1
|
Erkal-Aytemur A, Mülazımoğlu İE, Üstündağ Z, Caglayan MO. A novel aptasensor platform for the detection of carcinoembryonic antigen using quartz crystal microbalance. Talanta 2024; 277:126376. [PMID: 38852341 DOI: 10.1016/j.talanta.2024.126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
In this study, a quartz crystal microbalance (QCM) aptasensor for carcinoembryonic antigen (CEA), a well-known biomarker for various cancer types, was reported, utilizing two different aptamers. To achieve this, a nanofilm of 4-mercaptophenyl was electrochemically attached to gold-coated QCM crystal surfaces via the reduction of 4-mercaptobenzenediazonium salt (4 MB-DAT) using cyclic voltammetry. Subsequently, gold nanoparticles (AuNP) were affixed to this structure, and then aptamers (antiCEA1 and antiCEA2) modified with SH-functional ends bound to AuNPs completed the modification. The analytical performance of the CEA sensor was evaluated through simultaneous QCM measurements employing CEA solutions ranging from 0.1 ng/mL to 25 ng/mL. The detection limit (LOD) for CEA was determined to be 102 pg/mL for antiCEA1 and 108 pg/mL for antiCEA2 aptamers. Interday and intraday precision and accuracy tests yielded maximum results of 4.3 and + 3.8, respectively, for both aptasensors, as measured by relative standard deviation (RSD%) and relative error (RE%). The kinetic data of the aptasensors resulted in affinity values (KD) of 0.43 ± 0.14 nM for antiCEA1 and 0.75 ± 0.42 nM for antiCEA2. These values were lower than the reported values of 3.9 nM and 37.8 nM for both aptamers, respectively. The selectivity of the aptasensor was evaluated by measuring the signal changes caused by alpha-fetoprotein (AFP), cancer antigen (CA-125), and vascular endothelial growth factor (VEGF-165) individually and together at a concentration of 500 ng/mL, resulting in a maximum 4.1 % change, which was comparable to precision and accuracy values reported in the literature. After confirming the selectivity of the aptamers, recovery experiments were conducted using spiked commercial serum samples to simulate real samples, and the lowest recovery value obtained was 95.4 %. It was determined that two different aptasensors could be successfully used for the QCM-based detection of CEA in this study.
Collapse
Affiliation(s)
- Aslı Erkal-Aytemur
- Alanya Alaaddin Keykubat University, R.K. Faculty of Engineering, Fundamental Science, Antalya, Turkey
| | | | - Zafer Üstündağ
- Kütahya Dumlupınar University, Faculty of Arts and Science, Department of Chemistry, Kütahya, Turkey
| | - Mustafa Oguzhan Caglayan
- Bilecik Seyh Edebali University, Faculty of Engineering, Department of Bioengineering, Bilecik, Turkey.
| |
Collapse
|
2
|
Mwanza D, Adeniyi O, Tesfalidet S, Nyokong T, Mashazi P. Capacitive label-free ultrasensitive detection of PSA on a covalently attached monoclonal anti-PSA antibody gold surface. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Caglayan MO, Üstündağ Z, Şahin S. Spectroscopic ellipsometry methods for brevetoxin detection. Talanta 2022; 237:122897. [PMID: 34736713 DOI: 10.1016/j.talanta.2021.122897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/10/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
The spectroscopic ellipsometry (SE), and attenuated internal reflection spectroscopic ellipsometry (TIRE) are promising methods in label-free biosensing applications. An ellipsometer running under surface plasmon resonance (SPR) conditions has unique advantages over other SPR-based methods in terms of sensitivity and real-time/label-free measurement capability. In this study, both SE and TIRE-based brevetoxin B (BTX) sensors were developed using two anti-BTX aptamers reported before. A new aptamer sequence was also derived from these two antiBTX aptamers using predictive modeling tools and an exclusion method. All three antiBTX aptamers' analytical performances were quite competitive in terms of both detecting range and detection limits. However, the selectivity of the previously reported aptamers against analogs of BTX was poor at low detection ranges, especially for okadaic acid. Furthermore, the selectivity of the derived aptamer was lower than its predecessors. The sensors were capable of detecting BTX in the range of 0.05 nM-1600 nM in the TIRE and 0.5 nM-2000 nM in the SE configuration. The detection limits of the sensors were 1.48 nM (1.32 ng/mL) and 0.80 nM (0.72 ng/mL) for SE and TIRE configurations, respectively. Both configurations have been used successfully to detect BTX standards spiked into real fish and shrimp samples.
