1
|
Szmelter AH, Venturini G, Abbed RJ, Acheampong MO, Eddington DT. Emulating clinical pressure waveforms in cell culture using an Arduino-controlled millifluidic 3D-printed platform for 96-well plates. LAB ON A CHIP 2023; 23:793-802. [PMID: 36727452 PMCID: PMC9979247 DOI: 10.1039/d2lc00970f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
High blood pressure is the primary risk factor for heart disease, the leading cause of death globally. Despite this, current methods to replicate physiological pressures in vitro remain limited in sophistication and throughput. Single-chamber exposure systems allow for only one pressure condition to be studied at a time and the application of dynamic pressure waveforms is currently limited to simple sine, triangular, or square waves. Here, we introduce a high-throughput hydrostatic pressure exposure system for 96-well plates. The platform can deliver a fully-customizable pressure waveform to each column of the plate, for a total of 12 simultaneous conditions. Using clinical waveform data, we are able to replicate real patients' blood pressures as well as other medically-relevant pressures within the body and have assembled a small patient-derived waveform library of some key physiological locations. As a proof of concept, human umbilical vein endothelial cells (HUVECs) survived and proliferated for 3 days under a wide range of static and dynamic physiologic pressures ranging from 10 mm Hg to 400 mm Hg. Interestingly, pathologic and supraphysiologic pressure exposures did not inhibit cell proliferation. By integrating with, rather than replacing, ubiquitous lab cultureware it is our hope that this device will facilitate the incorporation of hydrostatic pressure into standard cell culture practice.
Collapse
Affiliation(s)
- Adam H Szmelter
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| | - Giulia Venturini
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| | - Rana J Abbed
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| | - Manny O Acheampong
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| | - David T Eddington
- Department of Biomedical Engineering, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL, USA.
| |
Collapse
|
2
|
Liu P, Fu L, Li B, Man M, Ji Y, Kang Q, Sun X, Shen D, Chen L. Dissolved oxygen gradient on three dimensionally printed microfluidic platform for studying its effect on fish at three levels: cell, embryo, and larva. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21978-21989. [PMID: 36282391 DOI: 10.1007/s11356-022-23688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A simple and low-cost dissolved oxygen gradient platform of three dimensionally (3D) printed microfluidic chip was developed for cultivating cells, embryos, and larvae of fish. "Christmas tree" structure channel networks generated a dissolved oxygen gradient out of two fluids fed to the device. Polydimethylsiloxane (PDMS) membrane with high biocompatibility was used as the substrate for cell culture in the 3D-printed microfluidic chip, which made the cell analysis easy. The embryos and larvae of fish could be cultured directly in the chip, and their development can be observed in real time with a microscope. Using zebrafish as a model, we assessed the effect of different dissolved oxygen on its cells, embryos, and larvae. Hypoxia induced production of reactive oxygen species (ROS) in zebrafish cells, embryos, and larvae, eventually leading to cell apoptosis and developmental impairment. Hypoxia also increased nitric oxide content in zebrafish cells, which might be a defensive strategy to overcome the adverse effect of hypoxia in fish cells. This is the first platform that could comprehensively investigate the effects of different dissolved oxygen on fish at the cell, embryo, and larva levels, which has great potential in studying the responses of aquatic organisms under different oxygen concentrations.
Collapse
Affiliation(s)
- Ping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yunxia Ji
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environment Processes and Ecological Remediation, The Research Center for Coastal Environment Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
3
|
Tornberg K, Välimäki H, Valaskivi S, Mäki AJ, Jokinen M, Kreutzer J, Kallio P. Compartmentalized organ-on-a-chip structure for spatiotemporal control of oxygen microenvironments. Biomed Microdevices 2022; 24:34. [PMID: 36269438 DOI: 10.1007/s10544-022-00634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
Abstract
Hypoxia is a condition where tissue oxygen levels fall below normal levels. In locally induced hypoxia due to blood vessel blockage, oxygen delivery becomes compromised. The site where blood flow is diminished the most forms a zero-oxygen core, and different oxygenation zones form around this core with varying oxygen concentrations. Naturally, these differing oxygen microenvironments drive cells to respond according to their oxygenation status. To study these cellular processes in laboratory settings, the cellular gas microenvironments should be controlled rapidly and precisely. In this study, we propose an organ-on-a-chip device that provides control over the oxygen environments in three separate compartments as well as the possibility of rapidly changing the corresponding oxygen concentrations. The proposed device includes a microfluidic channel structure with three separate arrays of narrow microchannels that guide gas mixtures with desired oxygen concentrations to diffuse through a thin gas-permeable membrane into cell culture areas. The proposed microfluidic channel structure is characterized using a 2D ratiometric oxygen imaging system, and the measurements confirm that the oxygen concentrations at the cell culture surface can be modulated in a few minutes. The structure is capable of creating hypoxic oxygen tension, and distinct oxygen environments can be generated simultaneously in the three compartments. By combining the microfluidic channel structure with an open-well coculture device, multicellular cultures can be established together with compartmentalized oxygen environment modulation. We demonstrate that the proposed compartmentalized organ-on-a-chip structure is suitable for cell culture.
Collapse
Affiliation(s)
- Kaisa Tornberg
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland.
| | - Hannu Välimäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Silmu Valaskivi
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Matias Jokinen
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Joose Kreutzer
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| |
Collapse
|
4
|
Grist SM, Bennewith KL, Cheung KC. Oxygen Measurement in Microdevices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:221-246. [PMID: 35696522 DOI: 10.1146/annurev-anchem-061020-111458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxygen plays a fundamental role in respiration and metabolism, and quantifying oxygen levels is essential in many environmental, industrial, and research settings. Microdevices facilitate the study of dynamic, oxygen-dependent effects in real time. This review is organized around the key needs for oxygen measurement in microdevices, including integrability into microfabricated systems; sensor dynamic range and sensitivity; spatially resolved measurements to map oxygen over two- or three-dimensional regions of interest; and compatibility with multimodal and multianalyte measurements. After a brief overview of biological readouts of oxygen, followed by oxygen sensor types that have been implemented in microscale devices and sensing mechanisms, this review presents select recent applications in organs-on-chip in vitro models and new sensor capabilities enabling oxygen microscopy, bioprocess manufacturing, and pharmaceutical industries. With the advancement of multiplexed, interconnected sensors and instruments and integration with industry workflows, intelligent microdevice-sensor systems including oxygen sensors will have further impact in environmental science, manufacturing, and medicine.
Collapse
Affiliation(s)
- Samantha M Grist
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Kevin L Bennewith
- Integrative Oncology Department, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Karen C Cheung
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Liu P, Fu L, Song Z, Man M, Yuan H, Zheng X, Kang Q, Shen D, Song J, Li B, Chen L. Three dimensionally printed nitrocellulose-based microfluidic platform for investigating the effect of oxygen gradient on cells. Analyst 2021; 146:5255-5263. [PMID: 34324622 DOI: 10.1039/d1an00927c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions.
