve as a selectivity filter for metal accumulation in plant embryos.
Collapse
Affiliation(s)
- Agnieszka Mierek-Adamska
- Department of Genetics
- Faculty of Biology and Environmental Protection
- Nicolaus Copernicus University
- 87-100 Toruń
- Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics
- Faculty of Biology and Environmental Protection
- Nicolaus Copernicus University
- 87-100 Toruń
- Poland
| | | |
Collapse
|
9
|
Habjanič J, Zerbe O, Freisinger E. A histidine-rich Pseudomonas metallothionein with a disordered tail displays higher binding capacity for cadmium than zinc. Metallomics 2018; 10:1415-1429. [DOI: 10.1039/c8mt00193f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The NMR solution structure of a Pseudomonas metallothionein reveals a different binding capacity for ZnII and CdII ions that results in two novel metal-cluster topologies. Replacement of a non-coordinating residue by histidine decreases the kinetic lability of the cluster. All three structures reported show an identical protein fold.
Collapse
Affiliation(s)
- Jelena Habjanič
- Department of Chemistry
- University of Zurich
- Zurich
- Switzerland
| | - Oliver Zerbe
- Department of Chemistry
- University of Zurich
- Zurich
- Switzerland
| | - Eva Freisinger
- Department of Chemistry
- University of Zurich
- Zurich
- Switzerland
| |
Collapse
|
10
|
Hallinger M, Gerhard AC, Ritz MD, Sacks JS, Poutsma JC, Pike RD, Wojtas L, Bebout DC. Metal Substitution and Solvomorphism in Alkylthiolate-Bridged Zn 3 and HgZn 2 Metal Clusters. ACS OMEGA 2017; 2:6391-6404. [PMID: 31457242 PMCID: PMC6645076 DOI: 10.1021/acsomega.7b01087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/21/2017] [Indexed: 06/10/2023]
Abstract
The impact of substituting Hg(II) for Zn(II) in a thiolate-bridged trinuclear cluster with parallels to a metallothionein metal cluster was investigated. A new solvomorph of [Zn(ZnL)2](ClO4)2 (1) (L = N-(2-pyridylmethyl)-N-(2-(ethylthiolato)-amine) and five solvomorphs of a new compound [Hg(ZnL)2](ClO4)2 (2) were characterized by single-crystal X-ray crystallography. The interplay of hydrogen bonding and aromatic-packing interactions in producing lamellar, 2D lamellar, and columnar arrangements of complex cations in the crystalline state is discussed. Both variable temperature proton nuclear magnetic resonance and electrospray ion-mass spectrometry (ESI-MS) suggest that the complex ions of 1 and 2 are the predominant solution species at moderate concentrations. ESI-MS was also used to monitor differences in metal ion redistribution as 1 was titrated with Hg(ClO4)2 and [HgL(ClO4)]. These studies document the facile replacement of Zn(II) by Hg(II) with the preservation of the overall structure in thiolate-rich clusters.
Collapse
Affiliation(s)
- Madeline
R. Hallinger
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Alison C. Gerhard
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Mikhaila D. Ritz
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Joshua S. Sacks
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - John C. Poutsma
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Robert D. Pike
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Lukasz Wojtas
- Department
of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Deborah C. Bebout
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| |
Collapse
|
11
|
Remelli M, Nurchi VM, Lachowicz JI, Medici S, Zoroddu MA, Peana M. Competition between Cd(II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Tomas M, Tinti A, Bofill R, Capdevila M, Atrian S, Torreggiani A. Comparative Raman study of four plant metallothionein isoforms: Insights into their Zn(II) clusters and protein conformations. J Inorg Biochem 2016; 156:55-63. [DOI: 10.1016/j.jinorgbio.2015.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/17/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023]
|
13
|
Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT. Int J Mol Sci 2016; 17:ijms17010065. [PMID: 26742040 PMCID: PMC4730310 DOI: 10.3390/ijms17010065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/24/2015] [Indexed: 01/03/2023] Open
Abstract
Earthworms express, as most animals, metallothioneins (MTs)—small, cysteine-rich proteins that bind d10 metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.