Collapse
Affiliation(s)
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100, Kütahya, Turkey
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
4
|
Caglayan MO. Mercuric ion detection by plasmon-enhanced spectrophotometric ellipsometer using specific oligonucleotide probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118682. [PMID: 32650242 DOI: 10.1016/j.saa.2020.118682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Pollution due to heavy metal ions, including mercury, has become a major issue because of their toxicities. It is required to monitor mercury levels in aqueous media using fast and selective methods with high accuracy. Ellipsometry is a promising technique for instance when it's combined with the plasmon resonance phenomena. We reported a biosensor system available for qualitative/quantitative determination of mercuric ions in aqueous media where both the spectrophotometric ellipsometry and oligonucleotide recognition elements were used. A single step assay using both a linear (ProbeL) and a hair-pin (ProbeH) type oligonucleotide probe as a recognition element, in addition to a sandwich-type (ProbeLS) assay were developed and compared. The detection limits were 0.23 nM, 0.03 nM and 0.15 pM for ProbeL, ProbeH and ProbeLS, respectively. The detection range was between 0.05 nM and 100 nM Hg2+ for all assays proposed herein.
Collapse
Affiliation(s)
- Mustafa Oguzhan Caglayan
- Bilecik Seyh Edebali University, Faculty of Engineering, Bioengineering Department, Bilecik, Turkiye.
| |
Collapse
|
5
|
Caglayan MO, Şahin S, Üstündağ Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit Rev Anal Chem 2020; 52:294-313. [PMID: 32715728 DOI: 10.1080/10408347.2020.1797468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEN) is a toxic compound produced by the metabolism of fungi (genus Fusarium) that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN. Different selective molecular diagnostic elements are used in conjunction with different detection strategies to achieve this goal. In this review, the use of electrochemical, colorimetric, fluorometric, refractometric as well as other strategies were discussed for ZEN detection. The success of the sensors in analytical performance depends on the development of receptors with increased affinity to the target. This requirement has been met with different immunoassays, aptamer-assays, and molecular imprinting techniques. The immobilization techniques and analysis strategies developed with the combination of nanomaterials provided high precision, reliability, and convenience in ZEN detection, in which electrochemical strategies perform the best.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
6
|
A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020; 220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Heavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg2+), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg2+ is of particular interest with significant specificity. In this review, aptamer-based strategies in combination with nanostructures as well as several other strategies to solve addressed problems in sensor development for Hg2+ are discussed in detail. In particular, the analytical performance of different aptamer and oligonucleotide-based strategies using different signal improvement approaches based on nanoparticles were compared within each strategy and in between. Although quite a number of the suggested methodologies analyzed in this review fulfills the standard requirements, further development is still needed on real sample analysis and analytical performance parameters.
Collapse
|
7
|
Caglayan MO. Aptamer-based ellipsometric sensor for ultrasensitive determination of aminoglycoside group antibiotics from dairy products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3386-3393. [PMID: 32144775 DOI: 10.1002/jsfa.10372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/30/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Residual antibiotics taken along with food consumed through the food chain are the main cause of the super-bacteria and may damage organs such as liver and kidney. Therefore, monitoring residual antibiotic levels of products in the food chain is both important and a requirement. Maximum residual limits for kanamycin and neomycin are 150 ng mL-1 and 500 ng mL-1 respectively, which are challenging for most sensor platforms. In this paper, a novel method is presented for the determination of antibiotics residues in animal-derived foods. RESULTS Aptamer-based kanamycin and neomycin biosensors based on the spectroscopic ellipsometer and the surface plasmon resonance-enhanced total internal reflection ellipsometer methods as transducing element were developed. Detection limits of both sensor platforms were in the 0.1-1 nmol L-1 ranges, and the detection range was between the detection limit and 1000 nmol L-1 . CONCLUSION Both ellipsometry-based aptasensors can be used as an alternative to the existing enzyme-linked immunosorbent assay-based method in terms of assay time (10 min), detection limit (0.22 ng mL-1 for neomycin and 0.048 ng mL-1 for kanamycin), and detection range. © 2020 Society of Chemical Industry.
Collapse
|
8
|
Caglayan MO, Üstündağ Z. Spectrophotometric ellipsometry based Tat-protein RNA-aptasensor for HIV-1 diagnosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117748. [PMID: 31707021 DOI: 10.1016/j.saa.2019.117748] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 05/27/2023]
Abstract
Rapid and reliable diagnosis of Human Immunodeficiency Virus (HIV) Type I that causes autoimmune deficiency syndrome (AIDS) is still important today. In this study, the HIV-I Tat (trans-activator of transcription) protein-specific RNA-aptamer (antiTat) and spectroscopic ellipsometer were preferred to increase specificity and sensitivity in the diagnosis. The ellipsometry is a well-known characterization tool for the ultra-thin films, where polarization state changes show surface deposition in terms of the ellipsometric angles, psi (Ψ) and delta (Δ). Here, we reported the HIV-Tat protein detection performance of antiTat aptamers both for the spectroscopic ellipsometry (SE) and for the surface plasmon resonance enhanced total internal reflection ellipsometry (SPReTIRE), first time. Detection limits for antiTat aptamers with various configurations were in the range of nM-pM protein in the buffer solution. For instance, SPRe-TIRE configuration revealed a detection limit of 1 pM (or about 1.5 pg/mL) for HIV-Tat protein in the range of 1.0-500 nM.