Collapse
Affiliation(s)
- Ping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Otero J, Ulldemolins A, Farré R, Almendros I. Oxygen Biosensors and Control in 3D Physiomimetic Experimental Models. Antioxidants (Basel) 2021; 10:1165. [PMID: 34439413 PMCID: PMC8388981 DOI: 10.3390/antiox10081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022] Open
Abstract
Traditional cell culture is experiencing a revolution moving toward physiomimetic approaches aiming to reproduce healthy and pathological cell environments as realistically as possible. There is increasing evidence demonstrating that biophysical and biochemical factors determine cell behavior, in some cases considerably. Alongside the explosion of these novel experimental approaches, different bioengineering techniques have been developed and improved. Increased affordability and popularization of 3D bioprinting, fabrication of custom-made lab-on-a chip, development of organoids and the availability of versatile hydrogels are factors facilitating the design of tissue-specific physiomimetic in vitro models. However, lower oxygen diffusion in 3D culture is still a critical limitation in most of these studies, requiring further efforts in the field of physiology and tissue engineering and regenerative medicine. During recent years, novel advanced 3D devices are introducing integrated biosensors capable of monitoring oxygen consumption, pH and cell metabolism. These biosensors seem to be a promising solution to better control the oxygen delivery to cells and to reproduce some disease conditions involving hypoxia. This review discusses the current advances on oxygen biosensors and control in 3D physiomimetic experimental models.
Collapse
Affiliation(s)
- Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
- Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
- Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer, 08036 Barcelona, Spain
| |
Collapse
|
7
|
Kiiski I, Järvinen P, Ollikainen E, Jokinen V, Sikanen T. The material-enabled oxygen control in thiol-ene microfluidic channels and its feasibility for subcellular drug metabolism assays under hypoxia in vitro. LAB ON A CHIP 2021; 21:1820-1831. [PMID: 33949410 DOI: 10.1039/d0lc01292k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tissue oxygen levels are known to be critical to regulation of many cellular processes, including the hepatic metabolism of therapeutic drugs, but its impact is often ignored in in vitro assays. In this study, the material-induced oxygen scavenging property of off-stoichiometric thiol-enes (OSTE) was exploited to create physiologically relevant oxygen concentrations in microfluidic immobilized enzyme reactors (IMERs) incorporating human liver microsomes. This could facilitate rapid screening of, for instance, toxic drug metabolites possibly produced in hypoxic conditions typical for many liver injuries. The mechanism of OSTE-induced oxygen scavenging was examined in depth to enable precise adjustment of the on-chip oxygen concentration with the help of microfluidic flow. The oxygen scavenging rate of OSTE was shown to depend on the type and the amount of the thiol monomer used in the bulk composition, and the surface-to-volume ratio of the chip design, but not on the physical or mechanical properties of the bulk. Our data suggest that oxygen scavenging takes place at the polymer-liquid interface, likely via oxidative reactions of the excess thiol monomers released from the bulk with molecular oxygen. Based on the kinetic constants governing the oxygen scavenging rate in OSTE microchannels, a microfluidic device comprising monolithically integrated oxygen depletion and IMER units was designed and its performance validated with the help of oxygen-dependent metabolism of an antiretroviral drug, zidovudine, which yields a cytotoxic metabolite under hypoxic conditions.
Collapse
Affiliation(s)
- Iiro Kiiski
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), Helsinki, FI-00014, Finland.
| | - Päivi Järvinen
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), Helsinki, FI-00014, Finland.
| | - Elisa Ollikainen
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), Helsinki, FI-00014, Finland.
| | - Ville Jokinen
- Department of Materials Science and Engineering, School of Chemical Engineering, Aalto University, Espoo, FI-02150, Finland
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), Helsinki, FI-00014, Finland.
| |
Collapse
|
8
|
Abstract
Oxygen concentration varies tremendously within the body and has proven to be a critical variable in cell differentiation, proliferation, and drug metabolism among many other physiological processes. Currently, researchers study the gas's role in biology using low-throughput gas control incubators or hypoxia chambers in which all cells in a vessel are exposed to a single oxygen concentration. Here, we introduce a device that can simultaneously deliver 12 unique oxygen concentrations to cells in a 96-well plate and seamlessly integrate into biomedical research workflows. The device inserts into 96-well plates and delivers gas to the headspace, thus avoiding undesirable contact with media. This simple approach isolates each well using gas-tight pressure-resistant gaskets effectively creating 96 "mini-incubators". Each of the 12 columns of the plate is supplied by a distinct oxygen concentration from a gas-mixing gradient generator supplied by two feed gases. The wells within each column are then supplied by an equal flow-splitting distribution network. Using equal feed flow rates, concentrations ranging from 0.6 to 20.5% were generated within a single plate. A549 lung carcinoma cells were then used to show that O2 levels below 9% caused a stepwise increase in cell death for cells treated with the hypoxia-activated anticancer drug tirapirizamine (TPZ). Additionally, the 96-well plate was further leveraged to simultaneously test multiple TPZ concentrations over an oxygen gradient and generate a three-dimensional (3D) dose-response landscape. The results presented here show how microfluidic technologies can be integrated into, rather than replace, ubiquitous biomedical labware allowing for increased throughput oxygen studies.
Collapse
Affiliation(s)
- Adam Szmelter
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, United States
| | - Jason Jacob
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, United States
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
Pavlacky J, Polak J. Technical Feasibility and Physiological Relevance of Hypoxic Cell Culture Models. Front Endocrinol (Lausanne) 2020; 11:57. [PMID: 32153502 PMCID: PMC7046623 DOI: 10.3389/fendo.2020.00057] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is characterized as insufficient oxygen delivery to tissues and cells in the body and is prevalent in many human physiology processes and diseases. Thus, it is an attractive state to experimentally study to understand its inner mechanisms as well as to develop and test therapies against pathological conditions related to hypoxia. Animal models in vivo fail to recapitulate some of the key hallmarks of human physiology, which leads to human cell cultures; however, they are prone to bias, namely when pericellular oxygen concentration (partial pressure) does not respect oxygen dynamics in vivo. A search of the current literature on the topic revealed this was the case for many original studies pertaining to experimental models of hypoxia in vitro. Therefore, in this review, we present evidence mandating for the close control of oxygen levels in cell culture models of hypoxia. First, we discuss the basic physical laws required for understanding the oxygen dynamics in vitro, most notably the limited diffusion through a liquid medium that hampers the oxygenation of cells in conventional cultures. We then summarize up-to-date knowledge of techniques that help standardize the culture environment in a replicable fashion by increasing oxygen delivery to the cells and measuring pericellular levels. We also discuss how these tools may be applied to model both constant and intermittent hypoxia in a physiologically relevant manner, considering known values of partial pressure of tissue normoxia and hypoxia in vivo, compared to conventional cultures incubated at rigid oxygen pressure. Attention is given to the potential influence of three-dimensional tissue cultures and hypercapnia management on these models. Finally, we discuss the implications of these concepts for cell cultures, which try to emulate tissue normoxia, and conclude that the maintenance of precise oxygen levels is important in any cell culture setting.