Collapse
|
14
|
Tarasava K, Freisinger E. Investigating the influence of histidine residues on the metal ion binding ability of the wheat metallothionein γ-Ec-1 domain. J Inorg Biochem 2015; 153:197-203. [DOI: 10.1016/j.jinorgbio.2015.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|
15
|
Blindauer CA. Advances in the molecular understanding of biological zinc transport. Chem Commun (Camb) 2015; 51:4544-63. [DOI: 10.1039/c4cc10174j] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recognition of the importance of zinc homeostasis for health has driven a surge in structural data on major zinc-transporting proteins.
Collapse
|
16
|
Irvine GW, Duncan KER, Gullons M, Stillman MJ. Metalation Kinetics of the Human α-Metallothionein 1a Fragment Is Dependent on the Fluxional Structure of the apo-Protein. Chemistry 2014; 21:1269-79. [DOI: 10.1002/chem.201404283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 01/06/2023]
|
17
|
Tomas M, Pagani MA, Andreo CS, Capdevila M, Bofill R, Atrian S. His-containing plant metallothioneins: comparative study of divalent metal-ion binding by plant MT3 and MT4 isoforms. J Biol Inorg Chem 2014; 19:1149-64. [PMID: 24951240 DOI: 10.1007/s00775-014-1170-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/31/2014] [Indexed: 11/30/2022]
Abstract
Metallothioneins (MTs) are a superfamily of Cys-rich, low-molecular weight metalloproteins that bind heavy metal ions. These cytosolic metallopeptides, which exist in most living organisms, are thought to be involved in metal homeostasis, metal detoxification, and oxidative stress protection. In this work, we characterise the Zn(II)- and Cd(II)-binding abilities of plant type 3 and type 4 MTs identified in soybean and sunflower, both of them being His-containing peptides. The recombinant metal-MT complexes synthesised in Zn(II) or Cd(II)-enriched Escherichia coli cultures have been analysed by ESI-MS, and CD, ICP-AES, and UV spectroscopies. His-to-Ala type 3 MT mutants have also been constructed and synthesised for the study of the role of His in divalent metal ion coordination. The results show comparable divalent metal-binding capacities for the MTs of type 3, and suggest, for the first time, the participation of their conserved C-term His residues in metal binding. Interesting features for the Zn(II)-binding abilities of type 4 MTs are also reported, as their variable His content may be considered crucial for their biological performance.
Collapse
Affiliation(s)
- Mireia Tomas
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08093, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Lockwood TD. Lysosomal metal, redox and proton cycles influencing the CysHis cathepsin reaction. Metallomics 2013; 5:110-24. [PMID: 23302864 DOI: 10.1039/c2mt20156a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the 1930's pioneers discovered that maximal autolysis in tissue homogenates requires metal chelator, sulfhydryl reducing agent and acid pH. However, metals, reducing equivalents and protons (MR&P) have been overlooked as combined catalytic controls. Three categories of lysosomal machinery drive three distinguishable cycles importing and exporting MR&P. Zn(2+) preemptively inhibits CysHis catalysis under otherwise optimal protonation and reduction. Protein-bound cell Zn(2+) concentration is 200-2000 times the non-sequestered inhibitory concentration. Following autophagy, lysosomal proteolysis liberates much inhibitory Zn(2+). The vacuolar proton pump is the driving force for Zn(2+) export, as well as protonation of the peptidolytic mechanism. Other machinery of lysosomal cycles includes proton-driven Zn(2+) exporters (e.g. SLC11A1), Zn(2+) channels (e.g. TRPML-1), lysosomal thiol reductase, etc. The CysHis dyad is a sensor of the vacuolar environment of MR&P, an integrator of these simultaneous variables, and a catalytic responder. Rate-determination can shift between autophagic substrate acquisition (swallowing) and substrate degradation (digesting). Zn(2+) recycling from degraded proteins to new proteins is a fourth cycle that might pace lysosomal function under some conditions. Heritable insufficient or excess functions of CysHis cathepsins are associated with dysfunctional inflammation and immunity/auto-immunity, including diabetic pathogenesis.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Dept. of Pharmacology, School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
| |
Collapse
|
19
|
Blindauer CA. Lessons on the critical interplay between zinc binding and protein structure and dynamics. J Inorg Biochem 2013; 121:145-55. [PMID: 23376625 DOI: 10.1016/j.jinorgbio.2013.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 02/05/2023]
Abstract
Zinc is one of the most important micronutrients for virtually all living organisms, and hence, it is important to understand the molecular mechanisms for its homeostasis. Besides proteins involved in transmembrane transport, both extra- and intracellular zinc-binding proteins play important roles in the respective metabolic networks. Important examples for extracellular zinc transporters are mammalian serum albumins, and for intracellular zinc handling, certain metallothioneins are of relevance. The availability of protein structures including relevant metal binding sites is a fundamental prerequisite to decipher the mechanisms that govern zinc binding dynamics in these proteins, but their determination can prove to be surprisingly challenging. Due to the spectroscopic silence of Zn(2+), combinations of biophysical techniques including electrospray ionisation mass spectrometry (ESI-MS) and multinuclear NMR, isothermal titration calorimetry (ITC) and extended X-ray absorption fine structure (EXAFS) spectroscopy, coupled with site-directed mutagenesis and molecular modelling have proven to be valuable approaches to understand not only the zinc-binding properties of metallothioneins and albumins, but also the influence of other physiologically relevant competing agents. These studies have demonstrated why the bacterial metallothionein SmtA contains a site inert towards exchange with Cd(2+), why the plant metallothionein EC from wheat is partially unfolded in the presence of Cd(2+), and how fatty acids impact on the zinc-binding ability of mammalian serum albumins.