Collapse
Affiliation(s)
- Mustafa Oguzhan Caglayan
- Bilecik Şeyh Edebali University, Faculty of Eng., Department of Bioengineering, 11210 Bilecik, Turkey; Cumhuriyet University, Nanotechnology Department, 58140 Sivas, Turkey
| | - Zafer Üstündağ
- Dumlupınar University, Faculty of Arts and Science, Chemistry Department, 43100 Kütahya, Turkey.
| |
Collapse
|
9
|
Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip. SENSORS 2016; 17:s17010063. [PMID: 28042821 PMCID: PMC5298636 DOI: 10.3390/s17010063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022]
Abstract
A curved D-type optical fiber sensor (OFS) combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR) of the Kretchmann’s configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA)-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10−5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.
Collapse
|
10
|
Qureshi MS, Yusoff ARBM, Wirzal MDH, Sirajuddin, Barek J, Afridi HI, Üstündag Z. Methods for the Determination of Endocrine-Disrupting Phthalate Esters. Crit Rev Anal Chem 2016; 46:146-59. [PMID: 25831046 DOI: 10.1080/10408347.2015.1004157] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phthalates are endocrine disruptors frequently occurring in the general and industrial environment and in many industrial products. Moreover, they are also suspected of being carcinogenic, teratogenic, and mutagenic, and they show diverse toxicity profiles depending on their structures. The European Union and the United States Environmental Protection Agency (US EPA) have included many phthalates in the list of priority substances with potential endocrine-disrupting action. They are: dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), diethylhexyl phthalate (DEHP), di-iso-nonyl phthalate (DINP), di-iso-decyl phthalate (DIDP), di-n-decyl phthalate (DnDP), and dioctyl phthalate (DOP). There is an ever-increasing demand for new analytical methods suitable for monitoring different phthalates in various environmental, biological, and other matrices. Separation and spectrometric methods are most frequently used. However, modern electroanalytical methods can also play a useful role in this field because of their high sensitivity, reasonable selectivity, easy automation, and miniaturization, and especially low investment and running costs, which makes them suitable for large-scale monitoring. Therefore, this review outlines possibilities and limitations of various analytical methods for determination of endocrine-disruptor phthalate esters in various matrices, including somewhat neglected electroanalytical methods.
Collapse
Affiliation(s)
- Munawar Saeed Qureshi
- a Institute of Environmental & Water Resource Management (IPASA), Universiti Teknologi Malaysia , Malaysia.,b Education & Literacy Department , Government College & Postgraduate Center , Government of Sindh , Pakistan
| | | | - Mohd Dzul Hakim Wirzal
- a Institute of Environmental & Water Resource Management (IPASA), Universiti Teknologi Malaysia , Malaysia
| | | | - Jiri Barek
- d UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry , University Research Centre UNCE, Charles University in Prague , Prague , Czech Republic
| | - Hassan Imran Afridi
- c National Center of Excellence in Analytical Chemistry , University of Sindh , Jamshoro , Pakistan
| | - Zafer Üstündag
- e Department of Chemistry , Dumlupinar University , Kutahya , Turkey
| |
Collapse
|
11
|
Marín AG, García-Mendiola T, Bernabeu CN, Hernández MJ, Piqueras J, Pau JL, Pariente F, Lorenzo E. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing. NANOSCALE 2016; 8:9842-9851. [PMID: 27120517 DOI: 10.1039/c6nr00926c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R(2) = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.
Collapse
Affiliation(s)
- Antonio García Marín
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Spain
| | - Tania García-Mendiola
- Departamento Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Spain. and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Spain
| | | | - María Jesús Hernández
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Spain
| | - Juan Piqueras
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Spain
| | - Jose Luis Pau
- Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Spain
| | - Félix Pariente
- Departamento Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Spain. and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Spain
| | - Encarnación Lorenzo
- Departamento Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Spain. and Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Spain
| |
Collapse
|
12
|
García-Marín A, Abad JM, Ruiz E, Lorenzo E, Piqueras J, Pau JL. Glutathione Immunosensing Platform Based on Total Internal Reflection Ellipsometry Enhanced by Functionalized Gold Nanoparticles. Anal Chem 2014; 86:4969-76. [DOI: 10.1021/ac5005212] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Antonio García-Marín
- Grupo
de Electrónica
y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M. Abad
- Departamento
de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Fáraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Eduardo Ruiz
- Grupo
de Electrónica
y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Encarnación Lorenzo
- Departamento
de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Fáraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Juan Piqueras
- Grupo
de Electrónica
y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José L. Pau
- Grupo
de Electrónica
y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Ekşi H, Gupta VK, Üstündağ Z, Atar N, Çağlayan MO, Solak AO. Surface characterization of dinitrophenyl-diaminophenyl nanoplatform on glassy carbon. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|