Collapse
Affiliation(s)
- Jiri Pavlacky
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Rare Diseases Research Unit, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Polak
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Levitsky Y, Pegouske DJ, Hammer SS, Frantz NL, Fisher KP, Muchnik AB, Saripalli AR, Kirschner P, Bazil JN, Busik JV, Proshlyakov DA. Micro-respirometry of whole cells and isolated mitochondria. RSC Adv 2019; 9:33257-33267. [PMID: 32123561 PMCID: PMC7051014 DOI: 10.1039/c9ra05289e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxygen consumption is a key metric of metabolism in aerobic organisms. Current respirometric methods led to seminal discoveries despite limitations such as high sample demand, exchange with atmospheric O2, and cumulative titration protocols leading to limited choice of useable tissue, complex data interpretation, and restricted experimental design. We developed a sensitive and customizable method of measuring O2 consumption rates by a variety of biological samples in microliter volumes without interference from the aerobic environment. We demonstrate that O2 permeability of the photopolymer, VeroClear, is comparable to that of polyetheretherketone (0.125 vs. 0.143 barrer, respectively) providing an efficient barrier to oxygen ingress. Optical transparency of VeroClear, combined with high resolution 3D printing, allows for optode-based oxygen detection in enclosed samples. These properties yield a microrespirometer with over 100× dynamic range for O2 consumption rates. Importantly, the enclosed respirometer configuration and very low oxygen permeability of materials makes it suitable, with resin pre-conditioning, for quantitative assessment of O2 consumption rates at any desired [O2], including hyperbaric, physiological or hypoxic conditions as necessary for each cell type. We characterized two configurations to study soluble enzymes, isolated mitochondria, cells in suspension, and adherent cells cultured on-chip. Improved sensitivity allows for routine quantitative detection of respiration by as few as several hundred cells. Specific activity of cell suspensions in the microrespirometer was in close agreement with that obtained by high-resolution polarographic respirometry. Adherent cell protocols allowed for physiologically relevant assessment of respiration in retinal pigment epithelial cells, ARPE-19, which displayed lower metabolic rates compared with those in suspension. By exchanging medium composition, we demonstrate that cells can be transiently inhibited by cyanide and that 99.6% of basal O2 uptake is recovered upon its removal. This approach is amenable to new experimental designs and precision measurements on limited sample quantities across basic research and applied fields. 3D printed microfluidic respirometer allows for quantitative investigation of biological energy transduction in adherent and suspension samples.![]()
Collapse
Affiliation(s)
- Yan Levitsky
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - David J Pegouske
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Nathan L Frantz
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Kiera P Fisher
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Artem B Muchnik
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | | | - Philip Kirschner
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Denis A Proshlyakov
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Regier MC, Olszewski E, Carter CC, Aitchison JD, Kaushansky A, Davis J, Berthier E, Beebe DJ, Stevens KR. Spatial presentation of biological molecules to cells by localized diffusive transfer. LAB ON A CHIP 2019; 19:2114-2126. [PMID: 31111131 PMCID: PMC6755031 DOI: 10.1039/c9lc00122k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellular decisions in human development, homeostasis, regeneration, and disease are coordinated in large part by signals that are spatially localized in tissues. These signals are often soluble, such that biomolecules produced by one cell diffuse to receiving cells. To recapitulate soluble factor patterning in vitro, several microscale strategies have been developed. However, these techniques often introduce new variables into cell culture experiments (e.g., fluid flow) or are limited in their ability to pattern diverse solutes in a user-defined manner. To address these challenges, we developed an adaptable method that facilitates spatial presentation of biomolecules across cells in traditional open cultures in vitro. This technique employs device inserts that are placed in standard culture wells, which support localized diffusive pattern transmission through microscale spaces between device features and adherent cells. Devices can be removed and cultures can be returned to standard media following patterning. We use this method to spatially control cell labeling with pattern features ranging in scale from several hundred microns to millimeters and with sequential application of multiple patterns. To better understand the method we investigate relationships between pattern fidelity, device geometry, and consumption and diffusion kinetics using finite element modeling. We then apply the method to spatially defining reporter cell heterogeneity by patterning a small molecule modulator of genetic recombination with the requisite sustained exposure. Finally, we demonstrate use of this method for patterning larger and more slowly diffusing particles by creating focal sites of gene delivery and infection with adenoviral, lentiviral, and Zika virus particles. Thus, our method leverages devices that interface with standard culture vessels to pattern diverse diffusible factors, geometries, exposure dynamics, and recipient cell types, making it well poised for adoption by researchers across various fields of biological research.
Collapse
Affiliation(s)
- Mary C Regier
- Department of Bioengineering, University of Washington, 98195 Seattle, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rivera KR, Yokus MA, Erb PD, Pozdin VA, Daniele M. Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst 2019; 144:3190-3215. [PMID: 30968094 PMCID: PMC6564678 DOI: 10.1039/c8an02201a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As microfabrication techniques and tissue engineering methods improve, microphysiological systems (MPS) are being engineered that recapitulate complex physiological and pathophysiological states to supplement and challenge traditional animal models. Although MPS provide unique microenvironments that transcend common 2D cell culture, without proper regulation of oxygen content, MPS often fail to provide the biomimetic environment necessary to activate and investigate fundamental pathways of cellular metabolism and sub-cellular level. Oxygen exists in the human body in various concentrations and partial pressures; moreover, it fluctuates dramatically depending on fasting, exercise, and sleep patterns. Regulating oxygen content inside MPS necessitates a sensitive biological sensor to quantify oxygen content in real-time. Measuring oxygen in a microdevice is a non-trivial requirement for studies focused on understanding how oxygen impacts cellular processes, including angiogenesis and tumorigenesis. Quantifying oxygen inside a microdevice can be achieved via an array of technologies, with each method having benefits and limitations in terms of sensitivity, limits of detection, and invasiveness that must be considered and optimized. This article will review oxygen physiology in organ systems and offer comparisons of organ-specific MPS that do and do not consider oxygen microenvironments. Materials used in microphysiological models will also be analyzed in terms of their ability to control oxygen. Finally, oxygen sensor technologies are critically compared and evaluated for use in MPS.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
13
|
Effect of patterned polyacrylamide hydrogel on morphology and orientation of cultured NRVMs. Sci Rep 2018; 8:11991. [PMID: 30097609 PMCID: PMC6086831 DOI: 10.1038/s41598-018-30360-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022] Open
Abstract
We recently demonstrated that patterned Parylene C films could be effectively used as a mask for directly copolymerizing proteins on polyacrylamide hydrogel (PAm). In this work, we have proved the applicability of this technique for studying the effect such platforms render on neonatal rat ventricular myocytes (NRVMs). Firstly, we have characterised topographically and mechanically the scaffolds in liquid at the nano-scale level. We thus establish that such platforms have physical properties that closely mimics the in vivo extracellular environment of cells. We have then studied the cell morphology and physiology by comparing cultures on flat uniformly-covered and collagen-patterned scaffolds. We show that micro-patterns promote the elongation of cells along the principal axis of the ridges coated with collagen. In several cases, cells also tend to create bridges across the grooves. We have finally studied cell contraction, monitoring Ca2+ cycling at a certain stimulation. Cells seeded on patterned scaffolds present significant responses in comparison to the isotropic ones.