Collapse
|
20
|
|
21
|
|
22
|
Leszczyszyn OI, Imam HT, Blindauer CA. Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 2013; 5:1146-69. [DOI: 10.1039/c3mt00072a] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Pagani MA, Tomas M, Carrillo J, Bofill R, Capdevila M, Atrian S, Andreo CS. The response of the different soybean metallothionein isoforms to cadmium intoxication. J Inorg Biochem 2012; 117:306-15. [PMID: 23073037 DOI: 10.1016/j.jinorgbio.2012.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
Cadmium is a highly toxic heavy metal for both plants and animals. The presence of Cd in agricultural soils is of major concern regarding its entry into the food chain, since Cd compounds are readily taken up by plants, and accumulated in edible parts due to their high solubility. In this study, we first demonstrate the high capacity for Cd concentration of soybean grains. Consequently, we considered the study and characterization of the molecular determinants of Cd accumulation -such as metallothioneins (MT)- to be of major practical importance. We report here the first characterization of the soybean MT system, with the identification of nine genes (one of which is a truncated pseudogene), belonging to the four plant MT types. The most highly expressed of each type was chosen for further function analysis. All of them are expressed at high levels in soybean tissues: GmMT1, GmMT2 and GmMT3 in roots, shoots and seeds, and GmMT4 only in seeds. The corresponding recombinant soybean MTs, synthesized in Escherichia coli cells cultured in metal supplemented media, exhibit greater cadmium than zinc binding capacity. These results suggest a definite role of GmMTs in Cd(II) accumulation as one of the main responses of soybean to an overload of this metal.
Collapse
Affiliation(s)
- M A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos, CONICET, Suipacha 531, 2000 Rosario, Argentina.
| | | | | | | | | | | | | |
Collapse
|
24
|
Hegelund JN, Schiller M, Kichey T, Hansen TH, Pedas P, Husted S, Schjoerring JK. Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding. PLANT PHYSIOLOGY 2012; 159:1125-37. [PMID: 22582132 PMCID: PMC3387699 DOI: 10.1104/pp.112.197798] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/09/2012] [Indexed: 05/20/2023]
Abstract
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations.
Collapse
Affiliation(s)
- Josefine Nymark Hegelund
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.N.H., M.S., T.H.H., P.P., S.H., J.K.S.); and
- Unité Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie Jules Verne, 80039 Amiens cedex, France (T.K.)
| | - Michaela Schiller
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.N.H., M.S., T.H.H., P.P., S.H., J.K.S.); and
- Unité Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie Jules Verne, 80039 Amiens cedex, France (T.K.)
| | - Thomas Kichey
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.N.H., M.S., T.H.H., P.P., S.H., J.K.S.); and
- Unité Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie Jules Verne, 80039 Amiens cedex, France (T.K.)
| | - Thomas Hesselhøj Hansen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.N.H., M.S., T.H.H., P.P., S.H., J.K.S.); and
- Unité Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie Jules Verne, 80039 Amiens cedex, France (T.K.)
| | - Pai Pedas
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.N.H., M.S., T.H.H., P.P., S.H., J.K.S.); and
- Unité Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie Jules Verne, 80039 Amiens cedex, France (T.K.)