Collapse
|
14
|
Hunyor I, Cook KM. Models of intermittent hypoxia and obstructive sleep apnea: molecular pathways and their contribution to cancer. Am J Physiol Regul Integr Comp Physiol 2018; 315:R669-R687. [PMID: 29995459 DOI: 10.1152/ajpregu.00036.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA) is common and linked to a variety of poor health outcomes. A key modulator of this disease is nocturnal intermittent hypoxia. There is striking epidemiological evidence that patients with OSA have higher rates of cancer and cancer mortality. Small-animal models demonstrate an important role for systemic intermittent hypoxia in tumor growth and metastasis, yet the underlying mechanisms are poorly understood. Emerging data indicate that intermittent hypoxia activates the hypoxic response and inflammatory pathways in a manner distinct from chronic hypoxia. However, there is significant heterogeneity in published methods for modeling hypoxic conditions, which are often lacking in physiological relevance. This is particularly important for studying key transcriptional mediators of the hypoxic and inflammatory responses such as hypoxia-inducible factor (HIF) and NF-κB. The relationship between HIF, the molecular clock, and circadian rhythm may also contribute to cancer risk in OSA. Building accurate in vitro models of intermittent hypoxia reflective of OSA is challenging but necessary to better elucidate underlying molecular pathways.
Collapse
Affiliation(s)
- Imre Hunyor
- Department of Cardiology, Royal Prince Alfred Hospital , Sydney, New South Wales , Australia.,Faculty of Medicine and Health, University of Sydney School of Medicine , Sydney, New South Wales , Australia
| | - Kristina M Cook
- Faculty of Medicine and Health, University of Sydney School of Medicine , Sydney, New South Wales , Australia.,Charles Perkins Centre, University of Sydney , Sydney, New South Wales , Australia
| |
Collapse
|
15
|
Sreepadmanabh M, Toley BJ. Investigations into the cancer stem cell niche using in-vitro 3-D tumor models and microfluidics. Biotechnol Adv 2018; 36:1094-1110. [DOI: 10.1016/j.biotechadv.2018.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
|
16
|
Barmaki S, Jokinen V, Obermaier D, Blokhina D, Korhonen M, Ras RHA, Vuola J, Franssila S, Kankuri E. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions. Acta Biomater 2018; 73:167-179. [PMID: 29649636 DOI: 10.1016/j.actbio.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Physiological oxygen levels within the tissue microenvironment are usually lower than 14%, in stem cell niches these levels can be as low as 0-1%. In cell cultures, such low oxygen levels are usually mimicked by altering the global culture environment either by O2 removal (vacuum or oxygen absorption) or by N2 supplementation for O2 replacement. To generate a targeted cellular hypoxic microenvironment under ambient atmospheric conditions, we characterised the ability of the dissolved oxygen-depleting sodium sulfite to generate an in-liquid oxygen sink. We utilised a microfluidic design to place the cultured cells in the vertical oxygen gradient and to physically separate the cells from the liquid. We demonstrate generation of a chemical in-liquid oxygen sink that modifies the surrounding O2 concentrations. O2 level control in the sink-generated hypoxia gradient is achievable by varying the thickness of the polydimethylsiloxane membrane. We show that intracellular hypoxia and hypoxia response element-dependent signalling is instigated in cells exposed to the microfluidic in-liquid O2 sink-generated hypoxia gradient. Moreover, we show that microfluidic flow controls site-specific microenvironmental kinetics of the chemical O2 sink reaction, which enables generation of intermittent hypoxia/re-oxygenation cycles. The microfluidic O2 sink chip targets hypoxia to the cell culture microenvironment exposed to the microfluidic channel architecture solely by depleting O2 while other sites in the same culture well remain unaffected. Thus, responses of both hypoxic and bystander cells can be characterised. Moreover, control of microfluidic flow enables generation of intermittent hypoxia or hypoxia/re-oxygenation cycles. STATEMENT OF SIGNIFICANCE Specific manipulation of oxygen concentrations in cultured cells' microenvironment is important when mimicking low-oxygen tissue conditions and pathologies such as tissue infarction or cancer. We utilised a sodium sulfite-based in-liquid chemical reaction to consume dissolved oxygen. When this liquid was pumped into a microfluidic channel, lowered oxygen levels could be measured outside the channel through a polydimethylsiloxane PDMS membrane allowing only for gaseous exchange. We then utilised this setup to deplete oxygen from the microenvironment of cultured cells, and showed that cells responded to hypoxia on molecular level. Our setup can be used for specifically removing oxygen from the cell culture microenvironment for experimental purposes and for generating a low oxygen environment that better mimics the cells' original tissue environments.
Collapse
Affiliation(s)
- Samineh Barmaki
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ville Jokinen
- Aalto University, School of Chemical Engineering, Department of Chemistry and Materials Science, Espoo, Finland
| | | | - Daria Blokhina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Korhonen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Robin H A Ras
- Aalto University, School of Chemical Engineering, Department of Chemistry and Materials Science, Espoo, Finland; Aalto University, School of Science, Department of Applied Physics, Espoo, Finland
| | - Jyrki Vuola
- Helsinki Burn Centre, Jorvi Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sami Franssila
- Aalto University, School of Chemical Engineering, Department of Chemistry and Materials Science, Espoo, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
Kenney RM, Lloyd CC, Whitman NA, Lockett MR. 3D cellular invasion platforms: how do paper-based cultures stack up? Chem Commun (Camb) 2018. [PMID: 28621775 DOI: 10.1039/c7cc02357j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular invasion is the gateway to metastasis, which is the leading cause of cancer-related deaths. Invasion is driven by a number of chemical and mechanical stresses that arise in the tumor microenvironment. In vitro assays are needed for the systematic study of cancer progress. To be truly predictive, these assays must generate tissue-like environments that can be experimentally controlled and manipulated. While two-dimensional (2D) monolayer cultures are easily assembled and evaluated, they lack the extracellular components needed to assess invasion. Three-dimensional (3D) cultures are better suited for invasion studies because they generate cellular phenotypes that are more representative of those found in vivo. This feature article provides an overview of four invasion platforms. We focus on paper-based cultures, an emerging 3D culture platform capable of generating tissue-like structures and quantifying cellular invasion. Paper-based cultures are as easily assembled and analyzed as monolayers, but provide an experimentally powerful platform capable of supporting: co-cultures and representative extracellular environments; experimentally controlled gradients; readouts capable of quantifying, discerning, and separating cells based on their invasiveness. With a series of examples we highlight the potential of paper-based cultures, and discuss how they stack up against other invasion platforms.
Collapse
Affiliation(s)
- Rachael M Kenney
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | | | | | | |
Collapse
|
18
|
Christoforidis T, Driver TG, Rehman J, Eddington DT. Generation of controllable gaseous H 2S concentrations using microfluidics. RSC Adv 2018; 8:4078-4083. [PMID: 30294423 DOI: 10.1039/c7ra12220a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulfide (H2S) plays an important role as an intercellular and intracellular signaling molecule, yet its targets are not well understood. As a molecule it easily evaporates and it is hard to acquire stable concentration for in vitro studies, constituting a major problem for the field to identify its downstream targets and function. Here we develop a microfluidic system that can provide consistent and controllable H2S levels in contrast to the current method of delivering large bolus doses to cells. The system relies on the permeability of H2S gas through a polydimethylsiloxane thin membrane. A hydrogen sulfide donor, sodium hydrosulfide, is perfused in the microchannels below the gas permeable membrane and gaseous H2S diffuses across the membrane, providing a stable concentration for up to 5 hours. Using electrochemical sensors within 3 ppm range, we found that H2S concentration was dependent on two parameters, the concentration of H2S donor, sodium hydrosulfide and the flow rate of the solution in the microchannels. Additionally, different H2S concentration profiles can be obtained by alternating the flow rate, providing an easy means to control the H2S concentration. Our approach constitutes a unique method for H2S delivery for in vitro and ex vivo studies and is ideally suited to identify novel biological processes and cellular mechanisms regulated by H2S.
Collapse
Affiliation(s)
- Theodore Christoforidis
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Jalees Rehman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.,Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.,Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.,Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.,Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| |
Collapse
|
19
|
Design of Fiber Networks for Studying Metastatic Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:289-318. [DOI: 10.1007/978-3-319-95294-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Walsh DI, Dydek EV, Lock JY, Carlson TL, Carrier RL, Kong DS, Cabrera CR, Thorsen T. Emulation of Colonic Oxygen Gradients in a Microdevice. SLAS Technol 2017; 23:164-171. [PMID: 29186668 DOI: 10.1177/2472630317743425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gut-on-a-chip in vitro modeling is an emerging field, as the human gut epithelium and gut microbiome have been recently identified as novel drug targets for a wide variety of diseases. Realistic in vitro gut models require a variety of precise environmental cues, such as chemical and gas gradients, in combination with substrates like mucus that support the growth of microbial communities. This technical brief describes a microfluidic architecture capable of developing a physiologically relevant oxygen gradient that emulates the oxygen profile proximal to the epithelial inner lining of the human colon. The device generates stable and repeatable defined oxygen gradients from 0% to 4 % partial pressure O2 over a length scale of hundreds of microns, and was applied to study the effects of oxygenation on the structure of native mucus that lines the colon wall. Using simulation as a design tool for hybrid gas-liquid microfluidic devices enables on-chip creation of defined, physiologically oxygen gradients. These microfluidic architectures have powerful potential applications for gut physiology, including providing optimal oxygenation conditions for the culture of mammalian epithelial cells in the gut lining, as well as creating a realistic mimic of the oxygen gradient found in the intestinal lumen for complex microbiome cultures.
Collapse
Affiliation(s)
| | | | - Jaclyn Y Lock
- 2 Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Taylor L Carlson
- 3 Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rebecca L Carrier
- 2 Department of Bioengineering, Northeastern University, Boston, MA, USA.,3 Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - David S Kong
- 1 MIT-Lincoln Laboratory, Lexington, MA, USA.,4 MIT Media Laboratory, Cambridge, MA, USA
| | | | | |
Collapse
|
21
|
Wang Z, Oppegard SC, Eddington DT, Cheng J. Effect of localized hypoxia on Drosophila embryo development. PLoS One 2017; 12:e0185267. [PMID: 28934338 PMCID: PMC5608372 DOI: 10.1371/journal.pone.0185267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Environmental stress, such as oxygen deprivation, affects various cellular activities and developmental processes. In this study, we directly investigated Drosophila embryo development in vivo while cultured on a microfluidic device, which imposed an oxygen gradient on the developing embryos. The designed microfluidic device enabled both temporal and spatial control of the local oxygen gradient applied to the live embryos. Time-lapse live cell imaging was used to monitor the morphology and cellular migration patterns as embryos were placed in various geometries relative to the oxygen gradient. Results show that pole cell movement and tail retraction during Drosophila embryogenesis are highly sensitive to oxygen concentrations. Through modeling, we also estimated the oxygen permeability across the Drosophila embryonic layers for the first time using parameters measured on our oxygen control device.
Collapse
Affiliation(s)
- Zhinan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shawn C. Oppegard
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - David T. Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jun Cheng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Rexius-Hall ML, Rehman J, Eddington DT. A microfluidic oxygen gradient demonstrates differential activation of the hypoxia-regulated transcription factors HIF-1α and HIF-2α. Integr Biol (Camb) 2017; 9:742-750. [PMID: 28840922 PMCID: PMC5603417 DOI: 10.1039/c7ib00099e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gas-perfused microchannels generated a linear oxygen gradient via diffusion across a 100 μm polydimethylsiloxane (PDMS) membrane. The device enabled exposure of a single monolayer of cells sharing culture media to a heterogeneous oxygen landscape, thus reflecting the oxygen gradients found at the microscale in the physiological setting and allowing for the real-time exchange of paracrine factors and metabolites between cells exposed to varying oxygen levels. By tuning the distance between two gas supply channels, the slope of the oxygen gradient was controlled. We studied the hypoxic activation of the transcription factors HIF-1α and HIF-2α in human endothelial cells within a spatial linear gradient of oxygen. Quantification of the nuclear to cytosolic ratio of HIF immunofluorescent staining demonstrated that the threshold for HIF-1α activation was below 2.5% O2 while HIF-2α was activated throughout the entire linear gradient. We show for the first time HIF-2α is subject to hyproxya, hypoxia by proxy, wherein hypoxic cells activate HIF in close-proximity normoxic cells. These results underscore the differences between HIF-1α and HIF-2α regulation and suggest that a microfluidic oxygen gradient is a novel tool for identifying distinct hypoxic signaling activation and interactions between differentially oxygenated cells.
Collapse
Affiliation(s)
- Megan L. Rexius-Hall
- Department of Bioengineering, The University of Illinois College of Engineering and College of Medicine, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL, 60612, USA
- Department of Medicine, Division of Cardiology, The University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - David T. Eddington
- Department of Bioengineering, The University of Illinois College of Engineering and College of Medicine, Chicago, IL, 60612, USA
| |
Collapse
|
23
|
Lloyd CC, Boyce MW, Lockett MR. Paper-based Invasion Assays for Quantifying Cellular Movement in Three-dimensional Tissue-like Structures. ACTA ACUST UNITED AC 2017. [PMID: 28628202 DOI: 10.1002/cpch.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To elucidate the chemical and environmental conditions that promote invasion of cancer cells, an assay is needed in which the chemical landscape of a tumor-like environment can be experimentally manipulated and probed. The three-dimensional paper-based invasion assays described here simulate poorly vascularized tissue and allow the invasion of cancerous cells to be visualized and quantified. These cultures are easy to assemble and allow multiple invasion assays to be performed in parallel. By using different materials to control gradients formed across the culture, the chemotactic potential of small molecules can be evaluated in a more representative tissue microenvironment. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- C Chad Lloyd
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew W Boyce
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Oomen PE, Skolimowski MD, Verpoorte E. Implementing oxygen control in chip-based cell and tissue culture systems. LAB ON A CHIP 2016; 16:3394-414. [PMID: 27492338 DOI: 10.1039/c6lc00772d] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.
Collapse
Affiliation(s)
- Pieter E Oomen
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1 (XB20), 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
25
|
Brennan MD, Rexius-Hall ML, Eddington DT. A 3D-Printed Oxygen Control Insert for a 24-Well Plate. PLoS One 2015; 10:e0137631. [PMID: 26360882 PMCID: PMC4567345 DOI: 10.1371/journal.pone.0137631] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/19/2015] [Indexed: 12/16/2022] Open
Abstract
3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane) membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates. The direct printing allows integrated distribution channels and device geometries not possible with traditional planar lithography. With this device, four different oxygen conditions were able to be controlled, and six wells were maintained under each oxygen condition. We demonstrate enhanced transcription of the gene VEGFA (vascular endothelial growth factor A) with decreasing oxygen levels in human lung adenocarcinoma cells. This is the first 3D-printed device incorporating gas permeable membranes to facilitate oxygen control in cell culture.