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg, Denmark (J.N.H., M.S., T.H.H., P.P., S.H., J.K.S.); and
- Unité Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie Jules Verne, 80039 Amiens cedex, France (T.K.)
| | | |
Collapse
|
25
|
Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc Natl Acad Sci U S A 2012; 109:7202-7. [PMID: 22529353 DOI: 10.1073/pnas.1200362109] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc and cadmium are similar metal ions, but though Zn(2+) is an essential nutrient, Cd(2+) is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn(2+) vs. Cd(2+) suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn(2+) transport, but reject Cd(2+), thus constituting the first mammalian metal transporter with a refined selectivity against Cd(2+). Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn(2+) and Cd(2+). A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn(2+) transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd(2+) by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn(2+) and Cd(2+), and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd(2+) binding.
Collapse
|
26
|
Ren Y, Liu Y, Chen H, Li G, Zhang X, Zhao J. Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis. PLANT, CELL & ENVIRONMENT 2012; 35:770-89. [PMID: 22014117 DOI: 10.1111/j.1365-3040.2011.02450.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Type 4 metallothionein (MT) genes are recognized for their specific expression in higher plant seeds, but their functions are still unclear. In this study, the functions of two Arabidopsis metallothionein genes, AtMT4a and AtMT4b, are investigated in seed development, germination and early seedling growth. Transcriptional analysis showed that these two genes are specifically expressed in late embryos. Subcellular localization displayed that both AtMT4a and AtMT4b are widespread distributed in cytoplasm, nucleus and membrane. Co-silencing RNAi of AtMT4a and AtMT4b reduced seed weight and influenced the early seedling growth after germination, whereas overexpression of these two genes caused the opposite results. Detailed analysis showed clearly the correlation of AtMT4a and AtMT4b to the accumulation of some important metal ions in late embryos, especially to Zn ion storing in seeds, which then serves as part of early Zn ion resources for post-germinated seedling growth. Furthermore, phytohormone abscisic acid (ABA) and gibberellic acid (GA) may play roles in regulating the expression and function of AtMT4a and AtMT4b during seed development; and this may influence Zn accumulation in seeds and Zn ion nutrient supplementation in the early seedling growth after germination.
Collapse
Affiliation(s)
- Yujun Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
27
|
Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 2011; 16:977-89. [PMID: 21633816 DOI: 10.1007/s00775-011-0798-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/10/2011] [Indexed: 12/23/2022]
Abstract
Metallothionein (MT) evolution is one of the most obscure yet fascinating aspects of the study of these atypical metal-binding peptides. The different members of the extremely heterogeneous MT protein superfamily probably evolved through a web of duplication, functional differentiation, and/or convergence events leading to the current scenario, which is particularly hard to interpret in terms of molecular evolution. Difficulties in drawing straight evolutionary relationships are reflected in the lack of definite MT classification criteria. Presently, MTs are categorized either according to a pure taxonomic clustering or depending on their metal binding preferences and specificities. Extremely well documented MT revisions were recently published. But beyond classic approaches, this review of MT protein evolution will bring together new aspects that have seldom been discussed before. Hence, the emergence of life on our planet, since metal ion utilization is accepted to be at the root of the emergence of living organisms, and global trends that underlie structural and functional MT diversification, will be presented. Major efforts are currently being devoted to identifying rules for function-constrained MT evolution that may be applied to different groups of organisms.
Collapse
|
28
|
Leszczyszyn OI, Zeitoun-Ghandour S, Stürzenbaum SR, Blindauer CA. Tools for metal ion sorting: in vitro evidence for partitioning of zinc and cadmium in C. elegans metallothionein isoforms. Chem Commun (Camb) 2011; 47:448-50. [DOI: 10.1039/c0cc02188a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Blindauer CA, Schmid R. Cytosolic metal handling in plants: determinants for zinc specificity in metal transporters and metallothioneins. Metallomics 2010; 2:510-29. [DOI: 10.1039/c004880a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Leszczyszyn OI, Blindauer CA. Zinc transfer from the embryo-specific metallothionein EC from wheat: a case study. Phys Chem Chem Phys 2010; 12:13408-18. [DOI: 10.1039/c0cp00680g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|