Collapse
Affiliation(s)
- Martin D. Brennan
- Dept of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Megan L. Rexius-Hall
- Dept of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - David T. Eddington
- Dept of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
26
|
Grist SM, Schmok JC, Liu MCA, Chrostowski L, Cheung KC. Designing a Microfluidic Device with Integrated Ratiometric Oxygen Sensors for the Long-Term Control and Monitoring of Chronic and Cyclic Hypoxia. SENSORS 2015; 15:20030-52. [PMID: 26287202 PMCID: PMC4570408 DOI: 10.3390/s150820030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/28/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
Abstract
Control of oxygen over cell cultures in vitro is a topic of considerable interest, as chronic and cyclic hypoxia can alter cell behaviour. Both static and transient hypoxic levels have been found to affect tumour cell behaviour; it is potentially valuable to include these effects in early, in vitro stages of drug screening. A barrier to their inclusion is that rates of transient hypoxia can be a few cycles/hour, which is difficult to reproduce in traditional in vitro cell culture environments due to long diffusion distances from control gases to the cells. We use a gas-permeable three-layer microfluidic device to achieve spatial and temporal oxygen control with biologically-relevant switching times. We measure the oxygen profiles with integrated, ratiometric optical oxygen sensors, demonstrate sensor and system stability over multi-day experiments, and characterize a pre-bleaching process to improve sensor stability. We show, with both finite-element modelling and experimental data, excellent control over the oxygen levels by the device, independent of fluid flow rate and oxygenation for the operating flow regime. We measure equilibration times of approximately 10 min, generate complex, time-varying oxygen profiles, and study the effects of oxygenated media flow rates on the measured oxygen levels. This device could form a useful tool for future long-term studies of cell behaviour under hypoxia.
Collapse
Affiliation(s)
- Samantha M Grist
- Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver V6T 1Z4, BC, Canada.
| | - Jonathan C Schmok
- Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver V6T 1Z4, BC, Canada.
| | - Meng-Chi Andy Liu
- Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver V6T 1Z4, BC, Canada.
| | - Lukas Chrostowski
- Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver V6T 1Z4, BC, Canada.
| | - Karen C Cheung
- Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver V6T 1Z4, BC, Canada.
| |
Collapse
|
27
|
Gozal D, Farré R, Nieto FJ. Obstructive sleep apnea and cancer: Epidemiologic links and theoretical biological constructs. Sleep Med Rev 2015; 27:43-55. [PMID: 26447849 DOI: 10.1016/j.smrv.2015.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
Sleep disorders have emerged as highly prevalent conditions in the last 50-75 y. Along with improved understanding of such disorders, the realization that perturbations in sleep architecture and continuity may initiate, exacerbate or modulate the phenotypic expression of multiple diseases including cancer has gained increased attention. Furthermore, the intermittent hypoxia that is attendant to sleep disordered breathing, has recently been implicated in increased incidence and more adverse prognosis of cancer. The unifying conceptual framework linking these associations proposes that increased sympathetic activity and/or alterations in immune function, particularly affecting innate immune cellular populations, underlie the deleterious effects of sleep disorders on tumor biology. In this review, the epidemiological evidence linking disrupted sleep and intermittent hypoxia to oncological outcomes, and the potential biological underpinnings of such associations as illustrated by experimental murine models will be critically appraised. The overarching conclusion appears supportive in the formulation of an hypothetical framework, in which fragmented sleep and intermittent hypoxia may promote changes in multiple signalosomes and transcription factors that can not only initiate malignant transformation, but will also alter the tumor microenvironment, disrupt immunosurveillance, and thus hasten tumor proliferation and increase local and metastatic invasion. Future bench-based experimental studies as well as carefully conducted and controlled clinical epidemiological studies appear justified for further exploration of these hypotheses.
Collapse
Affiliation(s)
- David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - F Javier Nieto
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
28
|
Mosadegh B, Lockett MR, Minn KT, Simon KA, Gilbert K, Hillier S, Newsome D, Li H, Hall AB, Boucher DM, Eustace BK, Whitesides GM. A paper-based invasion assay: Assessing chemotaxis of cancer cells in gradients of oxygen. Biomaterials 2015; 52:262-71. [DOI: 10.1016/j.biomaterials.2015.02.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 02/07/2023]
|
29
|
Brennan MD, Rexius-Hall ML, Elgass LJ, Eddington DT. Oxygen control with microfluidics. LAB ON A CHIP 2014; 14:4305-18. [PMID: 25251498 DOI: 10.1039/c4lc00853g] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cellular function and behavior are affected by the partial pressure of O2, or oxygen tension, in the microenvironment. The level of oxygenation is important, as it is a balance of oxygen availability and oxygen consumption that is necessary to maintain normoxia. Changes in oxygen tension, from above physiological oxygen tension (hyperoxia) to below physiological levels (hypoxia) or even complete absence of oxygen (anoxia), trigger potent biological responses. For instance, hypoxia has been shown to support the maintenance and promote proliferation of regenerative stem and progenitor cells. Paradoxically, hypoxia also contributes to the development of pathological conditions including systemic inflammatory response, tumorigenesis, and cardiovascular disease, such as ischemic heart disease and pulmonary hypertension. Current methods to study cellular behavior in low levels of oxygen tension include hypoxia workstations and hypoxia chambers. These culture systems do not provide oxygen gradients that are found in vivo or precise control at the microscale. Microfluidic platforms have been developed to overcome the inherent limits of these current methods, including lack of spatial control, slow equilibration, and unachievable or difficult coupling to live-cell microscopy. The various applications made possible by microfluidic systems are the topic of this review. In order to understand how the microscale can be leveraged for oxygen control of cells and tissues within microfluidic systems, some background understanding of diffusion, solubility, and transport at the microscale will be presented in addition to a discussion on the methods for measuring the oxygen tension in microfluidic channels. Finally the various methods for oxygen control within microfluidic platforms will be discussed including devices that rely on diffusion from liquid or gas, utilizing on-or-off-chip mixers, leveraging cellular oxygen uptake to deplete the oxygen, relying on chemical reactions in channels to generate oxygen gradients in a device, and electrolytic reactions to produce oxygen directly on chip.
Collapse
Affiliation(s)
- Martin D Brennan
- UIC Bioengineering (MC 563), 820 S Wood St W103 CSN, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
30
|
Methods to study the tumor microenvironment under controlled oxygen conditions. Trends Biotechnol 2014; 32:556-563. [PMID: 25282035 DOI: 10.1016/j.tibtech.2014.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/25/2014] [Accepted: 09/09/2014] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment (TME) is a complex heterogeneous assembly composed of a variety of cell types and physical features. One such feature, hypoxia, is associated with metabolic reprogramming, the epithelial-mesenchymal transition, and therapeutic resistance. Many questions remain regarding the effects of hypoxia on these outcomes; however, only a few experimental methods enable both precise control over oxygen concentration and real-time imaging of cell behavior. Recent efforts with microfluidic platforms offer a promising solution to these limitations. In this review, we discuss conventional methods and tools used to control oxygen concentration for cell studies, and then highlight recent advances in microfluidic-based approaches for controlling oxygen in engineered platforms.
Collapse
|
31
|
Dorris DM, Hauser CA, Minnehan CE, Meitzen J. An aerator for brain slice experiments in individual cell culture plate wells. J Neurosci Methods 2014; 238:1-10. [PMID: 25256645 DOI: 10.1016/j.jneumeth.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ex vivo acute living brain slices are a broadly employed and powerful experimental preparation. Most new technology regarding this tissue has involved the chamber used when performing electrophysiological experiments. Alternatively we instead focus on the creation of a simple, versatile aerator designed to allow maintenance and manipulation of acute brain slices and potentially other tissue in a multi-well cell culture plate. NEW METHOD Here we present an easily manufactured aerator designed to fit into a 24-well cell culture plate. It features a nylon mesh and a single microhole to enable gas delivery without compromising tissue stability. The aerator is designed to be individually controlled, allowing both high throughput and single well experiments. RESULTS The aerator was validated by testing material leach, dissolved oxygen delivery, brain slice viability and neuronal electrophysiology. Example experiments are also presented, including a test of whether β1-adrenergic receptor activation regulates gene expression in ex vivo dorsal striatum using qPCR. COMPARISON WITH EXISTING METHODS Key differences include enhanced control over gas delivery to individual wells containing brain slices, decreased necessary volume, a sample restraint to reduce movement artifacts, the potential to be sterilized, the avoidance of materials that absorb water and small biological molecules, minimal production costs, and increased experimental throughput. CONCLUSION This new aerator is of high utility and will be useful for experiments involving brain slices and other potentially tissue samples in 24-well cell culture plates.
Collapse
Affiliation(s)
- David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Caitlin A Hauser
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Caitlin E Minnehan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA; W.M. Keck Center for Behavioral Biology, Center for Human Health and the Environment, and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
32
|
Acosta MA, Jiang X, Huang PK, Cutler KB, Grant CS, Walker GM, Gamcsik MP. A microfluidic device to study cancer metastasis under chronic and intermittent hypoxia. BIOMICROFLUIDICS 2014; 8:054117. [PMID: 25584114 PMCID: PMC4290574 DOI: 10.1063/1.4898788] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/08/2014] [Indexed: 05/12/2023]
Abstract
Metastatic cancer cells must traverse a microenvironment ranging from extremely hypoxic, within the tumor, to highly oxygenated, within the host's vasculature. Tumor hypoxia can be further characterized by regions of both chronic and intermittent hypoxia. We present the design and characterization of a microfluidic device that can simultaneously mimic the oxygenation conditions observed within the tumor and model the cell migration and intravasation processes. This device can generate spatial oxygen gradients of chronic hypoxia and produce dynamically changing hypoxic microenvironments in long-term culture of cancer cells.
Collapse
Affiliation(s)
- Miguel A Acosta
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Xiao Jiang
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Pin-Kang Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology , No. 43, Sec. 4, Keelung Road, Da'an District, Taipei City 106, Taiwan
| | - Kyle B Cutler
- Department of Biomedical Engineering, Beckman Laser Institute, University of California Irvine , 1002 Health Services Road, Irvine, California 92617, USA
| | - Christine S Grant
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Glenn M Walker
- UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University , 4206D Engineering Building III, 911 Oval Drive, Raleigh, North Carolina 27695-7115, USA
| | - Michael P Gamcsik
- Department of Chemical Engineering, National Taiwan University of Science and Technology , No. 43, Sec. 4, Keelung Road, Da'an District, Taipei City 106, Taiwan
| |
Collapse
|
33
|
Mosadegh B, Dabiri BE, Lockett MR, Derda R, Campbell P, Parker KK, Whitesides GM. Three-dimensional paper-based model for cardiac ischemia. Adv Healthc Mater 2014; 3:1036-43. [PMID: 24574054 PMCID: PMC4107065 DOI: 10.1002/adhm.201300575] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/26/2013] [Indexed: 12/29/2022]
Abstract
In vitro models of ischemia have not historically recapitulated the cellular interactions and gradients of molecules that occur in a 3D tissue. This work demonstrates a paper-based 3D culture system that mimics some of the interactions that occur among populations of cells in the heart during ischemia. Multiple layers of paper containing cells, suspended in hydrogels, are stacked to form a layered 3D model of a tissue. Mass transport of oxygen and glucose into this 3D system can be modulated to induce an ischemic environment in the bottom layers of the stack. This ischemic stress induces cardiomyocytes at the bottom of the stack to secrete chemokines which subsequently trigger fibroblasts residing in adjacent layers to migrate toward the ischemic region. This work demonstrates the usefulness of patterned, stacked paper for performing in vitro mechanistic studies of cellular motility and viability within a model of the laminar ventricle tissue of the heart.
Collapse
Affiliation(s)
- Bobak Mosadegh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
| | - Borna E. Dabiri
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
- Disease Biophysics Group, Harvard School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
| | - Matthew R. Lockett
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Ratmir Derda
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
| | - Patrick Campbell
- Disease Biophysics Group, Harvard School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
| | - Kevin Kit Parker
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
- Disease Biophysics Group, Harvard School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
34
|
Oppegard SC, Eddington DT. A microfabricated platform for establishing oxygen gradients in 3-D constructs. Biomed Microdevices 2013; 15:407-14. [PMID: 23344840 PMCID: PMC3651793 DOI: 10.1007/s10544-013-9737-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oxygen gradients are increasingly implicated in a number of biological processes, including stem cell differentiation and cancer metastasis. Unfortunately, the current in vitro tools designed to mimic conditions found in vivo lack application flexibility, simplicity in operation, and precise spatial control that most researchers require for widespread dissemination. The novel microfluidic-based device presented here addresses all the above concerns, offering a simple platform for enhanced control over the oxygen microenvironment exposed to three-dimensional cell-seeded constructs. The device utilizes an oxygen diffusion membrane approach to establish a gradient across a construct sandwiched between two continually perfused microfluidic networks. The device is capable of forming steady-state gradients at both the conditions tested-0 % to 5 % O₂ and 0 % to 21 % O₂-but a wide variety of profiles within the construct are possible. Cell viability with two model cell lines was also tested, with no adverse effects relative to the control.
Collapse
Affiliation(s)
- Shawn C. Oppegard
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - David T. Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
35
|
Kang TY, Hong JM, Jung JW, Yoo JJ, Cho DW. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:701-709. [PMID: 23234496 DOI: 10.1021/la303552m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oxygen and nutrients cannot be delivered to cells residing in the interior of large-volume scaffolds via diffusion alone. Several efforts have been made to meet the metabolic needs of cells in a scaffold by constructing mass transport channels, particularly in the form of bifurcated networks. In contrast to progress in fabrication technologies, however, an approach to designing an optimal network based on experimental evaluation has not been actively reported. The main objective of this study was to establish a procedure for designing an effective microfluidic network system for a cell-seeded scaffold and to develop an experimental model to evaluate the design. We proposed a process to design a microfluidic network by combining an oxygen transport simulation with biomimetic principles governing biological vascular trees. The simulation was performed with the effective diffusion coefficient (D(e,s)), which was experimentally measured in our previous study. Porous scaffolds containing an embedded microfluidic network were fabricated using the lost mold shape-forming process and salt leaching method. The reliability of the procedure was demonstrated by experiments using the scaffolds. This approach established a practical basis for designing an effective microfluidic network in a cell-seeded scaffold.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
36
|
Huang Y, Williams JC, Johnson SM. Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues. LAB ON A CHIP 2012; 12:2103-2117. [PMID: 22534786 DOI: 10.1039/c2lc21142d] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Isolated brain tissue, especially brain slices, are valuable experimental tools for studying neuronal function at the network, cellular, synaptic, and single channel levels. Neuroscientists have refined the methods for preserving brain slice viability and function and converged on principles that strongly resemble the approach taken by engineers in developing microfluidic devices. With respect to brain slices, microfluidic technology may 1) overcome the traditional limitations of conventional interface and submerged slice chambers and improve oxygen/nutrient penetration into slices, 2) provide better spatiotemporal control over solution flow/drug delivery to specific slice regions, and 3) permit successful integration with modern optical and electrophysiological techniques. In this review, we highlight the unique advantages of microfluidic devices for in vitro brain slice research, describe recent advances in the integration of microfluidic devices with optical and electrophysiological instrumentation, and discuss clinical applications of microfluidic technology as applied to brain slices and other non-neuronal tissues. We hope that this review will serve as an interdisciplinary guide for both neuroscientists studying brain tissue in vitro and engineers as they further develop microfluidic chamber technology for neuroscience research.
Collapse
Affiliation(s)
- Yu Huang
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, WI 53706, USA
| | | | | |
Collapse
|
37
|
A bioreactor for subjecting cultured cells to fast-rate intermittent hypoxia. Respir Physiol Neurobiol 2012; 182:47-52. [DOI: 10.1016/j.resp.2012.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 01/02/2023]
|
38
|
Sugiura S, Kanamori T. Comparison of substance supply in static and perfusion cultures based on mass transport phenomena. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Sankar KS, Green BJ, Crocker AR, Verity JE, Altamentova SM, Rocheleau JV. Culturing pancreatic islets in microfluidic flow enhances morphology of the associated endothelial cells. PLoS One 2011; 6:e24904. [PMID: 21961048 PMCID: PMC3178551 DOI: 10.1371/journal.pone.0024904] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/19/2011] [Indexed: 11/24/2022] Open
Abstract
Pancreatic islets are heavily vascularized in vivo with each insulin secreting beta-cell associated with at least one endothelial cell (EC). This structure is maintained immediately post-isolation; however, in culture the ECs slowly deteriorate, losing density and branched morphology. We postulate that this deterioration occurs in the absence of blood flow due to limited diffusion of media inside the tissue. To improve exchange of media inside the tissue, we created a microfluidic device to culture islets in a range of flow-rates. Culturing the islets from C57BL6 mice in this device with media flowing between 1 and 7 ml/24 hr resulted in twice the EC-density and -connected length compared to classically cultured islets. Media containing fluorescent dextran reached the center of islets in the device in a flow-rate-dependant manner consistent with improved penetration. We also observed deterioration of EC morphology using serum free media that was rescued by addition of bovine serum albumin, a known anti-apoptotic signal with limited diffusion in tissue. We further examined the effect of flow on beta-cells showing dampened glucose-stimulated Ca2+-response from cells at the periphery of the islet where fluid shear-stress is greatest. However, we observed normal two-photon NAD(P)H response and insulin secretion from the remainder of the islet. These data reveal the deterioration of islet EC-morphology is in part due to restricted diffusion of serum albumin within the tissue. These data further reveal microfluidic devices as unique platforms to optimize islet culture by introducing intercellular flow to overcome the restricted diffusion of media components.
Collapse
Affiliation(s)
- Krishana S. Sankar
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alana R. Crocker
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyne E. Verity
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Jonathan V. Rocheleau
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
Khanal G, Chung K, Solis-Wever X, Johnson B, Pappas D. Ischemia/reperfusion injury of primary porcine cardiomyocytes in a low-shear microfluidic culture and analysis device. Analyst 2011; 136:3519-26. [PMID: 21271001 DOI: 10.1039/c0an00845a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ischemia/reperfusion (I/R) injury was induced in primary porcine cardiomyocytes in a low-shear microfluidic culture chip. The chip was capable of sustaining the cardiomyocyte culture and inducing I/R injury by subjecting the cells to periods of hypoxia lasting 3-4 hours followed by normoxia. Mitochondrial membrane potential was assayed using MitoTracker Red to follow mitochondrial depolarization, the earliest stage of apoptosis. Cell adhesion and morphology were also determined simultaneously with fluorescence measurements. Changes in membrane potential were observed earlier than previously reported, with mitochondria becoming depolarized as early as 2 hours into the ischemia period. The cells with depolarized mitochondria were deemed apoptotic. Out of 38-61 cells per time frame, the fraction of apoptotic cells was found to be similar to control samples (3%) at two hours of ischemia, which increased up to 22% at the end of the ischemia period as compared to 0% in the control samples. Morphological analysis of cells showed that 4 hours of ischemia followed by reperfusion produced blebbing cells within 2 hours of restoring oxygen to the chip. This approach is a versatile method for cardiomyocyte stress, and in future work additional analytical probes can be incorporated for a multi-analyte assay of cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Grishma Khanal
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | | | | | | | | |
Collapse
|
41
|
Grist SM, Chrostowski L, Cheung KC. Optical oxygen sensors for applications in microfluidic cell culture. SENSORS (BASEL, SWITZERLAND) 2010; 10:9286-316. [PMID: 22163408 PMCID: PMC3230974 DOI: 10.3390/s101009286] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/17/2010] [Accepted: 10/10/2010] [Indexed: 01/09/2023]
Abstract
The presence and concentration of oxygen in biological systems has a large impact on the behavior and viability of many types of cells, including the differentiation of stem cells or the growth of tumor cells. As a result, the integration of oxygen sensors within cell culture environments presents a powerful tool for quantifying the effects of oxygen concentrations on cell behavior, cell viability, and drug effectiveness. Because microfluidic cell culture environments are a promising alternative to traditional cell culture platforms, there is recent interest in integrating oxygen-sensing mechanisms with microfluidics for cell culture applications. Optical, luminescence-based oxygen sensors, in particular, show great promise in their ability to be integrated with microfluidics and cell culture systems. These sensors can be highly sensitive and do not consume oxygen or generate toxic byproducts in their sensing process. This paper presents a review of previously proposed optical oxygen sensor types, materials and formats most applicable to microfluidic cell culture, and analyzes their suitability for this and other in vitro applications.
Collapse
Affiliation(s)
- Samantha M. Grist
- Department of Electrical & Computer Engineering, University of British Columbia/2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; E-Mails: (L.C.); (K.C.C.)
| | - Lukas Chrostowski
- Department of Electrical & Computer Engineering, University of British Columbia/2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; E-Mails: (L.C.); (K.C.C.)
| | - Karen C. Cheung
- Department of Electrical & Computer Engineering, University of British Columbia/2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; E-Mails: (L.C.); (K.C.C.)
| |
Collapse
|